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FIGURE6.1
I don't have
a photo from
Christmas 1981,
but this was taken
about that time at
my grandparents'
house. I'm trying
to play an 'E' by
the looks of it, no
doubt because
it' s in 'Take on the
World'.

When 1was 8 years old, my parents bought me a guitar for Christmas. Even then, I'd des
perately wanted to play the guitar for years. 1 could not contain my excitement at getting
this gift (had it been an electric guitar 1think 1would have actually exploded with excite
ment). The guitar carne with a 'learn to play' book and, after a little while of trying to play
what was on page 1 of this book, 1 readied myself to unleash a riff of universe-crushing
power onto the world (well, 'Skip to my Lou' actually). But, 1 couldn't do it. 1 burst into

6.1. What wiLLthis chapter teLLme? <D

6
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1This is not a dissimilar reaction to the one 1have when publishers ask me for new editions of statistics textbooks.

The mean of the samplc is represented by x, x, is the data point in question and N is the
number of observations (see section 2.4.1). If we are interested in whether two variables
are related, then we are interested in whether changes in one variable are met with similar
changes in the other variable. Therefore, when one variable deviates from its mean we
would expect the other variable to deviate from its mean in a similar way. To illustrate what
I mean, imagine we took five people and subjected them to a certain number of advertise
ments promoting toffee sweets, and then measured how many packets of those sweets each

(6.1)L (x, - x)2 L (x, - X)(Xi - x)
Variancetsf ) = -----

N-1 N-1

The simplest way to look at whether two variables are associated is to look at whether they
covary. To understand what covariance is, we first need to think back to the concept of
variance that we met in Chapter 2. Remember that the variance of a single variable repre
sents the average amount that the data vary from the mean. Numerically, it is described by:

l1li A detour into the murky worLd of covariance <D

How do we measure reLationships? <D6.3.

In Chapter 4 I stressed the importance of looking at your data graphically before
running any other analysis on them. I just want to begin by reminding you that our
first starting point with a correlation analysis should be to look at sorne scatter
plots of the variables we have measured. I am not going to repeat how to get R to
produce these graphs, but I am going to urge you (if you haven't done so already)
to read section 4.5 before embarking on the rest of this chapter.

correlation?

6.2. Looking at reLationships <D

tears and ran upstairs to hide.! My dad sat with me and said 'Don't worry, Andy, everything
is hard to begin with, but the more you practise the easier it gets.' In his comforting words,
my dad was inadvertently teaching me about the relationship, or correlation, between two
variables. These two variables could be related in three ways: (1) positively related, mean
ing that the more I practised my guitar, the better a guitar player I would become (i.e., my
dad was telling me the truth); (2) not related at all, meaning that as I practised the guitar my
playing ability would remain completely constant (i.e., my dad has fathered a cretin); or (3)
negatively related, which would mean that the more I practised my guitar the worse a gui
tar player I would become (i.e., my dad has fathered an indescribably strange child). This
chapter looks first at how we can express the relationships between variables statistically by
looking at two measures: covariance and the correlation coefficient. We then discover how
to carry out and interpret correlations in R. The chapter ends by looking at more complex
measures of relationships; in doing so it acts as a precursor to multiple regression, which
we discuss in Chapter 7.

DISCOVERING STATISTICS USING R206



FIGURE6.2
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person bought during the next week. The data are in Table 6.1 as well as the mean and
standard deviation (s) of each variable.

If there were a relationship between these two variables, then as one variable deviates
from its mean, the other variable should deviate from its mean in the same or the directly
opposite way. Figure 6.2 shows the data for each participant (light blue circles represent the
number of packets bought and dark blue circles represent the number of adverts watched);
the grey line is the average number of packets bought and the blue line is the average num
ber of adverts watched. The verticallines represent the differences (remember that these
differences are called deviations) between the observed values and the mean of the relevant
variable. The first thing to notice about Figure 6.2 is that there is a very similar pattern of
deviations for both variables. For the first three participants the observed values are below
the mean for both variables, for the last two people the observed values are aboye the mean
for both variables. This pattern is indicative of a potential relationship between the two
variables (because it seems that if a person's score is below the mean for one variable then
their score for the other will also be below the mean).

So, how do we calculate the exact similarity between the patterns of differences of the
two variables displayed in Figure 6.2? One possibility is to calculate the total amount of
deviation but we would have the same problem as in the single variable case: the positive
and negative deviations would cancel out (see section 2.4.1). Also, by simply adding the
deviations, we would gain little insight into the relationship between the variables. Now, in
the single variable case, we squared the deviations to eliminate the problem of positive and
negative deviations cancelling out each other. When there are two variables, rather than
squaring each deviation, we can multiply the deviation for one variable by the correspond
ing deviation for the second variable. If both deviations are positive or negative then this
will give us a positive value (indicative of the deviations being in the same direction), but

1.67

2.92

5.4

11.0

8

15

6

13

4

10

4

9

5

8

Advertswatched

Packetsbought

Participant: 1 2 3 4 5 Mean s

Table 6.1 Adverts watched and toffee purchases
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To overcome the problem of dependence on the measurement scale, we need to convert
the covariance into a standard set of units. This process is known as standardization. A very
basic form of standardization would be to insist that all experiments use the same units
of measurement, say metres - that way, all results could be easily compared. However,
what happens if you want to measure attitudes - you'd be hard pushed to measure them

.. Standardization and the correLation coefficient <D

Calculating the covariance is a good way to assess whether two variables are related to
each other. A positive covariance indicates that as one variable deviates from the mean,
the other variable deviates in the same direction. On the other hand, a negative covariance
indicates that as one variable deviates from the mean (e.g., increases), the other deviates
from the mean in the opposite direction (e.g., decreases).
There is, however, one problem with covariance as a measure of the relationship between

variables and that is that it depends upon the scales of measurement used. So, covariance is
not a standardized measure. For example, if we use the data aboye and assume that they rep
resented two variables measured in miles then the covariance is 4.25 (as calculated aboye). If
we then convert these data into kilometres (by multiplying all values by 1.609) and calculate
the covariance again then we should find that it increases to 11. This dependence on the
scale of measurement is a problem because it means that we cannot compare covariances
in an objective way - so, we cannot say whether a covariance is particularly large or small
relative to another data set unless both data sets were measured in the same units.

17
4

= 4.25

1.2+2.8 + 1.4+ 1.2+ 10.4
4

( )
L(Xi - x)(Yi - y)

COVX,Y= N-l

(-0.4)(-3) + (-1.4)(-2) + (-1.4)(-1) + (0.6)(2)+ (2.6)(4)
4

For the data in Table 6.1 and Figure 6.2 we reach the following value:

(6.2)( )
~)Xi -:x)(Yi - y)

COy x, y = ---N---l---

if one deviation is positive and one negative then the resulting product will be negative
(indicative of the deviations being opposite in direction). When we multiply the deviations
of one variable by the corresponding deviations of a second variable, we get what is known
as the cross-product deviations. As with the variance, if we want an average value of the
combined deviations for the two variables, we must divide by the number of observations
(we actually divide by N - 1 for reasons explained in Jane Superbrain Box 2.2). This aver
aged sum of combined deviations is known as the covariance. We can write the covariance
in equation form as in equation (6.2) - you will notice that the equation is the same as the
equation for variance, except that instead of squaring the differences, we multiply them by
the corresponding difference of the second variable:
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2 Youwill find Pearson's product-moment correlation coefficient denoted by both r and R. Typically,the upper
case form is used in the context of regression because it represents the multiple correlation coefficient; however,
for sorne reason, when we square r (as in section 6.5.4.3) an upper case R is used. Don't ask me why - it's just
to confuse me, 1suspect.

The coefficient in equation (6.3) is known as the Pearson product-moment correlation coeffi
cient or Pearson correlation coefficient (for a really nice explanation of why it was originally
called the 'product-moment' correlation, see Miles & Banyard, 2007) and was invented by
Karl Pearson (see Jane Superbrain Box 6.1).2 If we look back at Table 6.1 we see that the
standard deviation for the number of adverts watched (sJ was 1.67, and for the number
of packets of crisps bought (s ) was 2.92. If we multiply these together we get 1.67 x 2.92y
= 4.88. Now, all we need to do is take the covariance, which we calculated a few pages
ago as being 4.25, and divide by these multiplied standard deviations. This gives us r =
4.25/4.88 = .87.

By standardizing the covariance we end up with a value that has to lie between -1
and +1 (if you find a correlation coefficient less than -1 or more than +1 you can be
sure that something has gone hideously wrong!). A coefficient of +1 indicates that the
two variables are perfectly positively correlated, so as one variable increases, the other
increases by a proportionate amount. Conversely, a coefficient of -1 indicates a perfect
negative relationship: if one variable increases, the other decreases by a proportionate
amount. A coefficient of zero indicates no linear relationship at all and so if one variable
changes, the other stays the same. We also saw in section 2.6.4 that because the correla
tion coefficient is a standardized measure of an observed effect, it is a commonly used
measure of the size of an effect and that values of ±.1 represent a small effect, ±.3 is a
medium effect and ±.5 is a large effect (although I re-emphasize my caveat that these
canned effect sizes are no substitute for interpreting the effect size within the context of
the research literature).

(6.3)
COyxy L (xi - X)(Yi - y)

r = -- = -------
SxSy (N - l)sxsy

in metres. Therefore, we need a unit of measurement into which any scale of measurement
can be converted. The unit of measurement we use is the standard deviation. We carne
across this measure in section 2.4.1 and saw that, like the variance, it is a measure of the
average deviation from the mean. If we divide any distance from the mean by the standard
deviation, it gives us that distance in standard deviation units. For example, for the data in
Table 6.1, the standard deviation for the number of packets bought is approximately 3.0
(the exact value is 2.92). In Figure 6.2 we can see that the observed value for participant
1 was 3 packets less than the mean (so there was an error of -3 packets of sweets). If we
divide this deviation, -3, by the standard deviation, which is approximately 3, then we get
a value of -1. This tells us that the difference between participant l' s score and the mean
was -1 standard deviation. So, we can express the deviation from the mean for a partici
pant in standard units by dividing the observed deviation by the standard deviation.
It follows from this logic that if we want to express the covariance in a standard unit of

measurement we can simply divide by the standard deviation. However, there are two vari
ables and, hence, two standard deviations. Now, when we calculate the covariance we actu
ally calculate two deviations (one for each variable) and then multiply them. Therefore,
we do the same for the standard deviations: we multiply them and divide by the product
of this multiplication. The standardized covariance is known as a correlation coefficient and
is defined by equation (6.3), in which Sx is the standard deviation of the first variable and
s is the standard deviation of the second variable (all other letters are the same as in they
equation defining covariance):
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(6.5)

(6.4)

SE = 1
z, -JN - 3

The resulting z, has a standard error of:

1 (l+r)Z =-log --
r 2 e 1-r

Although we can directly interpret the size of a correlation coefficient, we have seen in
Chapter 2 that scientists like to test hypotheses using probabilities. In the case of a correla
tion coefficient we can test the hypothesis that the correlation is different from zero (i.e.,
different from 'no relationship'). If we find that our observed coefficient was very unlikely
to happen if there was no effect in the population, then we can gain confidence that the
relationship that we have observed is statistically meaningful.
There are two ways that we can go about testing this hypothesis. The first is to use our

trust y z-scores that keep cropping up in this book. As we have seen, z-scores are useful
because we know the probability of a given value of Z occurring, if the distribution from
which it comes is normal. There is one problem with Pearson's r, which is that it is known
to have a sampling distribution that is not normally distributed. This is a bit of a nuisance,
but luckily, thanks to our friend Fisher, we can adjust r so that its sampling distribution is
normal as follows (Fisher, 1921):

l1li The significance of the correLation coefficient ®

Another prominent statistician, Jerzy Neyman, criti
cized some of Fisher's most important work in a paper
delivered to the Royal Statistical Society on 28 March
1935 at which Fisher was present. Fisher's discussion
of the paper at that meeting directly attacked Neyman.
Fisher more or less said that Neyman didn't know
what he was talking about and didn't understand the
background material on which his work was based.
Relations soured so much that while they both worked
at University College London, Neyman openly attacked
many of Fisher's ideas in lectures to his students. The
two feuding groups even took afternoon tea (a com
mon practice in the British academic community of the
time) in the same room but at different times! The truth
behind who fuelled these feuds is, perhaps, lost in the
mists of time, but Zabell (1992) makes a sterling effort
to unearth it.

Basically, then, the founders of modern statisti
cal methods were a bunch of squabbling children.
Nevertheless, these three men were astonishingly gifted
individuals. Fisher, in particular, was a world leader in
genetics, biology and medicine as well as possibly the
most original mathematical thinker ever (Barnard, 1963;
Field, 2005c; Savage, 1976).

DISCOVERING STATISTICS USING R

Students often think that statistics is dull, but back in the
early 1900s it was anything but dull, with various promi
nent figures entering into feuds on a soap opera scale.
One of the most famous was between Karl Pearson and
Ronald Fisher (whom we met in Chapter 2). It began
when Pearson published a paper of Fisher's in his journal
but made comments in his editorial that, to the casual
reader, belittled Fisher's work. Two years later Pearson's
group published work following on from Fisher's paper
without consulting him. The antagonism persisted with
Fisher turning down a job to work in Pearson's group and
publishing 'improvements' on Pearson's ideas. Pearson
for his part wrote in his own journal about apparent errors
made by Fisher.

JANE SUPERBRAIN 6.1
Who said statistics was dul/? <D
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upper boundary of confidence interval = z, + (1.96 x SEzr)

lower boundary of confidence interval = z, - (1.96 x SEzr)

In the case of our transformed correlation coefficients these equations become:

upper boundary of confidence interval = X + (1.96 x SE)

lower boundary of confidence interval = X - (1.96 x SE)

Confidence intervals tell us something about the likely value (in this case of the correlation)
in the population. To understand how confidence intervals are computed for r, we need to
take advantage of what we learnt in the previous section about converting r to z, (to make
the sampling distribution normal), and using the associated standard errors. We can then
construct a confidence interval in the usual way. For a 95% confidence interval we have
(see section 2.5.2.1):

__ Confidence intervaLs for r®

You might wonder then why I told you about z-scores, then. Partly it was to keep the dis
cussion framed in concepts with which you are already familiar (we don't encounter the
t-test properly for a few chapters), but also it is useful background information for the next
section.

(6.7)
r-JN - 2

t =--------==-
r ~

For our advert data this gives us 1.33/.71 = 1.87. We can look up this value of Z (1.87)
in the table for the normal distribution in the Appendix and get the one-tailed probability
from the column labelled 'Smaller Portion'. In this case the value is .0307. To get the two
tailed probability we simply multiply the one-tailed probability value by 2, which gives us
.0614. As such the correlation is significant, p < .05, one-tailed, but not two-tailed.
In fact, the hypothesis that the correlation coefficient is different from O is usually (R,

for example, does this) tested not using a z-score, but using a t-statistic with N - 2 degrees
of freedom, which can be directly obtained from r:

(6.6)
Zz=_r_

SEZr

For our advert example, our r = .87 becomes 1.33 with a standard error of .71.
We can then transform this adjusted r into a z-score just as we have done for raw scores,

and for skewness and kurtosis values in previous chapters. If we want a z-score that rep
resents the size of the correlation relative to a particular value, then we simply compute
a z-score using the value that we want to test against and the standard error. Normally
we want to see whether the correlation is different from O, in which case we can subtract
O from the observed value of r and divide by the standard error (in other words, we just
divide z, by its standard error):

211CHAPTER 6 CORRELATION



• Direction of causality: Correlation coefficients say nothing about which variable
causes the other to change. Even if we could ignore the third -variable problem
described aboye, and we could assume that the two correlated variables were the only
important ones, the correlation coefficient doesn't indicate in which direction causal
ity operates. So, although it is intuitively appealing to condude that watching adverts
causes us to buy packets of toffees, there is no statistical reason why buying packets
of toffees cannot cause us to watch more adverts. Although the latter conclusion
makes less intuitive sense, the correlation coefficient does not tell us that it isn't true.

• The third-variable problem: We carne across this problem in section 1.6.2. To recap,
in any correlation, causality between two variables cannot be assumed because there
may be other measured or unmeasured variables affecting the results. This is known as
the third-variable problem or the tertium quid (see section 1.6.2 and Jane Superbrain
Box 1.1).

Considerable caution must be taken when interpreting correlation coefficients because
they give no indication of the direction of causality. So, in our example, although we can
conclude that as the number of adverts watched increases, the number of packets of toffees
bought increases also, we cannot say that watching adverts causes you to buy packets of
toffees. This caution is for two reasons:

l1li A word of warning about interpretation: causaLity <D

• A crude measure of the relationship between variables is the covariance.
• If we standardize this value we get Pearson 's corre/afion coefficient, r.
• The correlation coefficient has to lie between -1 and +1.
• A coefficient of +1 indicates a perfect positive relationship, a coefficient of -1 indicates a perfect negative relationship, and

a coefficient of O indicates no linear relationship at all.
• The correlation coefficient is a commonly used measure of the size of an effect: values of ±.1 represent a small effect, ±.3

is a medium effect and ±.5 is a large effect. However, if you can, try to interpret the size of correlation within the context of
the research you've done rather than blindly following these benchmarks.

Correlation

(6.8)
e(2Zr) -1

r=~~-
e(2zr) +1

This gives us an upper bound of r = .991 and a lower bound of -0.062 (because this value
is so close to zero the transformation to Z has no impact).

For our advert data this gives us 1.33 - (1.96 x .71) = -0.062, and 1.33 + (1.96 X .71)
= 2.72. Remember that these values are in the z, metric and so we have to convert back to
correlation coefficients using:

DISCOVERING STATISTICS USING R212



FIGURE6.3
Data entry for
correlation using
Excel

213

There are two types of correlation: bivariate and partial. A bivariate correlation is a cor
relation between two variables (as described at the beginning of this chapter) whereas a
partial correlation (see section 6.6) looks at the relationship between two variables while

6.5. Bivariate correLation <D

~ Enterthe advert data and use ggplot2 to produce a
scatterplot (numberof packets bought on the y-axis,
and advertswatched on the x-axis) of the data.

SELF-TEST

GF HE

gl""
Co,nditional
Formatting,

Data entry for correlation, regression and multiple regression is straightforward because
each variable is entered in a separate column. If you are preparing your data in software
other than R then this means that, for each variable you have measured, you create a vari
able in the spreadsheet with an appropriate name, and enter a participant's scores across
one row of the spreadsheet. There may be occasions on which you have one or more cat
egorical variables (such as gender) and these variables can also be entered in a column - see
section 3.7 for more detail.
As an example, if we wanted to calculate the correlation between the two variables in

Table 6.1 we would enter these data as in Figure 6.3. You can see that each variable is
entered in a separate column, and each row represents a single individual's data (so the first
consumer saw 5 adverts and bought 8 packets).

If you have a small data set you might want to enter the variables directly into R and
then create a dataframe from them. For the advert data this can be done by executing the
following commands (see section 3.5):

adverts<-c(S,4,4,6,8)
packets<-c(8,9,10,13,lS)
advertData<-data.frame(adverts, packets)

6.4. Data entry tor correLation anaLysis<D

CHAPTER 6 CORRELATION



To conduct a bivariate correlation using R Commander, first initiate the package by execut
ing (and install it if you haven't - see section 3.6):

library(Rcmdr)

You then need to load the data file into R Commander by using the Dataee-Import
dataeefrom text file, clipboard, or URL. .. menu (see section 3.7.3). Once the data are
loaded in a dataframe (1have called the dataframe examData), you can use either the Statis
tics-e-Summaries-e-Correlarion matrix ... or the Statistics~Summaries~Correlation test ...
menu to get the correlation coefficients. These menus and their dialog boxes are shown in
Figure 6.4.
The correlation matrix menu should be selected if you want to get correlation

coefficients for more than two variables (in other words, produce a grid of correlation
coefficients); the correlation test menu should be used when you want only a single corre
lation coefficient. Both menus enable you to compute Pearson's product-moment correla
tion and Spearman's correlation, and both can be used to produce p-values associated with
these correlations. However, there are sorne important differences too: the correlation test

GeneraL procedure tor correLations using R
Cornrnander <D..

There are several package s that we will use in this chapter. Sorne of them can be accessed
through R Commander (see the next section) but others can't. For the examples in this
chapter you will need the package sHmisc, polycor, boot, ggplot2 and ggm. If you do not
have these packages installed (sorne should be installed from previous chapters), you can
install them by executing the following commands (boot is part of the base package and
doesn't need to be installed):

install.packages("Hmisc"); install.packages("ggm");
install.packages("ggplot2"); install.packages("polycor")

You then need to load these package s by executing the commands:

library(boot); library(ggm); library(ggplot2); library(Hmisc);
library(polycor)

_ Packages for correLation anaLysis in R <D

'controlling' the effect of one or more additional variables. Pearson's product-moment cor
relation coefficient (described earlier), Spearman's rho (see section 6.5.5) and Kendall's tau
(see section 6.5.6) are examples of bivariate correlation coefficients.
Let's return to the example from Chapter 4 about exam scores. Remember that a psy

chologist was interested in the effects of exam stress and revision on exam performance.
She had devised and validated a questionnaire to assess state anxiety relating to exams
(called the Exam Anxiety Questionnaire, or EAQ). This scale produced a measure of anxi
ety scored out of 100. Anxiety was measured before an exam, and the percentage mark
of each student on the exam was used to assess the exam performance. She also measured
the number of hours spent revising. These data are in Exam Anxiety.dat on the companion
website. We already created scatterplots for these data (section 4.5) so we don't need to
do that again.

DISCOVERING STATISTICS USING R214



FIGURE 6.4
Conducting
a bivariate
correlation using
R Commander

215

3 Selecting this option changes the function that R Commander uses to generate the output. If this option is not
selected then the function cort) is used, but if it is selected rcorrt} is used (which is part of the Hmisc package).
The main implication is that rcorrt} reports the results to only 2 decimal places (see the next section for a full
description of these functions).
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menu enables you to compute Kendall's correlation, produces a confidence interval and
allows you to select both two-tailed and one-tailed tests, but can be used to compute only
one correlation coefficient at a time; in contrast, the correlation matrix cannot produce
Kendall's correlation but can compute partial correlations, and can also compute multiple
correlations from a single command.

Let' s look at the Correlation Matrix dialog box first. Having accessed the main dialog box,
you should find that the variables in the dataframe are listed on the left-hand side of the
dialog box (Figure 6.4). You can select the variables that you want from the list by clicking
with the mouse while holding down the Ctrl key. R will create a grid of correlation coef
ficients for all of the combinations of variables that you have selected. This table is called a
correlation matrix. For our current example, select the variables Exam, Anxiety and Revise.
Having selected the variables of interest you can choose between three correlation coef
ficients: Pearson' s product-moment correlation coefficient (Pearson product-moment (,)), Spearman' s
rho (Spearman rank-order (,)) and a partial correlation (Partial (,)). Any of these can be selected by
clicking on the appropriate tick-box with a mouse. Finally, if you would like p-values for the

lati ffi . h 1 Pairwise p-values p"corre anon coe icients t en se ect' for Pearson or Spearman correlations •

For the correlation test dialog box you will again find that the variables in the dataframe
are listed on the left-hand side of the dialog box (Figure 6.4). You can select only two by
clicking with the mouse while holding down the Ctrl key. Having selected the two variables
of interest, choose between three correlation coefficients: Pearson's product-moment cor
relation coefficient (Pearson product-moment(,)), Spearman's rho (Spearman rank-order (,)) and Kendall's
tau (Kendall'stau (,)). In addition, it is possible to specify whether or not the test is one- or two
tailed (see section 2.6.2). To recap, a two-tailed test (the default) should be used when you
cannot predict the nature of the relationship (i.e., 'I'm not sure whether exam anxiety will
improve or reduce exam marks'). If you have a non-directional hypothesis like this, click

CHAPTER 6 CORRELATION



• y is another numeric variable (does not need to be specified if x aboye is a dataframe).

• use is set equal to a character string that specifies how missing values are handled.
The strings can be: (1) "everything", which will mean that R will output an NA
instead of a correlation coefficient for any correlations involving variables containing
missing values; (2) "all.obs", which will use all observations and, therefore, returns
an error message if there are any missing values in the data; (3) "complete.obs", in
which correlations are computed from only cases that are complete for all variables -
sometimes known as excludingcases listwise (see R's Souls' Tip 6.1); or (4) "pairwise.
complete.obs", in which correlations between pairs of variables are computed for
cases that are complete for those two variables - sometimes known as excluding cases
pairwise (see R's Souls' Tip 6.1).

• x is a numeric variable or dataframe.

in which:

We will look at each function in turn and see what parameters it uses. Let's start with
cort), which takes the general form:

cor(x,y, use = "string", method = "correlation type")

2 d.p. only

cott)

corteett)

rcottt)

Multiple
Function Pearson Spearman Kendall p-values el eorre/ations? eomments

Jable 6.2 Attributes of different functions for obtaining correlations

To compute basic correlation coefficients there are three main functions that can be used:
cor(), cor.test() and rcorr(). Table 6.2 shows the main differences between the three func
tions. The functions cort) and cor.testi) are part of the base system in R, but rcorrt) is part
of the Hmisc package, so make sure you have it loaded.
Table 6.2 should help you to decide which function is best in a particular situation: if you

want a confidence interval then you will have to use cor.testi), and if you want correlation
coefficients for multiple pairs of variables then you cannot use cor.testi); similarly, if you
want p-values then cort) won't help you. You get the giste

_ GeneraLprocedure for correLations using R <D

on Two-sided (,). A one-tailed test should be selected when you have a directional hypothesis.
With correlations, the direction of the relationship can be positive (e.g., 'the more anxious
someone is about an exam, the better their mark will be') or negative (e.g., 'the more
anxious someone is about an exam, the worse their mark will be'). A positive relationship
means that the correlation coefficient will be greater than O; therefore, if you predict a
positive correlation coefficient then select Correlation e o (,). However, if you predict a negative
relationship then the correlation coefficient will be less than 0, so select Correlation e o (,). For
both the correlation matrix and correlation test dialog boxes click on CEO to generate the
output.
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• y is another numeric variable (does not need to be specified if x above is a matrix).

• type enables you to specify whether you want "pearson" or "spearman" correlations.
If you want both you can specify a list as c("pearson", "spearman").

• x is a numeric variable or matrix.

The function rcorrt) is fairly similar to cort). It takes the general form:

rcorr(x,y, type = "correlahon type")

in which:

As we discover various functions in this book, many of them have options that determine how missing data are
handled. Sometimeswe can decide to exclude cases 'pairwise' or 'Iistwise'. Listwisemeans that if a case has
a missing value for any variable, then they are excluded from the whole analysis. So, for example, in our exam
anxietydata if one of our students had reported their anxietyand we knewtheir examperformancebut we didn't
have data about their revision time, then their data would not be used to calculate any of the correlations: they
would be completely excluded from the analysis. Another option is to exclude cases on a pairwise basis, which
means that if a participant has a score missing for a particularvariable or analysis, then their data are excluded
only from calculations involvingthe variable for which they have no score. For our student about whom we don't
have any revisiondata, this means that their data would be excludedwhen calculating the correlation between
exam scores and revision time, and when calculating the correlation between exam anxiety and revision time;
however,the student's scores would be included when calculating the correlation between exam anxiety and
examperformancebecause for this pair of variableswe have both of their scores.

Exclude cases pairwise or listwise? <D

"pairwise.complete.obs",cor(examData$Exam, examData$Anxiety, use
method = "kendall")

cor(examData$Exam, examData$Anxiety, use = "complete .obs", method = "kendall ")

We can also change how we deal with missing values, for example, by asking for pairwise
exclusion:

We can get a different type of correlation (e.g., Kendall's tau) by changing the method
command:

If we want a single correlation between a pair of variables (e.g., Exam and Anxiety) then
we' d specify both variables instead of the dataframe:

cor(examData$Exam, examData$Anxiety, use = "complete .obs", method = "pearson")

cor(examData, use = "complete.obs", method = "pearson")

If we stick with our exam anxiety data, then we could get Pearson correlations between all
variables by specifying the dataframe (examData):

• method enables you to specify whether you want "pearson", "spearman" or "kend
all" correlations (note that all are written in lower case). If you want more than one
type you can specify a list using the ct) function; for example, e("pearson ", "spear
man") would produce both types of correlation coefficients.

217CHAPTER 6 CORRELATION



Please Sir, can I have
some more . .. variance
and covariance?

Oliver is so excited to get onto analysing his data that he doesn't want
me to spend pages waffling on about variance and covariance. 'Stop
writing, you waffling fool,' he says. '1want to analyse my data.' Well, he's
got a point. If you want to find out more about two functions for calculat
ing variances and covariances that are part of the cott) family, then the
additional material for this chapter on the companion website will tell you.

OLlVER TWISTED

We could also specify a different confidence interval than 95%:
cor.test(examData$Exam, examData$Anxiety, alternatlve = "less"), method =
"pearson", conf.level = 0.99)

Hopefully you get the general idea. We will now move on to look at sorne examples of
specific types of correlation coefficients.

Using our exam anxiety data, if we want a single correlation coefficient, its two-tailed
p-value and 95% confidence interval between a pair of variables (for example, Exam and
Anxiety) then we'd specify it much like we did for cort):
cor.test(examData$Exam, examData$Anxiety, method = "pearson")

If we predicted a negative correlation then we could add in the alternative command:
cor.test(examData$Exam, examData$Anxiety, alternatlve = "less"), method
"pearson")

• x is a numeric variable.
• y is another numeric variable.
• alternative specifies whether you want to do a two-tailed test (alternative = "tioo.

sided"), which is the default, or whether you predict that the correlation will be less
than zero (i.e., negative) or more than zero (i.e., positive), in which case you can use
alternative = "less" and alternative = "greater", respectively.

• method is the same as for corl) described aboye.
• conf.level allows you to specify the width of the confidence interval computed for

the correlation. The default is 0.95 (conf.level = 0.95) and if this is what you want
then you don't need to use this command, but if you wanted a 90% or 99% con
fidence interval you could use conf.level = 0.9 and conf.level = 0.99, respectively.
Confidence intervals are produced only for Pearson's correlation coefficient.

A couple of things to note: first, this function does not work on dataframes, so you have to
convert your dataframe to a matrix first (see section 3.9.2); second, this function excludes
cases pairwise (see R's Souls' Tip 6.1) and there is no way to change this setting. Therefore, if
you have two numeric variables (that are not part of a dataframe) called Exam and Anxiety
then you could compute the Pearson correlation coefficient and its p-value by executing:
rcorr(Exam, Anxiety, type = "pearson")

Similarly, you could compute Pearson correlations (and their p-values) between all vari
ables in a matrix called examData by executing:
rcorr(examData, type = "pearson")

The function cor.testi) can be used only on pairs of variables (not a whole dataframe) and
takes the general form:
cor.test(x, y, alternative = "string", method = "correlation type", conf.
level = 0.95)

in which:
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FIGURE 6.5
Karl Pearson
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~ Load the Exam Anxiety.dat file into a dataframe
called examOata.

SELF-TEST

That's a confusing title. We have already gone through the nuts and bolts of using R
Commander and the command line to calculate Pearson's r. We're going to use the exam
anxiety data to get sorne hands-on practice.

6.5.4.2. Computing Pearson's r using R <D

Pearson's (Figure 6.5) correlation coefficient was described in full at the beginning of this
chapter. Pearson's correlation requires only that data are interval (see section 1.5.1.2) for it
to be an accurate measure of the linear relationship between two variables. However, if you
want to establish whether the correlation coefficient is significant, then more assumptions
are required: for the test statistic to be valid the sampling distribution has to be normally
distributed and as we saw in Chapter 5 we assume that it is if our sample data are normally
distributed (or if we have a large sample). Although typically, to assume that the sampling
distribution is normal, we would want both variables to be normally distributed, there is
one exception to this rule: one of the variables can be a categorical variable provided there
are only two categories (in fact, if you look at section 6.5.7 you'll see that this is the same
as doing a t-test, but I'm jumping the gun a bit). In any case, if your data are non-normal
(see Chapter 5) or are not measured at the intervallevel then you should use a different
kind of correlation coefficient or use bootstrapping.

__ Pearson's correLation coefficient <D

6.5.4.1. Assumptions of Pearson's r<D
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Output 6.1 provides a matrix of the correlation coefficients for the three variables.
Each variable is perfectly correlated with itself (obviously) and so r = 1 along the diago
nal of the tableo Exam performance is negatively related to exam anxiety with a Pearson
correlation coefficient of r = - .441. This is a reasonably big effect. Exam performance
is positively related to the amount of time spent revising, with a coefficient of r = .397,
which is also a reasonably big effect. Finally, exam anxiety appears to be negatively related
to the time spent revising, r = -.709, which is a substantial effect size. In psychologi
cal terms, this all means that as anxiety about an exam increases, the percentage mark
obtained in that exam decreases. Conversely, as the amount of time revising increases, the
percentage obtained in the exam increases. Finally, as revision time increases, the student's
anxiety about the exam decreases. So there is a complex interrelationship between the
three variables.

Correlation coefficients are effect sizes, so we can interpret these values without really
needing to worry about p-values (and as I have tried to drum into you, because p-values
are related to sample size, there is a lot to be said for not obsessing about them). However,
if you are the type of person who obsesses about p-values, then you can use the rcorrt)

Exarn Anxiety Revise
Exarn 1.0000000 -0.4409934 0.3967207
Anxiety -0.4409934 1.0000000 -0.7092493
Revise 0.3967207 -0.7092493 1.0000000

Output 6.1: Output for a Pearson's correlation

The end result is the same, so it's purely down to preference. With the first method it is a
little easier to see what's going on, but as you gain confidence and experience you might
find that you prefer to save time and use the second method.

cor(examData[, c("Exam", "Anxiety" , "Revise")])

examData2 <- examData[, c("Exam", "Anxiety", "Revise")]
cor(examData2)

The first line creates a dataframe (examData2) that contains all of the cases, but only the
variables Exam, Anxiety and Revise. The second command creates atable of Pearson cor
relations between these three variables (note that Pearson is the default so we don't need to
specify it and because there are no missing cases we do not need the use command).
Alternatively, we could specify the subset of variables in the examData dataframe as part

of the cort) function:

The first issue we have is that sorne of the variables are not numeric (Gender) and others
are not meaningful numerically (code). We have two choices here. The first is to make a
new dataframe by selecting only the variables of interest) - we discovered how to do this
in section 3.9.1. The second is to specify this subset within the cort) command itself. If we
choose the first method then we should execute:
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Let's look at a sample of this dataframe:

Code Revise Exarn Anxiety Gender
1 1 4 40 86.298 Male
2 2 11 65 88.716 Fernale
3 3 27 80 70.178 Male
4 4 53 80 61.312 Male
5 5 4 40 89.522 Male
6 6 22 70 60.506 Fernale
7 7 16 20 81.462 Fernale
8 8 21 55 75.820 Fernale
9 9 25 50 69.372 Fernale
10 10 18 40 82.268 Fernale



4 The ggm package also has a function called rcorrt), so if you have this package installed, R might use that func
tion instead, which will produce something very unpleasant on your screen. If so, you need to put Hmisc:: in front
of the commands to make sure R uses rcorrt) from the Hmisc package (R's Souls' Tip 3.4):

Hmisc::rcorr(examMatrix)
Hmisc ::rcorr(as .matrix(examData[, c("Exam", "Anxiety", "Revise")]))

Itcan also be very useful to look at confidence intervals for correlation coefficients. Sadly,
we have to do this one at a time (we can't do it for a whole dataframe or matrix). Let's look
at the correlation between exam performance (Exam) and exam anxiety (Anxiety). We can
compute the confidence interval using cor.test() by executing:

cor.test(examData$Anxiety, examData$Exam)

Exarn Anxiety Revise
Exarn 1.00 -0.44 0.40
Anxiety -0.44 1.00 -0.71
Revise 0.40 -0.71 1.00

n= 103

p

Exarn Anxiety Revise
Exarn O O
Anxiety O O
Revise O O

Output 6.2

Output 6.2 shows the same correlation matrix as Output 6.1, except rounded to 2 decimal
places. In addition, we are given the sample size on which these correlations are based, and
also a matrix of p-values that corresponds to the matrix of correlation coefficients above.
Exam performance is negatively related to exam anxiety with a Pearson correlation coefficient
of r = -.44 and the significance value is less than .001 (it is approximately zero). This signifi
canee value tells us that the probability of getting a correlation coefficient this big in a sample
of 103 people if the null hypothesis were true (there was no relationship between these vari
ables) is very low (close to zero in fact). Hence, we can gain confidence that there is a genuine
relationship between exam performance and anxiety. Our criterion for significance is usually
.05 (see section 2.6.1) so we can say that all of the correlation coefficients are significant.

Which creates a matrix called examMatrix that contains only the variables Exam, Anxiety,
and Revise from the examData dataframe. To get the correlation matrix we simply input
this matrix into the rcorrt) function:"

rcorr(examMatrix)

As before, I think that the method aboye makes it clear what we're doing, but more expe
rienced users could combine the previous two commands into a single one:

rcorr(as.matrix(examData[, c("Exam", "Anxiety" , "Revise")]))

function instead and p yourself with excitement at the output it produces. First, make sure
you have loaded the Hmisc package by executing:

library(Hmisc)

Next, we need to convert our dataframe into a matrix using the as.matrixi) command.
We can include only numeric variables so, just as we did aboye, we need to select only the
numeric variables within the examData dataframe. To do this, execute:

examMatrix<-as .matrix(examData[, c("Exam", "Anxiety", "Revise")])
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Although we cannot make direct conclusions about causality from a correlation, we can
take the correlation coefficient a step further by squaring it. The correlation coefficient
squared (known as the coefficient of determination, R2) is a measure of the amount of vari
ability in one variable that is shared by the other. For example, we may look at the relation
ship between exam anxiety and exam performance. Exam performances vary from person
to person because of any number of factors (different ability, different levels of preparation
and so on). If we add up all of this variability (rather like when we calculated the sum of
squares in section 2.4.1) then we would have an estimate of how much variability exists
in exam performances. We can then use R2to tell us how much of this variability is shared
by exam anxiety. These two variables had a correlation of - O.441Oand so the value of R2
will be (-0.4410)2 = 0.194. This value tells us how much of the variability in exam per
formance is shared by exam anxiety.

If we convert this value into a percentage (multiply by 100) we can say that exam anxi
ety shares 19.4% of the variability in exam performance. So, although exam anxiety was
highly correlated with exam performance, it can account for only 19.4% of variation in
exam scores. To put this value into perspective, this leaves 80.6% of the variability still to
be accounted for by other variables.
You'll often see people write things about R2that imply causality: they might write 'the

variance in y accounted for by x', or 'the variation in one variable explained by the other'.
However, although R2is an extremely useful measure of the substantive importance of an
effect, it cannot be used to infer causal relationships. Exam anxiety might well share 19.4%
of the variation in exam scores, but it does not necessarily cause this variation.

6.5.4.3. UsingR2 for interpretation <D

~ Compute the confidence intervals for the
relationships between the time spent revising
(Revise) and both exam performance (Exam) and
exam anxiety (Anxiety).

SELF-TEST

Output 6.3

data: exarnData$Anxiety and exarnData$Exarn
t = -4.938, df = 101, p-value = 3.128e-06
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
-0.5846244 -0.2705591

sarnple estirnates:
cor

-0.4409934

Pearson's product-rnornent correlation

Note that we have specified only the variables because by default this function produces
Pearson's r and a 95% confidence interval. Output 6.3 shows the resulting output; it reiter
ates that the Pearson correlation between exam performance and anxiety was -.441, but
tells us that this was highly significantly different from zero, t(101) = -4.94, P < .001.
Most important, the 95% confidence ranged from -.585 to - .271, which does not cross
zero. This tells us that in all likelihood, the population or actual value of the correlation
is negative, so we can be pretty content that exam anxiety and exam performance are, in
reality, negatively related.
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Spearman's correlation coefflclent (Spearman, 1910), rs' is a non-parametric statis-
tic and so can be used when the data have violated parametric assumptions such What if my data are

as non-normally distributed data (see Chapter 5). You'll sometimes hear the test not parametric?

referred to as Spearman's rho (pronounced 'row', as in 'row your boat gently
down the stream'). Spearman's test works by first ranking the data (see section
15.4.1), and then applying Pearson's equation (equation (6.3)) to those ranks.
I was born in England, which has sorne bizarre traditions. One such oddity is

the World's Biggest Liar competition held annually at the Santon Bridge Inn in
Wasdale (in the Lake District). The contest honours a local publican, 'Auld Will
Ritson', who in the nineteenth century was famous in the area for his far-fetched
stories (one such tale being that Wasdale turnips were big enough to be hollowed out and
used as garden sheds). Each year locals are encouraged to attempt to tell the biggest lie in the
world (lawyers and politicians are apparently banned from the competition). Over the years
there have been tales of mermaid farms, giant moles, and farting sheep blowing holes in the
ozone layer. (1am thinking of entering next year and reading out sorne sections of this book.)
Imagine I wanted to test a theory that more creative people will be able to create taller

tales. I gathered together 68 past contestants from this competition and asked them where
they were placed in the competition (first, second, third, etc.) and also gave them a creativity
questionnaire (maximum score 60). The position in the competition is an ordinal variable
(see section 1.5.1.2) because the places are categories but have a meaningful order (first place
is better than second place and so on). Therefore, Spearman's correlation coefficient should
be used (Pearson's r requires interval or ratio data). The data for this study are in the file
The Biggest Liar.dat. The data are in two columns: one labelled Creativity and one labelled
Position (there's actually a third variable in there but we will ignore it for the time being). For
the Position variable, each of the categories described aboye has been coded with a numerical
value. First place has been coded with the value 1, with positions being labelled 2, 3 and so on.

The procedure for doing a Spearman correlation is the same as for a Pearson correlation
except that we need to specify that we want a Spearman correlation instead of Pearson,
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l1li Spearman's correLation coefficient <D

Note that for exam performance and anxiety the value is 0.194, which is what we calcu
lated aboye. If you want these values expressed as a percentage then simply multiply by
100, so the command would become:

cor(examData2)A2 * 100

Exarn Anxiety Revise
Exarn 1.0000000 0.1944752 0.1573873
Anxiety 0.1944752 1.0000000 0.5030345
Revise 0.1573873 0.5030345 1.0000000

Output 6.4

cor(examData2)A2

instead of:

cor(examData2)

then you will see be a matrix containing r2 instead of r (Output 6.4).

We can get R to compute the coefficient of determination by remembering that "A 2"
means 'squared' in R-speak. Therefore, for our examData2 dataframe (see earlier) if we
execute:
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"less",cor.test(liarData$Position, liarData$Creativity, alternative
method = "spearman")

To obtain the correlation coefficient for a pair of variables we can execute:

cor(liarData$Posihon, liarData$Creahvity, method = "spearman")

Note that we have simply specified the two variables of interest, and then set the method
to be a Spearman correlation. The output of this command will be:

[1] -0.3732184

If we want a significance value for this correlation we could either use rcorrt) by executing
(remembering that we have to first convert the dataframe to a matrix):

1iarMatrix<-as. matrix(l iarData [, c("Posihon", "Creah vity")])
rcorr(liarMatrix)

or simply use cor.testi), which has the advantage that we can set a directional hypothesis.
1predicted that more creative people would tell better lies. Doing well in the competition
(i.e., telling better lies) actually equates to a lower number for the variable Position (first
place = 1, second place = 2 etc.), so we're predicting a negative relationship. High scores
on Creativity should equate to a lower value of Position (because a low value means you
did well!). Therefore, we predict that the correlation will be less than zero, and we can
reflect this prediction by using alternative = "less" in the command:

~ See whether you can use what you have learned so
far to compute a Spearman's correlation between
Position and Creativity.

SELF-TEST

which is done using method = "spearman" for cort) and cor.testi), and type = "spearman"
for rcorrt). Let's load the data into a dataframe and then create a dataframe by executing:

llarData = read.dellm("The Biggest Llar.dat", header = TRUE)

or if you haven't set your working directory, execute this command and use the dialog box
to select the file:

liarData = read.delim(file.choose(), header = TRUE)
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Output 6.6

data: liarData$Position and liarData$Creativity
z = -3.2252, p-value = 0.0006294
alternative hypothesis: true tau is less than O
sample estimates:

tau
-0.3002413

Kendall's rank correlation tau

The output is much the same as for Spearman's correlation.

"less",cor.test(liarData$Position, liarData$Creativity, alternative
method = "kendall")

Kendall's tau, t, is another non -parametric correlation and it should be used rather than
Spearman's coefficient when you have a small data set with a large number of tied ranks.
This means that if you rank all of the scores and many scores have the same rank, then
Kendall's tau should be used. Although Spearman's statistic is the more popular of the
two coefficients, there is much to suggest that Kendall's statistic is actually a better esti
mate of the correlation in the population (see Howell, 1997: 293). As such, we can draw
more accurate generalizations from Kendall's statistic than from Spearman's. To carry out
Kendall's correlation on the World's Biggest Liar data simply follow the same steps as for
Pearson and Spearman correlations but use method = "kendall":

cor(liarData$Posihon, liarData$Creahvity, method = "kendall")

l1li KendaLL'stau (non-parametric) <D

~ Oid creativity cause success in the World's Biggest
Liar competition?

SELF-TEST

Output 6.5

Output 6.5 shows the output for a Spearman correlation on the variables Creativityand
Position. The output is very similar to that of the Pearson correlation (except that confidence
intervals are not produced - if you want one see the section on bootstrapping): the correla
tion coefficient between the two variables is fairly large (-.373), and the significance value of
this coefficient is very small (p < .001). The significance value for this correlation coefficient
is less than .05; therefore, it can be concluded that there is a significant relationship between
creativity scores and how well someone did in the World's Biggest Liar competition. Note
that the relationship is negative: as creativity increased, position decreased. Remember that a
low number means that you did well in the competition (a low number such as 1 means you
carne first, and a high number like 4 means you carne fourth). Therefore, our hypothesis is
supported: as creativity increased, so did success in the competition.

Spearman's rank correlation rho
data: liarData$Position and liarData$Creativity
S = 71948.4, p-value = 0.0008602
alternative hypothesis: true rho is less than O
sample estimates:

rho
-0.3732184
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Executing this command creates an object called bootTau. The first bit of the function tells
R what input to expect in the function: in this case we need to feed a dataframe (liarData)
into the function and a variable that has been called i (which refers to a particular bootstrap
sample). The second part of the function specifies the cort) function, which is the thing we
want to bootstrap. Notice that cort) is specified in exactly the same way as when we did the
original Kendall correlation except that for each variable we have added [iJ, which again
just refers to a particular bootstrap sample. If you want to bootstrap a Pearson or Spearman
correlation you do it in exactly the same way except that you specify method = "pearson"
or method = "spearman" when you define the function.
To create the bootstrap object, we execute:

library(boot)
boot_kendall<-boot(liarData, bootTau, 2000)
boot_kendall

The first command loads the boot package (in case you haven't already initiated it). The
second command creates an object (boot_kendall) based on bootstrapping the liarData
dataframe using the bootTau function that we previously defined and executed. The second

Another way to deal with data that do not meet the assumptions of Pearson's r is to use
bootstrapping. The booti) function takes the general form:

object<-boot(data, function, replications)

in which data specifies the dataframe to be used, function is a function that you write to
tell booti) what you want to bootstrap, and replications is a number specifying how many
bootstrap samples you want to take (1usually set this value to 2000). Executing this com
mand creates an object that has various properties. We can view an estimate of bias, and
an empirically derived standard error by viewing object, and we can display confidence
intervals based on the bootstrap by executing boot.ci(object).
When using the booti) function with correlations (and anything else for that matter) the

tricky bit is writing the function (R's Souls' Tip 6.2). If we stick with our biggest liar data
and want to bootstrap Kendall tau, then our function will be:

bootTau<-function(liarData,i)cor(liarData$Position[i], liarData$Creativity[i],
use = "complete.obs", method = "kendall")

l1li Bootstrapping correLations ®

~ Conduct a Pearson correlation analysis of the advert
data from the beginning of the chapter.

SELF-TEST

You'll notice from Output 6.6 that the actual value of the correlation coefficient is closer
to zero than the Spearman correlation (it has increased from -.373 to -.300). Despite the
difference in the correlation coefficients we can still interpret this result as being a highly
significant relationship (because the significance value of .001 is less than .05). However,
Kendall's value is a more accurate gauge of what the correlation in the population would
be. As with the Pearson correlation, we cannot assume that creativity caused success in the
World's Best Liar competition.
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boot.ci(boot_kendall, conf = 0.99)

5 If we want something other than a 95% confidence interval we can add conf = x, in which x is the value of the
confidence interval as a proportion. For example, we can get a 99% confidence interval by executing:

~ Conduct bootstrap analysis of the Pearson and
Spearman correlations for the examOata2 dataframe.

SELF-TEST

Output 6.7

Calculations and Intervals on Original Scale
Warning message:
In boot.ci(boot_kendall):

bootstrap variances needed for studentized intervals

BCa
(-0.4777,-0.0941

Level Percentile
95% (-0.4879,-0.1049

(-0.4956,-0.1126 )95% (-0.4927,-0.1099

Intervals :
Level Normal Basic

CALL :
boot.ci(boot.out boot_kendall)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

> boot.ci(boot_kendall)

Bootstrap Statistics :
original bias std. error

t1* -0.3002413 0.001058191 0.097663

2000)bootTau, R
Call:
boot(data = liarData, statistic

ORDINARY NONPARAMETRIC BOOTSTRAP

line displays a summary of the boot_kendall object. To get the 95% confidence interval for
the boot_kendall object we executer'

boot.ci(boot_kendall)

Output 6.7 shows the contents of both boot_kendall and also the output of the boot.ci()
function. First, we get the original value of Kendall's tau (-.300), which we computed in
the previous section. We also get an estimate of the bias in that value (which in this case
is very small) and the standard error (0.098) based on the bootstrap samples. The out
put from boot.ci() gives us four different confidence intervals (the basic bootstrapped CI,
percentile and BCa). The good news is that none of these confidence intervals cross zero,
which gives us good reason to think that the population value of this relationship between
creativity and success at being a liar is in the same direction as the sample value. In other
words, our original conclusions stand.
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In other words, R has printed the text 'Mean =' and the value of the mean computed by the function (just as we
asked it to). This value is the same as the one we calculated in section 2.4.1, so the function has worked. The
beauty of functions is that having executed the commands that define it, we can use this function over and over
again within our session (which saves time).

Mean = 2.6

Having executed our function, we can use it to find the mean. We simply execute:

meanOfVariable(lecturerFriends)

This tells R that we want to use the function mean OfVariableO, which we have just created, and that the variable
we want to apply this function to is lecturerFriends. Executing this command gives us:

Executing this command creates a function called meanOfVariable that expects a variable to be entered into it.
The bits in {} tell R what to do with the variable that is ente red into the function. The first line computes the mean
using the function sumi) to add the values in the variable that was entered into the function, and the function
lengthO counts how many scores are in the variable. Therefore, mean <-sum(variable)/Iength(variable) translates
as mean = sum of scores/number of scores (which, of course, is the definition of the mean). The finalline uses
the ceii) function to print the text "Mean =" and the value of mean that we have just computed.

Remember the data about the number of friends that statistics lecturers had that we used to explore the mean
in Chapter 2 (section 2.4.1). We could enter these data by executing:

lecturerFriends = c(1,2,3,3,4)

}

mean<-sum(variable)/length(variable)
cat("Mean = ", mean)

Basically, you name the function (any name you like, but obviously one that tells you what the function does is
helpful). The functionO tells R that you're writing a function, and you need to place within the brackets anything
you want as input to the function: this can be any object in R (a model, a dataframe, a numeric value, text, etc.). A
function might just accept one object, or there might be many. The names you list in the brackets can be whatever
you like, but again it makes sense to label them based on what they are (e.g., if you need to input a dataframe
then it makes sense to give the input a label of dataframe so that you remember what it is that the function needs).
You then use {} to contain a set of instructions that tell R what to do with the objects that have been input into the
function. These are usually some kind of calculations followed by some kind of instruction about what to return
from the function (the output).

Imagine that R doesn't have a function for computing the mean and we wanted to write one (this will keep
things familiar). We could write this as:

meanOfVariable<-function(variable)
{

}

What happens if there is not a function available in R to do what you want to do? Simple, write your own function.
The ability to write your own functions is a very powerful feature of R. With a sufficient grasp of the R environment
(and the maths behind whatever you're trying to do) you can write a function to do virtually anything for you (apart
from making coffee). Towrite a function you need to execute a string of commands that define the function. They
take this general format:

nameofFunction<-function(inputObject1, inputObject2, etc.)
{

a set of commands that do things to the input object(s)
a set of commands that specify the output of the function

Writing functions ®
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The biserial and point-biserial correlation coefficients are distinguished by only a concep
tual difference, yet their statistical calculation is quite different. These correlation coef
ficients are used when one of the two variables is dlchotomous (i.e., it is categorical with
only two categories). An example of a dichotomous variable is being pregnant, because a
woman can be either pregnant or not (she cannot be 'a bit pregnant'). Often it is necessary
to investigate relationships between two variables when one of the variables is dichoto
mous. The difference between the use of biserial and point-biserial correlations depends
on whether the dichotomous variable is discrete or continuous. This difference is very
subtle. A discrete, or true, dichotomy is one for which there is no underlying continuum
between the categories. An example of this is whether someone is dead or alive: a person
can be only dead or alive, they can't be 'a bit dead'. Although you might describe a person
as being 'half-dead' - especially after a heavy drinking session - they are clearly still alive
if they are still breathing! Therefore, there is no continuum between the two categories.
However, it is possible to have a dichotomy for which a continuum does existoAn example
is passing or failing a statistics test: sorne people will only just fail while others will fail by
a large margin; likewise sorne people will scrape a pass while others will excel. So although
participants fall into only two categories there is an underlying continuum along which
people lie. Hopefully, it is clear that in this case there is sorne kind of continuum underlying
the dichotomy, because sorne people passed or failed more dramatically than others. The
polnt-blserial correlatlon coefficient (rpb) is used when one variable is a discrete dichotomy
(e.g., pregnancy), whereas the biserlal correlatlon coefficient (rb) is used when one variable
is a continuous dichotomy (e.g., passing or failing an exam).

Imagine that I was interested in the relationship between the gender of a cat and how
much time it spent away from home (what can I say? I love cats so these things interest me).
I had heard that male cats disappeared for substantial amounts of time on long-distance
roams around the neighbourhood (something about hormones driving them to find mates)
whereas female cats tended to be more homebound. So, I used this as a purr-fect (sorry!)
excuse to go and visit lots of my friends and their cats. I took a note of the gender of the
cat and then asked the owners to note down the number of hours that their cat was absent
from home over a week. Clearly the time spent away from home is measured at an interval
level- and let's assume it meets the other assumptions of parametric data - while the gen
der of the cat is discrete dichotomy. A point-biserial correlation has to be calculated and

_ BiseriaL and point-biseriaL correLations ®

Note that within the function I now apply the sumi) and lengthO functions to HarryTheHungryHippo because this
is the name that I gave to the input of the function. It will work, but people will be probably confused about what
HarryTheHungryHippo is when they read your codeo

}

mean<-sum(HarryTheHungryHippo)/length(HarryTheHungryHippo)
cat("Mean = ", mean)

As a final point, just to be clear, when we define our function we can name things anything we like. For
example, although I named the input to the function 'variable' to remind myself what the function needs, I could
have named it 'HarryTheHungryHippo' if I had wanted too Provided that I carry this name through to the
commands within the function, it will work:

meanOfVariable<-function(HarryTheHungryHippo)
{
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Congratulations: if you did the self-test task then you have just conducted your first
point-biserial correlation. See, despite the horrible name, it's really quite easy to do. If you
didn't do the self-test then execute:

cor.test(catData$time, catData$gender)

You should find that you can see Output 6.8. The point-biserial correlation coefficient is
rpb = .378, which has a significance value of .003. The significance test for this correlation
is actually the same as performing an independent-samples t-test on the data (see Chapter
9). The sign of the correlation (i.e., whether the relationship was positive or negative) will
depend entirely on which way round the coding of the dichotomous variable was made. To
prove that this is the case, the data file pbcorr.dat has an extra variable called recode which

~ Carry out a Pearson correlation on time and gender.

SELF-TEST

• time, which is the number of hours that the cat spent away from home (in a week).

• gender, is the gender of the cat, coded as 1 for male and O for female.

• recode, is the gender of the cat but coded the opposite way around (i.e., O for male
and 1 for female). We will come to this variable later, but for now ignore it.

catData

A sample of the data is as follows:

time gender recade
1 41 1 O
2 40 O 1
3 40 1 O
4 38 1 O
5 34 1 O
6 46 O 1
7 42 1 O
8 42 1 O
9 47 1 O
10 42 O 1
11 45 1 O
12 46 1 O
13 44 1 O
14 54 O 1

There are three variables:

this is simply a Pearson correlation when the dichotomous variable is coded with O for one
categoryand 1 for the other.

Let's load the data in the file pbcorr.csv and have a look at it. These data are in the CSV
format, so we can load them as (assuming you have set the working directory correctly):

catData = read.csv("pbcorr.csv", header = TRUE)

Note that we have used the read.csv() function because the file is a .csv file. To look at the
data execute:
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0.5333333 0.4666667

To calculate y, we use these values and the values of the normal distribution displayed in the
Appendix. Figure 6.7 shows how to find the ordinate (the value in the column labelled y)

1O

To calculate p and q,we first need to use the tableO function to compute the frequencies
of males and female cats. We will store these frequencies in a new object called catFrequen
cies. We then use this object to compute the proportion of male and female cats using the
prop.tableO function. We execute these two commands as follows:

catFrequencies<-table(catData$gender)
prop.table(catFrequencies)

The resulting output tells us that the proportion of male cats (1) was .467 (this is q because
it is the smallest portion) and the proportion of females (O)was .533 (this is p because it is
the largest portion):

(6.9)

Output 6.8

Imagine now that we wanted to convert the point-biserial correlation into the biserial
correlation coefficient (rb) (because sorne of the male cats were neutered and so there might
be a continuum of maleness that underlies the gender variable). We must use equation (6.9)
in which p is the proportion of cases that fell into the largest category and q is the propor
tion of cases that fell into the smallest category. Therefore, p and q are simply the number
of male and female cats. In this equation y is the ordinate of the normal distribution at
the point where there is p% of the area on one side and q% on the other (this will become
dearer as we do an example):

data: catData$time and catData$gender
t = 3.1138, df = 58, p-value = 0.002868
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.137769 0.576936

sample estimates:
cor

0.3784542

Pearson's product-moment correlation

~ Carry out a Pearson correlation on time and recode.

SELF-TEST

is the same as the variable gender except that the coding is reversed (1 = female, O= male).
If you repeat the Pearson correlation using recode instead of gender you will find that the
correlation coefficient becomes -.378. The sign of the coefficient is completely dependent
on which category you assign to which code and so we must ignore all information about
the direction of the relationship. However, we can still interpret R2 as before. So in this
example, R2 = .3782 = .143. Hence, we can condude that gender accounts for 14.3% of
the variability in time spent away from home.
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confirms out earlier calculation.

If this process freaks you out, then luckily you can get R to do it for you by installing the
polycor package and using the polyserial() function. You can simply specify the two vari
ables of interest within this function just as you have been doing for every other correlation
in this chapter. Execute this command:

polyserial(catData$time, catData$gender)

and the resulting output:

[1] 0.4749256

rb = rpb.JM = .378..).533 x.467 = .475
y .3977

If we replace these values in equation (6.9) we get .475 (see below), which is quite a lot
higher than the value of the point-biserial correlation (0.378). This finding just shows you
that whether you assume an underlying continuum or not can make a big difference to the
size of effect that you get:

FIGURE6.7
Getting the
'ordinate' 01 >- Larger Smallerg
the normal ~ Portion Portion

rr

distribution
IDu:

z
Test Stalistic

,:~:

00 50000 50000 3989 12 54776 45224 3961

.01 5O'lQQ &~1 ';l~ 3 .55172 44828 3956

.55567 44433 3951

5962 44038 3945

5356 43644 3939

6749 43251 3932

57142 42858 3925

57535 42465 3918

57926 42074 3910

09 53586 464'4 3973 21 58317 41683 3902

10 53983 46017 3970 22 .58706 41294 3894

11 54380 45620 3965 23 59095 40905 3885

when the normal curve is split with .467 as the smaller portion and .533 as the larger portion.
The figure showswhich columns represent p and q and we look for our values in these columns
(the exact values of 0.533 and 0.467 are not in the table so instead we use the nearest values
that we can find, which are .5319 and .4681, respectively). The ordinate value is in the column
y and is .3977.
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• We can measure the relationship between two variables using corre/ation coefficients.
• These coefficients lie between -1 and +1.
• Pearson's corre/alíon coefficient, r, is a parametric statistic and requires interval data for both variables. To test its signifi-

canee we assume normality too.
• Spearman's corre/alíon coefficient, rs' is a non-parametric statistic and requires only ordinal data for both variables.
• Kendall's corre/alíon coefficient, 't, is like Spearman's rs but probably better for small samples.
• The point-biseria/ corre/alíon coefficient, rpb' quantifies the relationship between a continuous variable and a variable that is

a discrete dichotomy (e.g., there is no continuum underlying the two categories, such as dead or alive).
• The biseria/ corre/alíon coefficient, rb, quantifies the relationship between a continuous variable and a variable that is a con

tinuous dichotomy (e.g., there is a continuum underlying the two categories, sueh as passing or failing an exam).

Correlaion coefficients

We can look up this value of z (2.93) in the table for the normal distribution in the Appendix
and get the one-tailed probability from the column labe11ed'Smaller Portion'. In this case
the value is .00169. To get the two-tailed probability we simply multiply the one-tailed
probability value by 2, which gives us .00338. As such the correlation is significant, p < .01.

z; = rb - 'b = rb - O= _!jz__ = .475 = 2.93
b SEr SEr SEr .162

b b b

The standard error helps us because we can create a z-score (see section 1.7.4). To get a
z-score we take the biserial correlation, subtract the mean in the population and divide by
the standard error. We have assumed that the mean in the population is O(the nu11hypoth
esis), so we can simply divide the biserial correlation by its standard error:

SE = .J.533x.467 =.162
rb .3977 x -J6O

This equation is fairly straightforward because it uses the values of p, q and y that we
already used to calculate the biserial r. The only additional value is the sample size (N),
which in this example was 60. So our standard error is:

(6.10)

You might wonder, given that you can get R to calculate the biserial correlation in one
line of code, why I got you to calculate it by hand. It's entirely plausible that I'm just a nasty
person who enjoys other people's pain. An alternative explanation is that the values of p
and q are about to come in handy so it was helpful to show you how to calculate them. 1'11
leave you to decide which explanation is most likely.
To get the significance of the biserial correlation we need to first work out its standard

error. If we assume the nu11hypothesis (that the biserial correlation in the population is
zero) then the standard error is given by (Terrell, 1982):
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I mentioned earlier that there is a type of correlation that can be done that allows you
to look at the relationship between two variables when the effects of a third variable are
held constant. For example, analyses of the exam anxiety data (in the file Exam Anxiety.
dat) showed that exam performance was negatively related to exam anxiety, but positively
related to revision time, and revision time itself was negatively related to exam anxiety.
This scenario is complex, but given that we know that revision time is related to both
exam anxiety and exam performance, then if we want apure measure of the relationship
between exam anxiety and exam performance we need to take account of the influence of
revision time. Using the values of R2 for these relationships (refer back to Output 6.4), we
know that exam anxiety accounts for 19.4% of the variance in exam performance, that
revision time accounts for 15.7% of the variance in exam performance, and that revision
time accounts for 50.2% of the variance in exam anxiety. If revision time accounts for half
of the variance in exam anxiety, then it seems feasible that at least sorne of the 19.4% of
variance in exam performance that is accounted for by anxiety is the same variance that
is accounted for by revision time. As such, sorne of the variance in exam performance
explained by exam anxiety is not unique and can be accounted for by revision time. A cor
relation between two variables in which the effects of other variables are held constant is
known as a partial correlatlon.

Let's return to our example of exam scores, revision time and exam anxiety to illus
trate the principle behind partial correlation (Figure 6.8). In part 1 of the diagram there
is a box for exam performance that represents the total variation in exam scores (this
value would be the variance of exam performance). There is also a box that represents
the variation in exam anxiety (again, this is the variance of that variable). We know
already that exam anxiety and exam performance share 19.4% of their variation (this
value is the correlation coefficient squared). Therefore, the variations of these two vari
ables overlap (because they share variance) creating a third box (the blue cross hatched
box). The overlap of the boxes representing exam performance and exam anxiety is the
common variance. Likewise, in part 2 of the diagram the shared variation between exam
performance and revision time is illustrated. Revision time shares 15.7% of the variation
in exam scores. This shared variation is represented by the area of overlap (the dotted
blue lines box). We know that revision time and exam anxiety also share 50% of their
variation; therefore, it is very probable that sorne of the variation in exam performance
shared by exam anxiety is the same as the variance shared by revision time.
Part 3 of the diagram shows the complete picture. The first thing to note is that the boxes

representing exam anxiety and revision time have a large overlap (this is because they share
50% of their variation). More important, when we look at how revision time and anxiety
contribute to exam performance we see that there is a portion of exam performance that
is shared by both anxiety and revision time (the white area). However, there are still small
chunks of the variance in exam performance that are unique to the other two variables.
So, although in part 1 exam anxiety shared a large chunk of variation in exam perform
ance, sorne of this overlap is also shared by revision time. If we remove the portion of
variation that is also shared by revision time, we get a measure of the unique relationship
between exam performance and exam anxiety. We use partial correlations to find out the
size of the unique portion of variance. Therefore, we could conduct a partial correlation
between exam anxiety and exam performance while 'controlling' for the effect of revision
time. Likewise, we could carry out a partial correlation between revision time and exam
performance while 'controlling' for the effects of exam anxiety.

_ The theory behind part and partiaL correLation ®

6.6. PartiaL correLation ®
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FIGURE6.8
Diagram showing
the principie of
partial correlation
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This will import the Exam Anxiety.dat file and create a dataframe containing only the
three variables of interest. We will conduct a partial correlation between exam anxiety and
exam performance while 'controlling' for the effect of revision time. To compute a partial

examData = read.dellm("Exam Anxiety.dat", header = TRUE)
examData2 <- examData[, c("Exam", "Anxiety", "Revise")]

We will use the examData2 dataframe again, so if you haven't got this loaded then execute
these commands:

l1li PartiaL correLation using R®

Exam AnxietyUnique Variance Accaunted
for by Exam Anxiety

Variance Accounted for by
both Exam Anxiety and

Revision Time

3

Unique Variance Accounted
far by Revision Time

Variance Accounted for by
Revision Time (15.7%)

2

Variance Accounted for by
Exam Anxiety (19.4%)

Exam Anxiety

1
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Output 6.9

$pvalue

[1] 0.01244581

[1] 100

$df

[1] -2.545307

[1] -0.2466658

> pcA2

[1] 0.06084403

> pcor.test(pc, 1, 103)
$tval

> pc

to see the significance of the partial correlation.

pc
pcA2

The general form of pcor.testi) is:

pcor(pcor object, number of control variables, sample size)

Basically,you enter an object that you have created with pcort) (or you can put the pcori) com
mand directly into the function). We created a partial correlation object called pe, had only
one control variable (Revise) and there was a sample size of 103; therefore we can execute:

pcor.test(pc, 1, 103)

Basically,you enter a list of variables as strings (note the variable names have to be in quotes)
using the ct) function. The first two variables should be those for which you want the partial
correlation; any others listed should be variables for which you' d like to 'control'. You can
'control' for the effects of a single variable, in which case the resulting coefficient is known
as a first-order partial eorrelation; it is also possible to control for the effects of two (a
seeond-order partial eorrelation), three (a third-order partial eorrelation), or more variables
at the same time. The second part of the function simply asks for the name of the dataframe
(in this case examData2). For the current example, we want the correlation between exam
anxiety and exam performance (so we list these variables first) controlling for exam revision
(so we list this variable afterwards). As such, we can execute the following command:
pcor(c("Exam", "Anxiety" , "Revise"), var(examData2))

Executing this command will print the partial correlation to the console. However, 1find it
useful to create an object containing the partial correlation value so that we can use it in other
commands. As such, 1suggest that you execute this command to create an object called pe:
pc<-pcor(c("Exam", "Anxiety" , "Revise"), var(examData2))

We can then see the partial correlation and the value of R2 in the console by executing:

pcor(c("var1", "var2" , "control1", "contro12" etc.), var(dataframe))

correlation and its significance we will use the pcorü and peor.testO functions respectively.
These are part of the ggm package, so first load this:
library(ggm)

The general form of pcort) is:
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FIGURE6.9
The difference
between a partial
and a semi-partial
correlation

237

6 Both these examples are, in fact, simple cases of hierarchical regression (see the next chapter) and the first
example is also an example of analysis of covariance. This may be confusing now, but as we progress through the
book 1hope it'll become clearer that virtually all of the statistics that you use are actually the same things dressed
up in different names.

Semi-Partial CorrelationPartial Correlation

In the next chapter, we will come across another form of correlation known as a semi
partial correlation (also referred to as a part correlation). While I'm babbling on about partial
correlations it is worth my explaining the difference between this type of correlation and
semi-partial correlation. When we do a partial correlation between two variables, we con
trol for the effects of a third variable. Specifically, the effect that the third variable has on
both variables in the correlation is controlled. In a semi-partial correlation we control for
the effect that the third variable has on only one of the variables in the correlation. Figure
6.9 illustrates this principle for the exam performance data. The partial correlation that we

.. Semi-partiaL (or part) correLations ®

Output 6.9 shows the output for the partial correlation of exam anxiety and exam per
formance controlling for revision time; it also shows the squared value that we calculated
(pe A 2), and the significance value obtained from pcontestt), The output of pcort) is the par
tial correlation for the variables Anxiety and Exam but controlling for the effect of Revision.
First, notice that the partial correlation between exam performance and exam anxiety is
-.247, which is considerably less than the correlation when the effect of revision time is not
controlled for (r = -.441). In fact, the correlation coefficient is nearly half what it was before.
Although this correlation is still statistically significant (itsp-value is .012, which is still below
.05), the relationship is diminished. In terms of variance, the value of R2 for the partial cor
relation is .06, which means that exam anxiety can now account for only 6% of the vari
ance in exam performance. When the effects of revision time were not controlled for, exam
anxiety shared 19.4% of the variation in exam scores and so the inclusion of revision time
has severely diminished the amount of variation in exam scores shared by anxiety. As such, a
truer measure of the role of exam anxiety has been obtained. Running this analysis has shown
us that exam anxiety alone does explain sorne of the variation in exam scores, but there is a
complex relationship between anxiety, revision and exam performance that might otherwise
have been ignored. Although causality is still not certain, because relevant variables are being
included, the third variable problem is, at least, being addressed in sorne formo
These partial correlations can be done when variables are dichotomous (including the

'third' variable). So, for example, we could look at the relationship between bladder relax
ation (did the person wet themselves or not?) and the number of large tarantulas crawling
up your leg, controlling for fear of spiders (the first variable is dichotomous, but the second
variable and 'controlled for' variables are continuous). Also, to use an earlier example, we
could examine the relationship between creativity and success in the World's Biggest Liar
competition, controlling for whether someone had previous experience in the competition
(and therefore had sorne idea of the type of tale that would win) or noto In this latter case
the 'controlled for' variable is dichotorrious."
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(6.11)ZDifference = ~ 1 1
---+--
Ni -3 ~N2 -3

If we did this, we would find that the correlations were rMale = -.506 and rFemale = -.381.
These two samples are independent; that is, they contain different entities. To compare
these correlations we can again use what we discovered in section 6.3.3 to convert these
coefficients to z, (just to remind you, we do this because it makes the sampling distribution
normal and, therefore, we know the standard error). If we do the conversion, then we get
z, (males) = -.557 and z, (females) = -.401. We can calculate a z-score of the differences
between these correlations as:

~ Use the subseit) function to compute the correlation
coefficient between exam anxiety and exam
performance in men and women.

SELF-TEST

Sometimes we want to know whether one correlation coefficient is bigger than another.
For example, when we looked at the effect of exam anxiety on exam performance, we
might have been interested to know whether this correlation was different in men and
women. We could compute the correlation in these two samples, but then how would we
assess whether the difference was meaningful?

__ Comparing independent rs ®

6.7. Comparing correLations ®

• A partiar corre/atíon quantifies the relationship between two variables while controlling for the effects of a third variable on
both variables in the original correlation.

• A semi-partía/ corre/atíon quantifies the relationship between two variables while controlling for the effects of a third variable
on only one of the variables in the original correlation.

Partial and semi-partial correlation

calculated took account not only of the effect of revision on exam performance, but also
of the effect of revision on anxiety. If we were to calculate the semi-partial correlation for
the same data, then this would control for only the effect of revision on exam performance
(the effect of revision on exam anxiety is ignored). Partial correlations are most useful for
looking at the unique relationship between two variables when other variables are ruled
out. Semi-partial correlations are, therefore, useful when trying to explain the variance in
one particular variable (an outcome) from a set of predictor variables. (Bear this in mind
when you read Chapter 7.)
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t . = (- 838)~ 29.1 = -5 09
Difference '2(1- .194 - .503 - .158 + 0.248) ·

Admittedly that equation looks hideous, but really it's not too bad: it just uses the three
correlation coefficients and the sample size N.

Put in the numbers from the exam anxiety example (N was 103) and you should end up
with:

(6.12)
(n - 3) (1 + rxz )

tDifference = (rxy - rZY) 2 2 2
2(1- rxy - rxz - rzy + 2rxyrxZrZy

If you want to compare correlation coefficients that come from the same entities then
things are a little more complicated. You can use a t-statistic to test whether a difference
between two dependent correlations from the same sample is significant. For example,
in our exam anxiety data we might want to see whether the relationship between exam
anxiety (x) and exam performance (y) is stronger than the relationship between revision
(z) and exam performance. To calculate this, all we need are the three rs that quantify the
relationships between these variables: r ,the relationship between exam anxiety and examxy
performance (-.441); r ,the relationship between revision and exam performance (.397);

zy

and rxz' the relationship between exam anxiety and revision (-.709). The t-statistic is com-
puted as (Chen & Popovich, 2002):

.. Comparing dependent rs ®

'These equations are rubbish.' says Oliver, 'they're too confusing and I
hate them. Can't we get R to do it for us while we check Facebook?'
Well, no, you can't. Except you sort of can by writing your own function.
'Write my own function!!' screams Oliver whilst trying to ram his computer
keyboard into his mouth. 'You've got to be joking, you steaming dog
colon, I can barely write my own name.' Luckily for you Oliver, I've done
it for you. To find out more, read the additional material for this chap
ter on the companion website. Or check Facebook, the choice is yours.

OLlVER TWISTED
Please Sir, can I
have some more ...
functions?

We can look up this value of z (0.768; we can ignore the minus sign) in the table for the
normal distribution in the Appendix and get the one-tailed probability from the column
labelled 'Smaller Portion'. In this case the value is .221. To get the two-tailed probability
we simply multiply the one-tailed probability value by 2, which gives us .442. As such the
correlation between exam anxiety and exam performance is not significantly different in
men and women (see Oliver Twisted for how to do this using R).

. = -.557 - (-.401) = -.156 = _ O768
ZOtfference ~ 1 + 1 0.203 ·

49 48

We had 52 men and 51 women so we would get:
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Reporting correlation coefficients is pretty easy: you just have to say how big they are and
what their significance value was (although the significance value isn't that important because

6.9. How to report correLation coefficents <D

Calculating effect sizes for correlation coefficients couldn't be easier because, as we saw
earlier in the book, correlation coefficients are effect sizes! So, no calculations (other than
those you have already done) necessary! However, I do want to point out one caveat when
using non-parametric correlation coefficients as effect sizes. Although the Spearman and
Kendall correlations are comparable in many respects (their power, for example, is similar
under parametric conditions), there are two important differences (Strahan, 1982).

First, we saw for Pearson's r that we can square this value to get the proportion of shared
variance, R2. For Spearman's rs we can do this too because it uses the same equation as

Pearson's r. However, the resulting R2 needs to be interpreted slightly dif
ferently: it is the proportion of variance in the ranks that two variables share.
Having said this, R2 is usually a good approximation for R2 (especially in con-
ditions of near-normal distributions). Kendall's r, however, is not numerically
similar to either r or rs and so r2 does not tell us about the proportion of vari
ance shared by two variables (or the ranks of those two variables).

Second, Kendall's r is 66-75% smaller than both Spearman's rs and Pearson's
r, but r and rs are generally similar sizes (Strahan, 1982). As such, if r is used
as an effect size it should be borne in mind that it is not comparable to r and rs
and should not be squared. A related issue is that the point-biserial and biserial
correlations differ in size too (as we saw in this chapter, the biserial correlation

was bigger than the point-biserial). In this instance you should be careful to decide whether
your dichotomous variable has an underlying continuum, or whether it is a truly discrete
variable. More generally, when using correlations as effect sizes you should remember
(both when reporting your own analysis and when interpreting others) that the choice of
correlation coefficient can make a substantial difference to the apparent size of the effect.

Can I use ,2 tor
non-pararnetrlc
correJations?

6.8. CaLcuLatingthe effect size <D

Please Sir, can I have
some more ... comparing
of corre/ations?

'Are you having a bloody laugh with that equation?' yelps Oliver.
'1'd rather smother myself with cheese sauce and lock myself
in a room of hungry mice.' Ves, yes, Oliver, enough of your sex
ual habits. To spare the poor mice I have written another R func
tion to run the comparison mentioned in this section. For a guide
on how to use them read the additional material for this chap
ter on the companion website. Go on, be kind to the mice!

OLlVER TWISTED

This value can be checked against the appropriate critical value in the Appendix with N-3
degrees of freedom (in this case 100). The critical values in the table are 1.98 (p < .05) and
2.63 (p < .01), two-tailed. As such we can say that the correlation between exam anxiety
and exam performance was significantly higher than the correlation between revision time
and exam performance (this isn't a massive surprise, given that these relationships went in
the opposite directions to each other).
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ns = not significant (p > .05), * P < .05, ** P < .01, *** P < .001

103

-.7'1***103

103

Exam Anxiety

Revision Time

Table 6.3 An example of reporting atable of correlations

Scientists, rightly or wrongly, tend to use several standard levels of statistical significance.
Primarily, the most important criterion is that the significance value is less than .05; however,
if the exact significance value is much lower then we can be much more confident about the
strength of the effect. In these circumstances we like to make a big song and dance about the
fact that our result isn't just significant at .05, but is significant at a much lower level as well
(hooray!). The values we use are .05, .01, .001 and .0001. You are rarely going to be in the
fortunate position of being able to report an effect that is significant at a levelless than .0001!
When we have lots of correlations we sometimes put them into atable. For example, our

exam anxiety correlations could be reported as in Table 6.3. Note that aboye the diagonal
I have reported the correlation coefficients and used symbols to represent different levels
of significance. Under the table there is a legend to tell readers what symbols represento
(Actually, none of the correlations were non-significant or had p bigger than .001, so most
of these are here simply to give you a reference point - you would normally indude sym
bols that you had actually used in the table in your legend.) Finally, in the lower part of the
table I have reported the sample sizes. These are all the same (103), but sometimes when
you have missing data it is useful to report the sample sizes in this way because different
values of the correlation will be based on different sample sizes. For sorne more ideas on
how to report correlations have a look at Labcoat Leni's Real Research 6.1.

~ There was a significant relationship between the number of adverts watched and the
number of packets of sweets purchased, r = .87, P (one-tailed) < .05.

~ Exam performance was significantly correlated with exam anxiety, r = -.44, and time
spent revising, r = .40; the time spent revising was also correlated with exam anxiety,
r = -.71 (all ps < .001).

~ Creativity was significantly related to how well people did in the World's Biggest Liar
competition, rs = -.37, P < .001.

~ Creativity was significantly related to how well people did in the World's Biggest Liar
competition, r = -.30, P < .001. (Note that I've quoted Kendall's r here.)

~ The gender of the cat was significantly related to the time the cat spent away from
home, rpb = .38, P < .01.

~ The gender of the cat was significantly related to the time the cat spent away from
home, rb = .48, P < .01.

the correlation coefficient is an effect size in its own right!). Five things to note are that: (1)
if you follow the conventions of the American Psychological Association, there should be no
zero before the decimal point for the correlation coefficient or the probability value (because
neither can exceed 1); (2) coefficients are reported to 2 decimal places; (3) if you are quoting
a one-tailed probability, you should say so; (4) each correlation coefficient is represented by
a different letter (and sorne of them are Greek); and (5) there are standard criteria of prob
abilities that we use (.05, .01 and .001). Let's take a few examples from this chapter:
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This chapter has looked at ways to study relationships between variables. We began
by looking at how we might measure relationships statistically by developing what
we already know about variance (from Chapter 1) to look at variance shared between
variables. This shared variance is known as covariance. We then discovered that when
data are parametric we can measure the strength of a relationship using Pearson's cor
relation coefficient, r. When data violate the assumptions of parametric tests we can
use Spearman's rs' or for small data sets Kendall's rmay be more accurate. We also saw
that correlations can be calculated between two variables when one of those variables is
a dichotomy (i.e., composed of two categories); when the categories have no underly
ing continuum then we use the point-biserial correlation, rpb' but when the categories
do have an underlying continuum we use the biserial correlation, rb• Finally, we looked
at the difference between partial correlations, in which the relationship between two
variables is measured controlling for the effect that one or more variables has on both
of those variables, and semi-partial correlations, in which the relationship between two
variables is measured controlling for the effect that one or more variables has on only
one of those variables. We also discovered that 1had a guitar and, like my favourite
record of the time, 1was ready to 'Take on the World'. Well, Wales at any rate ...

What have I discovered about statistics? CD

o •

-----

Chamorro-Premuzic, T, et al. (2008). Personality and Individual Oifferences, 44, 965-976.

As students you probably have to rate your lecturers at the end of the course. There will be some lecturers you like
and others that you hateo As a lecturer I find this process horribly depressing (although this has a lot to do with
the fact that I tend focus on negative feedback and ignore the good stuff). There is some evidence that students
tend to pick courses of lecturers whom they perceive to be enthusastic and good communicators. In a fascinat
ing study, Tomas Chamorro-Premuzic and his colleagues (Chamorro-Premuzic, Furnham, Christopher, Garwood,
& Martin, 2008) tested a slightly different hypothesis, which was that students tend to like lecturers who are like
themselves. (This hypothesis will have the students on my course who like my lectures screaming in horror.)

First of all, the authors measured students' own personalities using a very well-established measure (the
NEO-FFI) which gives rise to scores on five fundamental personality traits: Neuroticism, Extroversion, Openness
to experience, Agreeableness and Conscientiousness. They also gave students a questionnaire that asked them
to rate how much they wanted their lecturer to have each of a list of characteristics. For example, they would
be given the description 'warm: friendly, warm, sociable, cheerful, affectionate, outgoing' and asked to rate
how much they wanted to see this in a lecturer from -5 (they don't want this characteristic at all) through O (the
characteristic is not important) to +5 (1really want th is characteristic in my lecturer). The characteristics on the
questionnaire all related to personality characteristics measured by the NEO-FFI. As such, the authors had a
measure of how much a student had each of the five core personality characteristics, but also a measure of how
much they wanted to see those same characteristics in their lecturer.

In doing so, Tomas and his colleagues could test whether, for instance, extroverted students want extrovert
lecturers. The data from this study (well, for the variables that I've mentioned) are in the file Chamorro-Premuzic.
dat. Run some Pearson correlations on these variables to see if students with certain personality characteristics
want to see those characteristics in their lecturers. What conclusions can you draw?

Answers are in the additional material on the companion website (or look at Table 3 in the original article, which
will also show you how to report a large number of correlations).

Why do you Like your
Lecturers? CD
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• Task 3: As a statistics lecturer I am always interested in the factors that determine
whether a student will do well on a statistics course. One potentially important factor
is their previous expertise with mathematics. Imagine I took 25 students and looked

• Task 1: A student was interested in whether there was a positive relationship between
the time spent doing an essay and the mark received. He got 45 of his friends and
timed how long they spent writing an essay (hours) and the percentage they got
in the essay (essay). He also translated these grades into their degree classifications
(grade): in the UK, a student can get a first-class mark (the best), an upper-second
class mark, a lower second, a third, a pass or a fail (the worst). Using the data in the
file EssayMarks.dat find out what the relationship was between the time spent doing
an essay and the eventual mark in terms of percentage and degree class (draw a scat
terplot too!). <D

• Task 2: Using the ChickFlick.dat data from Chapter 3, is there a relationship between
gender and arousal? Using the same data, is there a relationship between the film
watched and arousal? <D

Smart ALex's tasks G)

Kendall's tau
Partial eorrelation
Pearson eorrelation eoeffieient
Point-biserial eorrelation
Semi-partial eorrelation
Spearman's eorrelation eoeffieient
Stand ard ization

Biserial eorrelation
Bivariate eorrelation
Coeffieient of determination
Correlation eoeffieient
Covarianee
Cross-produet deviations
Diehotomous

Key terms that I've discovered

polyserialO
prop.tablet)
rcorrt)
read.csvt)
read.delimO
tablet)

bootf)
boot.cit)
corO
cor.testt)
pcort)
pcor.testt)

R functions used in this chapter

Polyeor
Remdr

boot
ggm
ggplot2
Hmise

R packages used in this chapter

CHAPTER 6 CORRELATION



Chamorro-Premuzic, T., Furnham, A., Christopher, A. N., Garwood, J., & Martin, N. (2008). Birds
of a feather: Students' preferences for lecturers' personalities as predicted by their own personal
ity and learning approaches. Personality and Individual Differences, 44, 965-976.

Interesting reaL research

Chen, P. Y., & Popovich, P. M. (2002). Correlation: Parametric and nonparametric measures.
Thousand Oaks, CA: Sage.

Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Duxbury. (Or you
might prefer his Fundamental Statistics for the Behavioral Sciences, also in its 6th edition, 2007.
Both are excellent texts that are a bit more technical than this book, so they are a useful next step.)

Miles, J. N. v., & Banyard, P. (2007). Understanding and using statistics in psychology: A practical
introduction. London: Sage. (Afantastic and amusing introduction to statistical theory.)

Wright, D. B.,& London, K. (2009). First steps in statistics (2nd ed.). London: Sage. (This book is a
very gentle introduction to statistical theory.)

Further reading

Answers can be found on the companion website.

at their degree grades for my statistics course at the end of their first year at univer
sity: first, upper second, lower second or third class. I also asked these students what
grade they got in their GCSE maths exams. In the UK, GCSEs are school exams taken
at age 16 that are graded A, B, C, D, E or F (an A grade is better than all of the lower
grades). The data for this study are in the file grades.csv. Carry out the appropriate
analysis to see if GCSE maths grades correlate with first-year statistics grades. CD
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