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This book is dedicated to two groups: those consumers of research
reports who work at developing the skills needed to critically evaluate
(and sometimes reject!) the claims made by researchers, and those
researchers whose claims ought to be believed (and acted upon!)
because they take the time to analyze carefully the data gleaned from
thoughtfully designed studies that address worthy questions.



iv

Schuyler (Sky) Huck (Ph.D., Northwestern) is Distin-
guished Professor and Chancellor’s Teaching Scholar at
the University of Tennessee, Knoxville. His concerns for
improving statistical instruction and helping consumers
decipher and critique research reports show up in his
books, journal articles, and convention presentations, and
on his website (http://www.readingstats.com). In addition,
Sky’s applied/theoretical work has been cited by scholars
in 337 different academic journals. Despite these achieve-
ments and other honors that have come his way, Sky takes

his greatest pride in (1) the fact that two of his students have won Outstanding
Dissertation Awards in stiff national competitions and (2) comments from his stu-
dents that say, in essence, “You helped me learn!” Sky’s hobbies include photography,
puzzles, and poetry. In addition, he regularly helps prepare and serve hot meals for
the homeless and makes deliveries of nonperishable groceries to those in need.

About the Author

http://www.readingstats.com


v

Brief Contents

1 Typical Format of a Journal Article 1

2 Descriptive Statistics: The Univariate Case 18

3 Bivariate Correlation 44

4 Reliability and Validity 68

5 Foundations of Inferential Statistics 90

6 Estimation 114

7 Hypothesis Testing 131

8 Effect Size, Power, CIs, and Bonferroni 161

9 Statistical Inferences Concerning Bivariate Correlation Coefficients 183

10 Inferences Concerning One or Two Means 204

11 Tests on Three or More Means Using a One-Way ANOVA 234

12 Post Hoc and Planned Comparisons 257

13 Two-Way Analyses of Variance 276

14 Analyses of Variance with Repeated Measures 312

15 The Analysis of Covariance 343

16 Bivariate, Multiple, and Logistic Regression 367

17 Inferences on Percentages, Proportions, and Frequencies 404

18 Statistical Tests on Ranks (Nonparametric Tests) 434

19 Multivariate Tests on Means 458

20 Factor Analysis 479

21 Structural Equation Modeling 504

Epilogue 529



This page intentionally left blank 



vii

Contents

Preface xvii

1 Typical Format of a Journal Article 1

Abstract 2

Introduction 3

Method 6

Statistical Plans 10

Results 11

Discussion 13

References 14

Notes 16

Two Final Comments 16

Review Terms 17

The Best Items in the Companion Website 17

2 Descriptive Statistics: The Univariate Case 18

Picture Techniques 18

Distributional Shape 24

Measures of Central Tendency 28

Measures of Variability 31



Standard Scores 38

A Few Cautions 40

Review Terms 43

The Best Items in the Companion Website 43

3 Bivariate Correlation 44

The Key Concept behind Correlation: Relationship 45

Scatter Plots 46

The Correlation Coefficient 48

The Correlation Matrix 50

Different Kinds of Correlational Procedures 53

Warnings about Correlation 61

Review Terms 66

The Best Items in the Companion Website 66

4 Reliability and Validity 68

Reliability 68

Validity 81

Final Comments 87

Review Terms 89

The Best Items in the Companion Website 89

5 Foundations of Inferential Statistics 90

Statistical Inference 91

The Concepts of Statistic and Parameter 94

Types of Samples 96

The Problems of Low Response Rates, Refusals to Participate,
and Attrition 103

viii Contents



A Few Warnings 108

Review Terms 112

The Best Items in the Companion Website 112

6 Estimation 114

Interval Estimation 114

Point Estimation 125

Warnings Concerning Interval and Point Estimation 129

Review Terms 130

The Best Items in the Companion Website 130

7 Hypothesis Testing 131

An Ordered List of the Six Steps 131

A Detailed Look at Each of the Six Steps 132

Results That Are Highly Significant and Near Misses 152

A Few Cautions 154

Review Terms 159

The Best Items in the Companion Website 160

8 Effect Size, Power, CIs, and Bonferroni 161

The Seven-Step Version of Hypothesis Testing: Estimating 
Effect Size 161

The Nine-Step Version of Hypothesis Testing: Power Analyses 165

Hypothesis Testing Using Confidence Intervals 172

Adjusting for an Inflated Type I Error Rate 174

A Few Cautions 179

Review Terms 182

The Best Items in the Companion Website 182

Contents ix



9 Statistical Inferences Concerning Bivariate Correlation 
Coefficients 183

Statistical Tests Involving a Single Correlation Coefficient 183

Tests on Many Correlation Coefficients (Each of Which Is Treated 
Separately) 189

Tests of Reliability and Validity Coefficients 192

Statistically Comparing Two Correlation Coefficients 193

The Use of Confidence Intervals around Correlation Coefficients 195

Cautions 196

Review Terms 203

The Best Items in the Companion Website 203

10 Inferences Concerning One or Two Means 204

Inferences Concerning a Single Mean 204

Inferences Concerning Two Means 209

Multiple Dependent Variables 218

Effect Size Assessment and Power Analyses 221

Underlying Assumptions 225

Comments 229

Review Terms 233

The Best Items in the Companion Website 233

11 Tests on Three or More Means Using a One-Way ANOVA 234

The Purpose of a One-Way ANOVA 235

The Distinction between a One-Way ANOVA and Other Kinds 
of ANOVA 237

The One-Way ANOVA’s Null and Alternative Hypotheses 239

Presentation of Results 240

x Contents



Assumptions of a One-Way ANOVA 246

Statistical Significance versus Practical Significance 249

Cautions 251

A Final Comment 254

Review Terms 255

The Best Items in the Companion Website 256

12 Post Hoc and Planned Comparisons 257

Post Hoc Comparisons 258

Planned Comparisons 268

Comments 269

Review Terms 274

The Best Items in the Companion Website 275

13 Two-Way Analyses of Variance 276

Similarities between One-Way and Two-Way ANOVAs 276

The Structure of a Two-Way ANOVA 277

Three Research Questions 283

The Three Null Hypotheses (and Three Alternative Hypotheses) 286

Presentation of Results 289

Follow-Up Tests 292

Planned Comparisons 301

Assumptions Associated with a Two-Way ANOVA 302

Estimating Effect Size and Conducting Power Analyses in Two-Way 
ANOVAs 304

The Inflated Type I Error Rate in Factorial ANOVAs 307

A Few Warnings Concerning Two-Way ANOVAs 308

Review Terms 310

The Best Items in the Companion Website 310

Contents xi



14 Analyses of Variance with Repeated Measures 312

One-Way Repeated Measures ANOVAs 314

Two-Way Repeated Measures ANOVAs 322

Two-Way Mixed ANOVAs 330

Three Final Comments 339

Review Terms 341

The Best Items in the Companion Website 342

15 The Analysis of Covariance 343

The Three Different Variables Involved in Any ANCOVA Study 344

The Covariate’s Role 345

Null Hypotheses 350

The Focus, Number, and Quality of the Covariate Variable(s) 351

Presentation of Results 353

The Statistical Basis for ANCOVA’s Power Advantage and Adjustment 
Feature 354

Assumptions 355

ANCOVA When Comparison Groups Are Not Formed Randomly 359

Related Issues 361

A Few Warnings 363

Review Terms 366

The Best Items in the Companion Website 366

16 Bivariate, Multiple, and Logistic Regression 367

Bivariate Regression 371

Multiple Regression 378

Logistic Regression 391

Final Comments 399

xii Contents



Review Terms 402

The Best Items in the Companion Website 402

17 Inferences on Percentages, Proportions, and Frequencies 404

The Sign Test 405

The Binomial Test 407

Fisher’s Exact Test 408

Chi-Square Tests: An Introduction 409

Three Main Types of Chi-Square Tests 411

Issues Related to Chi-Square Tests 422

McNemar’s Chi-Square 425

The Cochran Q Test 426

The Use of z-Tests When Dealing with Proportions 428

A Few Final Thoughts 429

Review Terms 432

The Best Items in the Companion Website 432

18 Statistical Tests on Ranks (Nonparametric Tests) 434

Obtaining Ranked Data 435

Reasons for Converting Scores on a Continuous Variable into 
Ranks 437

The Median Test 440

The Mann–Whitney U Test 442

The Kruskal–Wallis H Test 445

The Wilcoxon Matched-Pairs Signed-Ranks Test 447

Friedman’s Two-Way Analysis of Variance of Ranks 449

Large-Sample Versions of the Tests on Ranks 451

Ties 453

A Few Final Comments 454

Contents xiii



Review Terms 456

The Best Items in the Companion Website 457

19 Multivariate Tests on Means 458

The Versatility of Multivariate Tests 459

The Multivariate Null Hypothesis 461

Testing the Multivariate Null Hypothesis 465

Assumptions 467

Statistical Significance and Practical Significance 469

Post Hoc Investigations 471

Three Final Comments 476

Review Terms 478

The Best Items in the Companion Website 478

20 Factor Analysis 479

The Goal (and Basic Logic) of Factor Analysis 479

The Three Main Uses of Factor Analysis 482

Exploratory and Confirmatory Factor Analysis 483

Exploratory Factor Analysis 486

Confirmatory Factor Analysis 495

Three Final Comments 502

Review Terms 502

The Best Items in the Companion Website 503

21 Structural Equation Modeling 504

SEM Diagrams, Terms, and Concepts 505

Assessing SEM Hypotheses: A Brief Overview 513

Steps in Assessing Model Worth 514

xiv Contents



Other Uses of SEM 524

The Dental Anxiety SEM Study 526

Two Final Comments 527

Review Terms 528

The Best Items in the Companion Website 528

Epilogue 529

Review Questions 531

Answers to Review Questions 548

Credits 552

Index 555

Contents xv



This page intentionally left blank 



xvii

Preface

This preface is devoted to three topics of likely concern to anyone who may be con-
sidering reading or adopting this book. These topics concern my assessment of peo-
ple’s need to critically evaluate research claims; the book’s main objectives; and
differences between the fifth and sixth editions of this book. Stated differently, one
might legitimately ask:

1. For whom is this book intended?
2. In what ways will this book benefit its readers?
3. Is this simply a cosmetic revision of the fifth edition, and, if not, how does this

new edition differ in significant ways from its predecessor?

People’s Need to Critically Evaluate Research Claims

In the first edition of this book, I claimed that humanity could be divided into three
groups: (1) those who conduct their own research studies, (2) those who do not for-
mally engage in the research process but nonetheless encounter the results of others’
investigations, and (3) those who are neither “makers” nor “consumers” of research
claims. Now, nearly 40 years since I made that statement, I still believe that every
person on the face of the Earth can be classified into one of those three groups.
However, it is clear to me that the relative sizes and the needs of the three groups
are different now than they were in 1974 (when the first edition of this book was
published) or even in 2008 (when the fifth edition appeared).

Regarding the size of the three groups mentioned, the first group (the “doers” of
research) has grown slightly larger, whereas the second group (the “consumers” of
research) has expanded geometrically over the past few years. The odds are extremely
high that any randomly selected person belongs to one of these two groups. The first
would be populated with lots of professors, any graduate student preparing to write
a master’s thesis or doctoral dissertation, most employees of the many research
units located in both public and private organizations, and a handful of independent
researchers. Whoever isn’t a member of the first group most likely is a member of
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the second group. That’s because it is virtually impossible to avoid coming into con-
tact with research findings.

In one way or another, almost everyone encounters the findings of empirical
investigations. First, formal and full-length research reports are presented each year
in thousands of technical journals and at meetings of countless international, national,
regional, and local professional associations. Summaries of such studies make their
way into newspaper and magazine stories, television and radio news programs, and
informal conversations among coworkers, family members, and friends. Computer
availability and the staggering increase in Internet websites make it possible for
growing numbers of people to have access to the research “evidence” that stands
behind online advice from “experts” regarding everything from arthritis to Zen
Buddhism. And then there are the innumerable advertisements and commercials that
bombard us on a daily basis and contain the results of so-called scientific studies
that supposedly demonstrate the worth of the products or services being hawked.

Everyone in the huge second group must become a more discerning consumer
of research findings and research claims. Such individuals, located on the receiving
end of research summaries, cannot be competent consumers of what they read or
hear unless they can both understand and evaluate the investigations being dis-
cussed. Such skills are needed because (1) trustworthy research conclusions come
only from those studies characterized by a sound design and a careful analysis of
the collected data, and (2) the screening process—if there is one in place—that sup-
posedly prevents poor studies from being disseminated is only partially successful
in achieving its objective. For these reasons, consumers must acquire the skills
needed to protect themselves from overzealous or improperly trained researchers
whose work leads to exaggeration, false “discoveries,” and unjustified claims of
“significance.”

Individuals who conduct research investigations—the doers of research—also
should be able to critically evaluate others’ research reports. Almost every research
project is built on a foundation of knowledge gleaned from previous studies.
Clearly, if a current researcher cannot differentiate legitimate from unjustified re-
search conclusions, his or her own investigation may well be doomed from the out-
set because it is pointed in the wrong direction or grounded in a research base made
of sand. If applied researchers could more adequately critique the studies cited
within their own literature reviews, they also would be able to apply such knowl-
edge to their own investigations. The result would be better designed studies con-
taining more appropriate statistical analyses leading to more justifiable conclusions
and claims.

This edition of Reading Statistics and Research is targeted at two groups:
those who conduct their own research investigations and those who are the recipi-
ents of research-based claims. I have tried to keep both groups in mind while work-
ing on this revision project. I hope members of both groups will benefit from this
edition’s textual discussion of statistics and research design, the many excerpts
taken from published research reports, and the review questions for each chapter.



This Book’s Objectives

The seven specific objectives of this edition are basically the same as those of the
previous five editions. These goals include helping readers increase their ability to
(1) make sense out of statistical jargon, (2) understand statistical tables and figures,
(3) know what specific research question(s) can be answered by each of a variety
of statistical procedures, (4) remain aware of what can and cannot be accomplished
when someone sets up and tests one or more null hypotheses, (5) detect the misuse
of statistics, (6) distinguish between good and poor research designs, and (7) feel
confident when working with research reports.

The seven objectives just listed can be synthesized nicely in two words:
decipher and critique. This book is designed to help people decipher what researchers
are trying to communicate in the written or oral summaries of their investigations.
Here, the goal is simply to distill meaning from the words, symbols, tables, and
figures included in the research report. (To be competent in this arena, one must be
able not only to decipher what is presented, but also to “fill in the holes”; this is the
case because researchers typically assume that those receiving the research report
are familiar with unmentioned details of the research process and the statistical treat-
ment of data.) Beyond being able to decipher what is presented, I very much want
readers of this book to improve their ability to critique such research reports. This
is important because research claims are sometimes completely unjustified due to
problems associated with the way studies are planned or implemented or because
of problems in the way data are collected, analyzed, summarized, or interpreted.

Differences between the Fifth and Sixth Editions

In an effort to assist readers to better decipher and critique research reports, I have
done my best to update, expand, and in other ways improve this edition and make
it superior to the previous edition. Several of these changes are quite minor and need
not be discussed. There are, however, six important ways in which this edition is
different from the one published in 2008. These changes are worth discussing.

All New Excerpts

It is not an exaggeration to say that the boxed excerpts constitute the lifeblood of
this book. I have included these tables, figures, and passages of text from published
research reports to illustrate both good and not-so-good practices, to instruct via the
words of others, and to demonstrate that contemporary researchers do, in fact, use
the statistical procedures discussed in this text.

A total of 492 excerpts appear in this edition. All of these excerpts are new,
with not even one brought forward from the fifth edition. These numbers—492 new,
0 old—can be used to back up the claim that this book contains an extensive array of
material that illustrates what contemporary researchers put into their research reports.

Preface xix
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It should be noted that the excerpts included in this edition were not chosen
indiscriminately. They were not identified by students in the courses I teach, nor
were they plucked from the research literature by graduate assistants. In every in-
stance, I personally selected the excerpt. I entrusted this task to no one else because
I wanted each excerpt to help readers understand a concept or practice utilized
widely by applied researchers. To this end, I used five criteria in the excerpt-selection
process: I wanted each item to have high-level relevance to the book’s textual
discussion; be as short as possible; to come from a recent research report; to require
no special training in any particular academic discipline in order to be understood;
and, whenever possible, to deal with content that would be interesting to my book’s
readers. I applied these criteria to each of this book’s 492 excerpts.

New Chapters on Multivariate Tests on Means, Factor
Analysis, and Structural Equation Modeling

Since the publication of the fifth edition, a slew of individuals have contacted me
and asked that three topics be covered in this sixth edition: multivariate analysis of
variance, factor analysis, and structural equation modeling. These advanced statis-
tical procedures are being used by more and more applied researchers. Reference
to these techniques appears regularly in the research reports presented orally at pro-
fessional meetings and in print within technical journals.

In this new edition, Chapter 19 deals with multivariate analysis of variance
and covariance (MANOVA and MANCOVA), Chapter 20 is focused on exploratory
and confirmatory factory analysis (EFA and CFA), and Chapter 21 covers structural
equation modeling (SEM). These new chapters are like others in this book in that
the emphasis is on the goals of each procedure, the results typically included in re-
search reports, and the important assumptions that should be attended to. The reader
interested in the mathematical formulas associated with one or more of these sta-
tistical techniques (or how to get a computer to perform the analyses) must consult
some other book or seek help from a statistician.

To make room for these three new chapters (without increasing the overall
length of the book), I reduced the number of excerpts in each of the other chapters,
tried to be more succinct in my discussion of topics, and eliminated the final chap-
ter from the previous edition. That chapter was entitled, “The Quantitative Portion
of Mixed Methods Studies.” The absence of that chapter from this new edition is no
great loss because it was (and still is) my firm belief that one’s ability to decipher
and critique the quantitative portions of reports of mixed-methods research endeav-
ors is contingent on his or her ability to understand and evaluate research reports that
are purely statistical in nature. As I pointed out in the previous edition,

Careful mixed-methods researchers do things in the same way, in the quantita-
tive parts of their studies, as do researchers who collect only numerical infor-
mation and use only statistics to analyze their data.



It is my hope that this new edition of the book will be viewed positively by—
and prove useful to—mixed-methods researchers and their intended audiences,
even though there is no longer a specific chapter dedicated to that form of research.
Both of these groups will be helped by a consideration here of multivariate tests
on means, factor analysis, and structural equation models. These more advanced
statistical procedures are being utilized more frequently in the quantitative portion
of mixed-methods studies. This trend is likely to accelerate as time goes by.

Content

Several small (yet important) content changes were made as the fifth edition was
transformed into this sixth edition. In addition to the three new chapters, the follow-
ing items are new to this edition:

• The geometric mean
• The correlation coefficient, tau-b
• Guttman’s split-half reliability procedure
• Moderated and mediated multiple regression
• sr2 as an index of predictor variable worth in multiple regression
• Sensitivity
• Specificity
• The Sobel test
• Example of the Dunn–Sidák procedure
• The “hit rate” in logistic regression

I have made a slew of other small and large changes for the purposes of increasing clar-
ity, updating material, emphasizing critical concepts, and improving review questions.

Diversity of Journals Represented in the Excerpts

In this sixth edition, more so than in any of its predecessors, I worked hard to
select excerpts from a variety of disciplines. I did this to help readers increase their
ability to cross disciplinary lines when reviewing research reports. This final point
deserves a bit of explanation.

In contrast to those books that focus on a single discipline (such as psychol-
ogy, education, or nursing), the manifest purpose here is to help readers feel more
at ease when confronted by research claims that emanate from disciplines other than
their own. To that end, the excerpts in this sixth edition come from journals such as
Journal of Criminal Justice, Body Image, Creativity Research Journal, Anti-Aging
Medicine, Journal of Comparative Family Studies, Harm Reduction Journal, Mea-
surement in Physical Education and Exercise Science, International Journal of
Health Geographics, Alcohol and Alcoholism, Journal of Sex Research, Community
College Review, and Computers in Human Behavior.

Unless people have the ability to decipher and critique research in a multidisci-
plinary fashion, they become easy targets for those who inadvertently or purposefully
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present research “evidence” that comes from studies characterized by ill-conceived
questions, poor methodology, and sloppy statistical analysis. Unfortunately, some
researchers begin their studies with a strong bias as to what they would like the results
to show, and the results of such biased investigations are summarized on a near daily
basis in the popular press. Clearly, a person is more likely to detect such bias if he or
she can decipher and critique research across disciplines, recognizing, for example,
that the purpose of and issues related to logistic regression are the same regardless of
whether the data come from sociology, ecology, or epidemiology.

Excerpts from an International Array of Authors

In an effort to honor the work of researchers located around the world, I have included
a wide variety of excerpts that are international in nature. For example, Excerpt 2.4
comes from a study dealing with French people suffering from migraine headaches,
Excerpt 5.1 is from a study investigating mental health in Cyprus, Excerpt 7.4 comes
from a study dealing with the products purchased by adolescents in South Africa,
Excerpt 8.6 comes from a study dealing with the health-care needs of elderly citizens
in Japan, Excerpt 13.1 is from a study dealing with Chinese school children, Excerpt
17.20 is from a study concerned with girls suffering from anorexia nervosa in Brazil,
and Excerpt 20.13 is from a study dealing with travel agents in Turkey.

Research studies are being conducted around the globe, and the Internet has
made it easy for researchers to learn what others have discovered in far-off lands.
Without question, the availability of shared knowledge makes it possible for fields
to advance more rapidly than was the case even just a decade ago. I hope my inter-
national array of excerpts will spur researchers into looking far and wide when con-
ducting their literature reviews and establishing communication links with others
who share common research interests. Moreover, I hope these excerpts will help
increase the respect researchers have for their international colleagues.

An Expanded and Updated Companion Website

The book’s website (http://www.ReadingStats.com) has been updated and ex-
panded. This website remains easy to navigate, it continues to offer different kinds
of information for users with different kinds of needs, and it has been field-tested
and modified on the basis of student feedback. The website and the book function
to complement each other, with neither one able to successfully do alone what both
can do together. This website contains more than 400 viewable pages, plus links to
more than 150 carefully selected pages on other sites. The content of these pages is
designed to help students learn.

The largest and most important part of the website involves information,
exercises, and links carefully organized in a chapter-by-chapter format. The follow-
ing items are available for each chapter:

• Chapter outlines, interactive quizzes with immediate feedback, and online
resources

http://www.ReadingStats.com


• Jokes, quotations, and poetry about statistics
• Statistical misconceptions
• Biographies of significant people in the field
• E-mail messages to my students that address pertinent topics
• Best passages from each chapter

It should be noted that certain features of this book’s companion website provide a
form of instruction that is literally impossible to duplicate either by an instructor
or a book. For example, the links to other sites bring the learner into contact with
interactive exercises that actually show statistical concepts in operation, thereby
permitting a kind of presentation that no instructor or book could ever accomplish.

Five Important Similarities between the Fifth and Sixth Editions

Since the publication of the fifth edition, several individuals have contacted me with
comments about this book. Most of those comments have been positive, and they
have prompted me to maintain (as much as possible) five features of the fifth edition
as I worked to create this new, sixth edition.

First, I kept the format the same, with excerpts from recent journal articles
serving as the book’s core structure. As indicated previously, I personally selected
each of this book’s 492 excerpts, all of which are new to the sixth edition. These
excerpts are likely to be as helpful to readers as were the excerpts sprinkled through-
out the fifth edition.

Second, I tried to keep the text material outside the book’s excerpts as
straightforward, clear, and helpful as people have said it has been in earlier edi-
tions of the book. Ever since the first edition was published nearly 40 years ago,
the main compliment I’ve received about this book is concerned with my ability
to write about statistical concepts in such a way that others can truly understand
things. In preparing the new chapters for this new edition, and in revising the
other chapters, I again have tried to achieve the goals of clarity, relevance, and
deep understanding.

The third similarity between this edition and its predecessors is my continued
effort to point out that there is often a difference—and sometimes a giant difference—
between what researchers are entitled to say following their data analyses and
what they actually do say. I provide many examples of statistical procedures that
produced finding that were “significant” or revealed “significant differences.” Such
procedures inherently involved sample-to-population inferences, null hypotheses,
underlying assumptions, and the possibility of inferential error. As in previous
editions, I repeatedly make the point that “significance” can exist in a statistical
sense but not in any practical manner.

The fourth important thing that has not changed is a warning. As before, I take
every opportunity to point out that complex statistics do not have the magical power
to create a silk purse out of a sow’s ear. Unless the research questions being addressed
are worthy, a study is doomed from the start. Accordingly, there is continued
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emphasis on critically evaluating research questions and null hypotheses as the first
step in assessing the potential value of any investigation.

The final feature I have tried to maintain again concerns the excerpts. Many of
these excerpts, as was the case with the excerpts in the fifth edition, have come from
studies that were focused on important questions, that were designed thoughtfully,
and that produced findings that may have an impact on the way you think or act. Many
other excerpts came from studies focused on topics that were undoubtedly fun for the
researchers to research. By considering the research questions and methodology as-
sociated with these studies, I am hoping, once again, that more than a few readers will
adopt the view that research can be both fun and relevant to our daily lives.
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Three individuals deserve special recognition for their contributions to the
content of this revised book. Shelley Esquivel, Amy Beavers, and Hongwei Yang
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provided invaluable assistance in the preparation of this edition’s three new chapters.
Shelley helped with Chapter 19, Amy helped with Chapter 20, and all three helped
with Chapter 21. Regarding the book’s final chapter on structural equation modeling,
Shelley and Amy prepared the initial draft, Hongwei gave me insights that allowed
me to reorganize and modify that first draft, and then I personally selected—as with
every chapter in the book—all of the excerpts for Chapter 21. Although I take fully
responsibility for any errors of omission or commission in Chapters 19 though 21,
I am indebted to Shelley, Amy, and Hongwei for their assistance with these chapters.

Several graduate students helped in small yet non-trivial ways as this revision
project unfolded, and I want to thank them for their assistance. Extensive library
research was conducted by Kathy Flowers. Internet searches were conducted by
Allison Biker, Gary Techer, Jordan Driver, and Jared Middleman. Draft copies of
excerpts were reviewed by Andrew Hedger, Emily Young, Turner Tallman, Elle-Kate
Sweeter, and S. Kylure Finn. Computer data analysis was conducted by David
Kindly and Nancy Walker. Page proofs were carefully read by Rocky Alexander,
Patricia Grander, Jason Traveler, Ginna Bridett, Jennifer Momminew, Josh Shutterly,
and Owen Smiley. The permission file was overseen by Candace Spirit, Todd
Stanford, and Keith Frisco.

Niraj Bhatt and the team at Aptara, Inc., took charge of the revision project as
it moved through its production phase. I am extremely grateful to them for their
work on this project. It was a pure joy working with Niraj Bhatt!

My heartfelt appreciation is extended to Ammar Safar and John Wesley Taylor,
who created the original website for this book. This website (http://www.Reading
Stats.com) contains extensive information and interactive exercises not contained
here, and it is far more than simply a book supplement. In several respects, this com-
panion website is equivalent in importance to the book. Having such a website would
not have been possible had it not been for Ammar’s and Wesley’s generous contribu-
tions of their time and talent. I want to thank them for those contributions.

Finally, I want to thank my family for being supportive of my efforts to com-
plete this revision project. At every step along the way, members of my nuclear and
extended family encouraged me to consider this project to be the second highest
priority (behind my students) among my many professional obligations. Had they
not encouraged me to hole up in my little home office and to keep my nose to the
grindstone, this revision project would have been delayed for months, if not years!

Schuyler W. Huck
Knoxville, Tennessee, 2011
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Almost all journal articles dealing with research studies are divided into different
sections by means of headings and subheadings. Although there is variation among
journals with respect to the terms used for the headings and the order in which dif-
ferent sections are arranged, there does appear to be a relatively standard format for
published articles. Readers of the professional literature will find that they can get
the most mileage out of the time they invest if they are familiar with the typical for-
mat of journal articles and the kind of information normally included in each sec-
tion of the article.

We are now going to look at a particular journal article that does an excellent
job of illustrating the basic format that many authors use as a guide when they are
writing their articles. The different sections of our model article can be arranged in
outline form, as follows:

1. Abstract
2. Introduction

a. Background
b. Statement of purpose
c. Hypotheses

3. Method
a. Participants
b. Measures
c. Procedure
d. Statistical plans

4. Results
5. Discussion
6. References

Let us now examine each of these items.

C H A P T E R 1
Typical Format 
of a Journal Article

1
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Abstract

An abstract, or précis, summarizes the entire research study and appears at the 
beginning of the article. Although it normally contains fewer than 150 words, the
abstract usually provides the following information: (1) a statement of the purpose or
objective of the investigation, (2) a description of the individuals who served as par-
ticipants, (3) a brief explanation of what the participants did during the study, and
(4) a summary of the important findings.

Excerpt 1.1 is the abstract from our model journal article. As in most articles,
it was positioned immediately after the title and authors’ names. This abstract was
easy to distinguish from the rest of the article because it was indented and printed
in a smaller font size. In some journals, the abstract is italicized to make it stand out
from the beginning paragraphs of the article.

EXCERPT 1.1 • Abstract

Summary: A significant relationship between changes in Body Mass Index and Body
Areas Satisfaction scores was found for a sample of Euro-American but
not African-American women initiating a moderate exercise program. For
the African-American women only, compliance with the assigned exercise regimen
directly predicted changes in Body Area Satisfaction. Implications of Ethnicity for
behavioral weight loss treatment were discussed.

Source: Annesi, J. J. (2009). Correlations of changes in weight and body satisfaction for obese
women initiating exercise: Assessing effects of ethnicity. Psychological Reports, 105(3),
1072–1076.

(n = 79),
(n = 97),

The sole purpose of the abstract is to provide readers with a brief overview of
the study’s purpose, methods, and findings. Thus, most abstracts indicate why the
study was conducted, how the researcher went about trying to answer the questions
of interest, and what was discovered after the study’s data were analyzed. Even
though the abstract in Excerpt 1.1 is extremely brief, it addresses the how and what
issues. The reason why this study was conducted was not included in the abstract,
but it was articulated in the research report’s first main section.

In some articles, the abstracts mention the statistical techniques used to analyze
the study’s data. Most abstracts, however, are like the one in Excerpt 1.1 in that they
include no statistical jargon. Because of this, the abstract in the typical research 
report is quite “readable,” even to those who do not have the same level of research
expertise as the individual(s) who conducted the study.

On the basis of abstracts such as the one shown in Excerpt 1.1, you can decide
that the article in front of you is a veritable gold mine, that it may be what you have
been looking for, or that it is not at all related to your interests. Regardless of how
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you react to this brief synopsis of the full article, the abstract serves a useful purpose.
Note, however, that it is dangerous to think you have found a gold mine after read-
ing nothing more than an article’s abstract. I elaborate on this important point near
the end of this chapter.

Introduction

The introduction of an article usually contains two items: a description of the study’s
background and a statement of purpose. Sometimes, as in our model journal 
article, a third portion of the introduction contains a presentation of the researcher’s
hypotheses. These components of a journal article are critically important. Take the
time to read them slowly and carefully.

Background

Most authors begin their articles by explaining what caused them to conduct their
empirical investigations. Perhaps the author developed a researchable idea from dis-
cussions with colleagues or students. Maybe a previous study yielded unexpected
results, thus prompting the current researcher to conduct a new study to see if those
earlier results could be replicated. Or, maybe the author wanted to see which of two
competing theories would be supported more by having the collected data conform
to its hypotheses. By reading the introductory paragraph(s) of the article, you learn
why the author conducted the study.

In describing the background of their studies, authors typically highlight the
connection between their studies and others’ previously published work. Whether
this review of literature is short or long, its purpose is to show that the current au-
thor’s work has been informed by, or can be thought of as an extension of, previous
knowledge. Such discussions are a hallmark of scholarly work. Occasionally, a re-
searcher conducts a study based on an idea that is not connected to anything anyone
has investigated or written about; such studies, however, are rare.

Excerpt 1.2 comes from our model article. Although only two paragraphs in
length, this portion of the introduction sets the stage for a discussion of the author’s
investigation. If you read these two paragraphs, I predict you will understand every-
thing that the researcher presents in the way of his study’s “background.”

In Excerpt 1.2, note that the researcher is not presenting opinion, hope, or
anecdotal experiences. Instead, he focuses his introductory remarks on what has
been studied and found in earlier research investigations. This part of the researcher’s
report is characteristic of published articles, doctoral dissertations, master’s theses,
and reports from independent and government research agencies. In a very real
sense, the researcher presents this information in an effort to provide a rationale for
his or her spending the time and energy necessary to conduct the study that is
discussed in the remaining parts of the research report.



4 Chapter 1

As in Excerpt 1.2, researchers somehow or other provide you with the infor-
mation you need if you want to read any of the full research reports referred to in
the “review of literature.” In our model article, this is done by citing names and
dates in parentheses, with this information connected to an alphabetized list of more
complete citations presented at the end of the article. In many journals, footnotes
are used instead of names and dates, with full citations presented (according to foot-
note number) at the end of the research report or at the bottom of its pages. Because
it is often informative to examine primary resources rather than just second-hand
summaries, take the time to read the original reports of key items referred to in the
literature-review portion of any research report.

Statement of Purpose

After discussing the study’s background, an author usually states the specific purpose
or goal of the investigation. This statement of purpose is one of the most important

EXCERPT 1.2 • Background

Approximately one-third of American women are obese (Hedley, Ogden, Johnson,
Carroll, Curtin, & Flegal, 2004). Most are attempting to lose weight through either
caloric restriction (dieting) alone or caloric restriction combined with increased physi-
cal activity (Powell, Calvin, & Calvin, 2007). Although the association of weight loss
and reduction in health risk is acknowledged, a primary reason for women attempting
weight loss is an improvement in satisfaction with their bodies (Thompson, Heinberg,
Altabe, & Tantleff-Dunn, 1999). Analysis of body image as a changing process has been
advocated (Gleeson, 2006), however research on the association of weight changes
and changes in body satisfaction has been unclear (Houlihan, Dickson-Parnell, Jackson,
& Zeichner, 1987; Foster, Wadden, & Vogt, 1997).

While obvious markers of one’s body such as weight and waist circumference
are readily available (through, for example, self-weighing and fit of clothes), some
research suggests that feelings of competence and self-efficacy, associated with par-
ticipation in an exercise program, predicts improved satisfaction with one’s body
even when little physiological change actually occurs (Annesi, 2000, 2006). Research
also suggests ethnic differences in what is acceptable to women regarding the shapes
and sizes of their bodies (Rodin & Larson, 1992; Roberts, Cash, Feingold, & Johnson,
2006; Powell, et al., 2007). For example, Euro-American women have been described
as being more critical of their bodies than African-American women (Miller, Gleaves,
Hirsch, Green, & Snow, 2000). Research on psychological responses to weight loss
behaviors have only rarely accounted for ethnic differences. This is exemplified in
some of our recent research with obese women (Annesi & Whitaker, 2008).

Source: Annesi, J. J. (2009). Correlations of changes in weight and body satisfaction for obese
women initiating exercise: Assessing effects of ethnicity. Psychological Reports, 105(3),
1072–1076.
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parts of a research report, because in a sense, it explains what the author’s “desti-
nation” is. It would be impossible for us to evaluate whether the trip was successful—
in terms of research findings and conclusions—unless we know where the author
was headed.

The statement of purpose can be as short as a single sentence or as long as
one or two full paragraphs. It is often positioned just before the first main heading of
the article, but it can appear anywhere in the introduction. Regardless of its length or
where it is located, you will have no trouble finding the statement of purpose 
if a sentence contains the words, “the purpose of this study was to . . .” or “this 
investigation was conducted in order to . . .” In Excerpt 1.3, we see the statement
of purpose from our model journal article.

EXCERPT 1.3 • Statement of Purpose

The purpose of this investigation thus was to assess the relationship of changes in
Body Mass Index (kg/m2) with changes in body satisfaction in a sample of Euro-
American and African-American women with obesity who participated in a program
of moderate exercise.

Source: Annesi, J. J. (2009). Correlations of changes in weight and body satisfaction for obese
women initiating exercise: Assessing effects of ethnicity. Psychological Reports, 105(3),
1072–1076.

Hypotheses

After articulating the study’s intended purpose, some authors disclose the hypothe-
ses they had at the beginning of the investigation. Other authors do not do this,
either because they did not have any firm expectations or because they consider 
it unscientific for the researcher to hold hunches that might bias the collection or
interpretation of the data. Although there are cases in which a researcher can con-
duct a good study without having any hypotheses as to how things will turn out, and
although it is important for researchers to be unbiased, there is a clear benefit in
knowing what the researcher’s hypotheses were. Simply stated, outcomes compared
against hypotheses usually are more informative than are results that stand in a vac-
uum. Accordingly, I applaud those researchers who disclose in the introduction any
a priori hypotheses they had.

Excerpt 1.4 comes from our model journal article, and it contains the researcher’s
hypothesis. As you can see, there really were two hypotheses, one for each group
of women involved in the study. Considered together, these hypotheses say that 
improvements in body satisfaction can be predicted for both Euro-American and
African-American women, but what is used to make these successful predictions
differs across the two groups.
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In most articles, the background, statement of purpose, and hypotheses are not
identified by separate headings, nor are they found under a common heading. If a
common heading were to be used, however, the word introduction would probably
be most appropriate, because these three items set the stage for the substance of the
article—an explanation of what was done and what the results were.

Method

In the method section of a journal article, an author explains in detail how the study
was conducted. Ideally, such an explanation should contain enough information to
enable a reader to replicate (i.e., duplicate) the study. To accomplish this goal, the
author addresses three questions: (1) Who participated in the study? (2) What kinds
of measuring instruments were used to collect the data? and (3) What were the par-
ticipants required to do? The answer to each of these questions is generally found
under an appropriately titled subheading in the method section.

Participants

Each of the individuals (or animals) who supplies data in a research study is con-
sidered to be a participant or a subject. (In some journals, the abbreviations S and
Ss are used, respectively, to designate one subject or a group of subjects.) Within
this section of a research report, an author usually indicates how many participants
or subjects were used, who they were, and how they were selected.

A full description of the participants is needed because the results of a study
often vary according to the nature of the participants used. This means that the con-
clusions of a study, in most cases, are valid only for individuals (or animals) who
are similar to the ones used by the researcher. For example, if two different types
of counseling techniques are compared and found to differ in terms of how effective
they are in helping clients clarify their goals, it is imperative that the investigator

EXCERPT 1.4 • Hypotheses

It was expected that for Euro-American women, reduction in weight over 6-mo.
would predict improvement in body satisfaction; while for African-American women,
greater commitment to the exercise program (i.e., greater frequency of exercise)
would predict improvement in body satisfaction, rather than actual weight loss. 
Understanding such relationships might improve weight-loss treatments by enabling
them to be more sensitive to participants’ ethnicities.

Source: Annesi, J. J. (2009). Correlations of changes in weight and body satisfaction for obese
women initiating exercise: Assessing effects of ethnicity. Psychological Reports, 105(3),
1072–1076.
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indicate whether the participants were high school students, adults, patients in a
mental hospital, or whatever. What works for a counselor in a mental hospital may
not work at all for a counselor in a high school (and vice versa).

It is also important for the author to indicate how the participants were obtained.
Were they volunteers? Were they randomly selected from a larger pool of potential
participants? Were any particular standards of selection used? Did the researcher
simply use all members of a certain high school or college class? As seen in
Chapter 5, certain procedures for selecting samples allow results to be generalized
far beyond the specific individuals (or animals) included in the study, whereas other
procedures for selecting samples limit the valid range of generalization.

Excerpt 1.5 comes from our model journal article. Labeled “Participants,” it
was the first portion of the article’s method section. The paragraph in this excerpt
contains the abbreviations for three statistical concepts: n, M, and SD. Each of these
is discussed in Chapter 2.

EXCERPT 1.5 • Participants

This study was based on data from the Euro-American and African American par-
ticipants in an investigation published in 2008 (i.e., Annesi & Whitaker, 2008) that
did not consider possible differences associated with ethnicities. Data from other
ethnic groups (6% of the original sample) were not analyzed within this research.
The women volunteered based on a newspaper solicitation for an exercise and
nutrition education program for obese (Body Mass Index 30) women. Informed
consent and a release form from a physician were required to participate. The Euro-
American and African-American participants did not signifi-
cantly differ on age (overall yr., ) or Body Mass Index (overall

).

Source: Annesi, J. J. (2009). Correlations of changes in weight and body satisfaction for obese
women initiating exercise: Assessing effects of ethnicity. Psychological Reports, 105(3),
1072–1076.

M = 36.6 kg>m2, SD = 5.1
SD = 10.3M = 43.4

(n = 79)(n = 97)

Ú

Materials

This section of a journal article is normally labeled in one of five ways: materials,
equipment, apparatus, instruments, or measures. Regardless of its label, this
part of the article contains a description of the things (other than the participants)
used in the study. The goal here, as in other sections that fall under the method head-
ing, is to describe what was done with sufficient clarity so others could replicate the
investigation to see if the results remain the same.

Suppose, for example, that a researcher conducts a study to see if males differ
from females in the way they evaluate various styles of clothing. To make it possible
for others to replicate this study, the researcher must indicate whether the participants
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saw actual articles of clothing or pictures of clothing (and if pictures, whether they
were prints or slides, what size they were, and whether they were in color), whether
the clothing articles were being worn when observed by participants (and if so, who
modeled the clothes), what specific clothing styles were involved, how many arti-
cles of clothing were evaluated, who manufactured the clothes, and all other rele-
vant details. If the researcher does not provide this information, it is impossible for
anyone to replicate the study.

Often, the only material involved is the measuring device used to collect data.
Such measuring devices—whether of a mechanical variety (e.g., a stopwatch), an
online variety, or a paper-and-pencil variety (e.g., a questionnaire)—ought to be
described very carefully. If the measuring device is a new instrument designed
specifically for the study being summarized, the researcher typically reports evi-
dence concerning the instrument’s technical psychometric properties. Generally, the
author accomplishes this task by discussing the reliability and validity of the scores
generated by using the new instrument.1 Even if an existing and reputable measur-
ing instrument has been used, the researcher ought to tell us specifically what
instrument was used (by indicating form, model number, publication date, etc.).
One must know such information, of course, before a full replication of the study
could be attempted. In addition, the researcher ought to pass along reliability and
validity evidence cited by those who developed the instrument. Ideally, the authors
ought to provide their own evidence as to the reliability and validity of scores used
in their study, even if an existing instrument is used.

Excerpt 1.6 contains the materials section from our model article. The mate-
rials were called measures because the data for this study were gathered by mea-
suring each of the study’s participants in terms of three variables: body mass index
(BMI), body satisfaction, and frequency of exercise.

1In Chapter 4, we consider the kinds of evidence researchers usually offer to document their instruments’
technical merit.

EXCERPT 1.6 • Materials

Body Mass Index is the ratio of the body weight to height (kg/m2). It was calculated
using a recently calibrated scale and stadiometer. Exercise session attendance was the total
number of exercise sessions completed over the 6 mo. study. Exercise sessions completed
were recorded electronically through a computer attached to the cardiovascular exercise
apparatus available to participants. Exercise completed outside of study facilities was
recorded by participants at a kiosk near the exercise area, or through the Internet. The
method was indicated to be valid through strong significant correlations previously
found with changes of several measures of cardiorespiratory function (Annesi, 2000).

Body Areas Satisfaction, a scale of the Multidimensional Body-self Relations
Questionnaire (Cash, 1994), is used to measure satisfaction with areas of one’s body,
e.g., lower torso (buttocks, hips, thighs, legs) weight. It requires responses to five
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This section of the research report contains several important statistical terms
and numbers. To be more specific, Excerpt 1.6 contains four technical terms (valid,
significant correlations, internal consistency, and test–retest reliability) and three
numbers (.73, .74, and .79). In Chapter 4, we focus our attention on these and other
measurement-related concepts and numerical summaries.

In most empirical studies, the dependent variable is closely connected to the
measuring instrument used to collect data. In fact, many researchers operationally
define the dependent variable as being equivalent to the scores earned by people
when they are measured with the study’s instrument. Although this practice is wide-
spread (especially among statistical consultants), it is not wise to think that depen-
dent variables and data are one and the same.

Although there are different ways to conceptualize what a dependent variable
is, this simple definition is useful in most situations: a dependent variable is simply
a characteristic of the participants that (1) is of interest to the researcher; (2) is not
possessed to an equal degree, or in the same way, by all participants; and (3) serves
as the target of the researcher’s data-collection efforts. Thus, in a study conducted to
compare the intelligence of males and females, the dependent variable is intelligence.

In the study associated with our model article, there are several variables of
concern to the researchers: BMI, body satisfaction, frequency of exercise, and ethnic-
ity. In one sense, all four of these variables were dependent variables. As discussed
in other chapters of this book (Chapters 10 through 15), sometimes a particular sta-
tistical analysis causes a given dependent variable to assume the role of an indepen-
dent variable when data are analyzed. For example, ethnicity is considered as an
independent variable in our model study when the researchers analyze their data to
assess their main hypothesis (about the connection between ethnicity and each of the
other three variables). For now, do not worry about this “role-reversal” when depen-
dent variables become independent variables. I assure you that this potentially con-
fusing labeling of variables becomes fully clear in Chapters 10–15.

Procedure

How the study was conducted is explained in the procedure section of the journal
article. Here, the researcher explains what the participants did—or what was done

items anchored by 1: Very dissatisfied and 5: Very satisfied. Internal consistency for
women was reported as .73, and test–retest reliability was .74 (Cash, 1994). Internal
consistency for the present sample was .79. Consistent with previous research
(Jakicic, Wing, & Winters-Hart, 2002), change (mean difference) scores were
calculated by subtracting scores at baseline from scores at Month 6.

Source: Annesi, J. J. (2009). Correlations of changes in weight and body satisfaction for obese
women initiating exercise: Assessing effects of ethnicity. Psychological Reports, 105(3),
1072–1076.

EXCERPT 1.6 • (continued)
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to them—during the investigation. Sometimes an author even includes a verbatim
account of instructions given to the participants.

Remember that the method section is included to permit a reader to replicate a
study. To accomplish this desirable goal, the author must outline clearly the procedures
that were followed, providing answers to questions such as (1) Where was the study
conducted? (2) Who conducted the study? (3) In what sequence did events take
place? and (4) Did any of the subjects drop out prior to the study’s completion? (In
Chapter 5, we will see that subject dropout can cause the results to be distorted.)

Excerpt 1.7 is the procedure section from our model article. Even though this
section is only one paragraph in length, it provides information regarding the dura-
tion of the study, how and where data were collected, and what kinds of instruction
were given to the participants. In addition, the researcher points out (in the first sen-
tence) where we can find a more expanded explanation of the study’s procedure.

EXCERPT 1.7 • Procedure

A more detailed description of procedures is presented elsewhere (Annesi & Whitaker,
2008). Briefly, participants were provided access to YMCA wellness centers in the
Atlanta, Georgia, area and given orientations to a variety of cardiovascular exercise
equipment and areas for walking and running. Assignment to treatment conditions
that emphasized either behavioral support or educational approaches to exercise was
random. The behavioral support condition stressed the use of goal setting, progress
tracking, and self-regulatory skills such as cognitive restructuring and self-reward.
The educational condition stressed the need for regular exercise and knowledge of
related physiological principles. All participants, however, were provided six stan-
dardized nutrition education sessions, and were assigned to three cardiovascular 
exercise sessions per week that progressed to 30 min. within 10 wk. Instructions on
how to record exercise sessions inside the YMCA via the computer provided, and
outside of the YMCA via the Internet, were given. To minimize biasing, measure-
ments were made in a private area at baseline and Month 6 by exercise specialists
unfamiliar to the participants.

Source: Annesi, J. J. (2009). Correlations of changes in weight and body satisfaction for obese
women initiating exercise: Assessing effects of ethnicity. Psychological Reports, 105(3),
1072–1076.

Statistical Plans

Most research reports contain a paragraph (or more) devoted to the plans for statis-
tically analyzing the study’s data. In some reports, this information is presented near
the end of the method section; in other reports, a discussion of the statistical plan-
of-attack is positioned at the beginning of the report’s results section. Excerpt 1.8,
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which comes from our model journal article, highlights important features of the
researcher’s statistical plans. Here, as in most research reports, some, but not all, of
those plans are delineated.

Although Excerpt 1.8 is quite brief, it contains six statistical concepts that
were exceedingly important to the researcher’s plan for analyzing the study’s data:
statistical significance, .05, two-tailed, a priori power analysis, effect size, and
statistical power of .80. We consider these concepts in Chapters 7 and 8. For now,
let me simply say that this particular researcher deserves high marks for conduct-
ing a power analysis to determine how many participants were needed in each of
the study’s comparison groups.

Results

There are three ways in which the results of an empirical investigation are reported.
First, the results can be presented within the text of the article—that is, with only
words. Second, they can be summarized in one or more tables. Third, the findings
can be displayed by means of a graph (technically called a figure). Not infrequently,
a combination of these mechanisms for reporting results is used to help readers gain
a more complete understanding of how the study turned out. In Excerpt 1.9, we see
that the author of our model article presented his results in two paragraphs of text.

a =

EXCERPT 1.8 • Statistical Plans

An intention-to-treat design was incorporated where data missing at Month 6 was
replaced by baseline scores (Gadbury, Coffey, & Allison, 2003). Statistical signifi-
cance was set at (two-tailed). An a priori power analysis suggested that 64
participants per group were required to detect a medium effect size at the statistical
power of .80.

Source: Annesi, J. J. (2009). Correlations of changes in weight and body satisfaction for obese
women initiating exercise: Assessing effects of ethnicity. Psychological Reports, 105(3),
1072–1076.

a = .05

EXCERPT 1.9 • Results

Exercise attendance did not significantly differ between the Euro-American and
African-American women The mean number of exercise
sessions attended per week was 2.07 GLM mixed-model repeated
measures analysis of variance indicated no significant difference in Body Mass
Index scores between groups Changes in Body
Mass Index over 6 mo. were significant (F1,174 = 41.01, p 6 .001; h2 = .19);

(F1,174 = 3.29, p = .07; h2 = .02).

(SD = 0.63).
(t174 = 1.66, p = .10).

(continued )
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Excerpt 1.9 contains a slew of statistical terms, abbreviations, and numerical
results. If you find yourself unable, at this point, to make much sense out of the
material presented in Excerpt 1.9, do not panic or think that this statistical presen-
tation is beyond your reach. Everything in this excerpt is considered in Chapters 2,
3, 7 through 10, and 14. By the time you finish reading those chapters, you will be
able to look again at Excerpt 1.9 and experience no difficulty deciphering the sta-
tistically based results of this investigation.

Although the results section of a journal article contains some of the most (if not
the most) crucial information about the study, readers of the professional literature
often disregard it, because the typical results section is loaded with statistical terms
and notation not used in everyday communication. Accordingly, many readers of
technical research reports simply skip the results section because it seems as if it
came from another planet.

If you are to function as a discerning “consumer” of journal articles, you must
develop the ability to read, understand, and evaluate the results provided by authors.
Those who choose not to do this are forced into the unfortunate position of uncrit-
ical acceptance of the printed word. Researchers are human, however, and they
make mistakes. Unfortunately, the reviewers who serve on editorial boards do not
catch all of these errors. As a consequence, there is sometimes an inconsistency be-
tween the results discussed in the text of the article and the results presented in the
tables. At times, a researcher uses an inappropriate statistical test. More often than
you would suspect, the conclusions drawn from the statistical results extend far be-
yond the realistic limits of the actual data that were collected.

however, the change did not significantly differ by group. There was no significant
difference in Body Areas Satisfaction scores between groups 

Changes in Body Areas Satisfaction were significant
however, the changes did not significantly

differ by group.
For the Euro-American women, change in Body Mass Index was significantly

correlated with change in Body Areas Satisfaction, and exercise session
attendance was significantly correlated with change in Body Mass
Index. There was no significant correlation between exercise session attendance and
change in Body Areas Satisfaction For the African-American women,
change in Body Mass Index was not significantly correlated with change in Body
Areas Satisfaction Exercise session attendance was, however, signifi-
cantly correlated with both change in Body Mass Index and change in
Body Areas Satisfaction 

Source: Annesi, J. J. (2009). Correlations of changes in weight and body satisfaction for obese
women initiating exercise: Assessing effects of ethnicity. Psychological Reports, 105(3),
1072–1076.

(r = .23).
(r = - .46)

(r = - .02).

(r = .17).

(r = - .41)
(r = - .36)

p 6 .001; h2 = .35);(F1,174 = 95.93,
h2 = .003). p = .31;

(F1,174 = 1.03,

EXCERPT 1.9 • (continued)
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You do not have to be a sophisticated mathematician in order to understand
and evaluate the results sections of most journal articles. However, you must be-
come familiar with the terminology, symbols, and logic used by researchers. This
text was written to help you do just that.

Look at Excerpt 1.9 once again. The text material included in this excerpt is
literally packed with information intended to help you. Unfortunately, many readers
miss out on the opportunity to receive this information because they lack the skills
needed to decode what is being communicated or are intimidated by statistical
presentations. One of my goals in this book is to help readers acquire (or refine)
their decoding skills. In doing this, I hope to show that there is no reason for anyone
to be intimidated by what is included in technical research reports.

Discussion

The results section of a journal article contains a technical report of how the statis-
tical analyses turned out, whereas the discussion section is usually devoted to a
nontechnical interpretation of the results. In other words, the author normally uses
the discussion section to explain what the results mean in regard to the central pur-
pose of the study. The statement of purpose, which appears near the beginning of
the article, usually contains an underlying or obvious research question; the discus-
sion section ought to provide a direct answer to that question.

In addition to telling us what the results mean, many authors use this section
of the article to explain why they think the results turned out the way they did. 
Although such a discussion occasionally is found in articles where the data support
the researchers’ hunches, authors are much more inclined to point out possible rea-
sons for the obtained results when those results are inconsistent with their expecta-
tions. If one or more of the scores turn out to be highly different from the rest, the
researcher may talk about such serendipitous findings in the discussion section.

Sometimes an author uses the discussion section to suggest ideas for further
research studies. Even if the results do not turn out the way the researcher anticipated,
the study may be quite worthwhile in that it might stimulate the researcher (and oth-
ers) to identify new types of studies that need to be conducted. Although this form of
discussion more typically is associated with unpublished master’s theses and doctoral
dissertations, it occasionally is encountered in published forms of research reports.

It should be noted that some authors use the term conclusion rather than dis-
cussion to label this part of the research report. These two terms are used inter-
changeably. It is unusual, therefore, to find an article that contains both a discussion
section and a conclusion section.

Excerpt 1.10 contains the discussion section that appeared in our model jour-
nal article. Notice how the author first provides an answer to the central research
question; then, there is a lengthy discussion of possible reasons for why the results
turned out as they did.
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There are two additional things to note about Excerpt 1.10, both of which are
admirable features of this research report. In the next-to-last sentence of the discus-
sion, the author suggests how his finding might be useful to practitioners. Then, in
the very last sentence, the researcher points out that his research “clearly requires
replication and extension.” Other researchers should follow this good example of
discussing implications and the need for replication.

Too often, research reports give the impression that the investigators who pre-
pared those reports view their research as having proven something is true for every-
one, everywhere, at all times and under all conditions. When you encounter such
claims, downgrade your evaluation of the research report. However, upgrade your
opinion of researchers who call for others to conduct new studies to see if initial
findings can be replicated.

References

A research report normally concludes with a list of the books, journal articles, and
other source material referred to by the author. Most of these items were probably
mentioned by the author in the review of the literature positioned near the begin-
ning of the article. Excerpt 1.11 is the references section of our model article.

The references can be very helpful to you if you want to know more about 
the particular study you are reading. Journal articles and convention presentations are
usually designed to cover one particular study or a narrowly defined area of a subject.

EXCERPT 1.10 • Discussion

As expected, change in Body Mass Index was significantly related to change in Body
Areas Satisfaction for only the Euro-American women. It is possible that concern
about body image in this ethnic group prompted more frequent self-weighing. Knowl-
edge of weight change may, thus, have served as a marker for satisfaction with one’s body.
Although improvements in barriers and task self-efficacy were not directly measured,
it is possible that the association of exercise session attendance and change in Body
Areas Satisfaction for the African American women were linked to perceptions of
competence (in maintaining a program of exercise) for them. It should be acknowl-
edged that this is speculative, and direct measurement will be required for substantiation.
Possibly, weight management for Euro-American women should focus on measured,
manageable progress, while for African-American women the focus should be on
building self-regulatory skills required to maintain weight-loss behaviors. Although
this research clearly requires replication and extension, and was limited as a field
design, analysis suggested that accounting for such ethnic differences when assessing
psychological variables possibly related to weight loss in women is much needed.

Source: Annesi, J. J. (2009). Correlations of changes in weight and body satisfaction for obese
women initiating exercise:Assessing effects of ethnicity. Psychological Reports, 105(3), 1072–1076.
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Unlike more extended writings (e.g., monographs, or books), they include only a por-
tion of the background information and only partial descriptions of related studies that
would aid the reader’s comprehension of the study. Reading books and articles listed
in the references section provides you with some of this information and probably
gives you a clearer understanding as to why and how the author conducted the partic-
ular study you have just read. Before hunting down any particular reference item, it
is a good idea to look back into the article to reread the sentence or paragraph con-
taining the original citation to give you an idea of what is in each referenced item.

Notes

Near the beginning or end of their research reports, authors sometimes present one or
more notes. In general, such notes are used by authors for three reasons: (1) to thank
others who helped them with their study or with the preparation of the technical report,
(2) to clarify something that was discussed earlier in the journal article, and (3) to 
indicate how an interested reader can contact them to discuss this particular study or
other research that might be conducted in the future. In our model journal article, there
was a single note containing the author’s postal address and email address.

Two Final Comments

As we come to the end of this chapter, consider two final points. One concerns the
interconnectedness among the different components of the research summary. The
other concerns the very first of those components: the abstract.

In this chapter, we dissected a journal article that summarizes a research study
focused on weight loss among obese women. In looking at this particular article
section by section, you may have gotten the impression that each of the various
parts of a research article can be interpreted and evaluated separately from the other
sections that go together to form the full article. You should not leave this chapter
with that thought, because the various parts of a well-prepared research report are
tied together to create an integrated whole.

In our model journal article, the researchers had two principal hypotheses, shown
in Excerpt 1.4. Those same hypotheses are the focus of the second paragraph in the re-
search report’s Results section (see Excerpt 1.9), the entirety of the Discussion section
(see Excerpt 1.10), and the first two sentences of the abstract (see Excerpt 1.1). The
author who prepared this journal article deserves high marks for keeping focused on
the study’s central hypotheses and for showing a clear connection between those hy-
potheses and his findings. Unfortunately, many journal articles display very loose (and
sometimes undetectable) connections between the component parts of their articles.

My final comment takes the form of a warning. Simply stated, do not read an
abstract and then think that you understand the study well enough to forgo reading
the entire research report. As was stated earlier, an abstract gives you a thumbnail
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sketch of a study, thus allowing you to decide whether the article fits into your area
of interest. If it does not, then you rightfully can move on. However, if an abstract
makes it appear that the study is, in fact, consistent with your interests, you must
then read the entire article for two reasons. First, the results summarized in the
abstract may not coincide with the information that appears in the results section of
the full article. Second, you cannot properly evaluate the quality of the results—
even if they are consistently presented in the abstract, results, and discussion sec-
tions of the article—without coming to understand who or what was measured, how
measurements were taken, and what kinds of statistical procedures were applied.

If you read an abstract (but nothing else in the article) and then utilize the
abstract’s information to bolster your existing knowledge or guide your own
research projects, you potentially harm rather than help yourself, because the find-
ings reported in some abstracts are simply not true. To be able to tell whether an
abstract can be trusted, you must read the full research report. The rest of this book
has been written to help make that important task easier for you.

Abstract
Apparatus
Background
Conclusion
Dependent variable
Discussion
Equipment
Figure
Instruments
Introduction
Hypotheses

Review Terms

Materials
Measures
Method
Notes
Participant
Procedure
References
Results
Statement of purpose
Subject
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1. An important email message sent by the author at the beginning of the semes-
ter to students enrolled in his statistics and research course.

2. An interactive online quiz (with immediate feedback provided) covering
Chapter 1.

3. Gary Gildner’s wonderful poem entitled “Statistics.”
4. Five misconceptions about the content of Chapter 1.

To access the chapter outline, practice tests, weblinks, and flashcards, visit the com-
panion website at http://www.ReadingStats.com.

Review Questions and Answers begin on page 531.
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In this chapter, we consider descriptive techniques designed to summarize data on
a single dependent variable. These techniques are often said to be univariate in 
nature because only one variable is involved. (In Chapter 3, we look at several tech-
niques designed for the bivariate case—that is, for situations in which data have
been collected on two dependent variables.)

We begin this chapter by looking at several ways data can be summarized
using picture techniques, including frequency distributions, stem-and-leaf displays,
histograms, and bar graphs. Next, the topic of distributional shape is considered;
here, you learn what it means when a data set is said to be normal, skewed, bimodal,
or rectangular. After that, we examine the concept of central tendency and various
methods used to represent a data set’s average score. We then turn our attention to
how researchers usually summarize the variability, or spread, within their data sets;
these techniques include four types of range, the standard deviation, and the variance.
Finally, we consider two types of standard scores: z and T.

Picture Techniques

In this section, we consider some techniques for summarizing data that produce a
picture of the data. I use the term picture somewhat loosely, because the first tech-
nique really leads to a table of numbers. In any event, our discussion of descriptive
statistics begins with a consideration of three kinds of frequency distributions.

Frequency Distributions

A frequency distribution shows how many people (or animals or objects) were
similar in the sense that, measured on the dependent variable, they ended up in the

C H A P T E R 2
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same category or had the same score. Two kinds of frequency distributions are often
seen in published journal articles: simple frequency distributions and grouped fre-
quency distributions.

In Excerpt 2.1, we see an example of a simple frequency distribution, also
called an ungrouped frequency distribution. The data here come from a study 
focused on the physical activity of school children aged 9 through 13. A brief self-
report survey was completed by students in seven randomly selected schools in a
large city in Florida, with one question asking the children to indicate how many
days during the past week they participated in a game or sport, for at least 20 minutes,
that caused them to breathe hard or sweat. This question’s response options are
shown in the left column of Excerpt 2.1. The numbers in the right column indicate
how many students got each possible score. (Thus, there were 445 students who
said they exercised vigorously seven days a week, 174 who said they did this six
days a week, and so on.) The numbers in parentheses in the right-hand column
indicate the percent of the full group that ended up with each possible option when
answering the question about vigorous exercise.

Descriptive Statistics 19

EXCERPT 2.1 • Simple Frequency Distribution

TABLE 2 Number of Days per Week Engaged in Vigorous–Intensity Physical
Activity (VPA), Students (N � 1,407) in Grades 5 through 7, Sarasota County,
Florida.

No. of Days per Week
Engaged in VPA No. of Students (%)

7 445 (31.6)
6 174 (12.4)
5 214 (15.2)
4 191 (13.6)
3 145 (10.3)
2 107 (7.6)
1 75 (5.3)
0 56 (4.0)

Source: McDermott, R. J., Nickelson, J., Baldwin, J. A., Bryant, C. A., Alfonso, M., Phillips,
L. M., et al. (2009). A community–school district–university partnership for assessing physical
activity of tweens. Preventing Chronic Disease. 6(1), http://www.cdc.gov/pcd/issues/2009/
jan/07_0243.htm.

Slight variations of Excerpt 2.1 appear often in research reports. The left column
may correspond to a categorical variable, such as blood type, rather than anything
that’s quantitative. Also, the word frequency (or its abbreviation, f ) might be used

http://www.cdc.gov/pcd/issues/2009/jan/07_0243.htm
http://www.cdc.gov/pcd/issues/2009/jan/07_0243.htm
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to label the right column of numbers. Finally, the total number of individuals is
sometimes indicated by a single number, labeled N, positioned beneath the right
column of numbers.

In Excerpt 2.2, we see an example of a grouped frequency distribution. This
frequency distribution shows the ages of a large group of individuals who, over a
20-year period, had a coronary angiogram at the researchers’ hospital. Excerpt 2.2
actually contains three frequency distributions, one for each gender and one for the
combined group of males and females.

EXCERPT 2.2 • Grouped Frequency Distribution

TABLE 1 Age Distribution of the Study Subjects

Age Group (years) Men (n) Women (n) Total (N)

97 14 111
31–40 559 61 620
41–50 2216 345 2561
51–60 4982 1287 6269
61–70 4345 1595 5940
71–80 1251 511 1762

44 16 60

Total 13494 3829 17323

780

631

Source: Giannoglou, G. D., Antoniadis, A. P., Chatzizisis, Y. S., & Louridas, G. E. (2010). Dif-
ference in the topography of atherosclerosis in the left versus right coronary artery in patients
referred for coronary angiography. BMC Cardiovascular Disorders, 10(26), 1–6.

The table in Excerpt 2.2 is a grouped frequency distribution because the far
left column has, on each row, a group of possible ages. This grouping of the patients
into the seven age categories—into what are technically called class intervals—
allows the data to be summarized in a more compact fashion. If the data in this 
excerpt had been presented in an ungrouped frequency distribution, with the far left
column set up to reflect individual ages (e.g., 31, 32, 33), at least 52 rows would
have been needed, and perhaps more than that, depending on the ages of the youngest
and oldest patients.

Stem-and-Leaf Display

Although a grouped frequency distribution provides information about the scores in
a data set, it carries with it the limitation of loss of information. The frequencies tell
us how many data points fell into each interval of the score continuum, but they do
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not indicate, within any interval, how large or small the scores were. Hence, when
researchers summarize their data by moving from a set of raw scores to a grouped
frequency distribution, the precision of the original scores is lost.

A stem-and-leaf display is like a grouped frequency distribution that con-
tains no loss of information. To achieve this objective, the researcher first sets up
score intervals on the left side of a vertical line. These intervals, collectively called
the stem, are presented in a coded fashion by showing the lowest score of each in-
terval. Then, to the right of the vertical line, the final digit is given for each observed
score that fell into the interval being focused on. An example of a stem-and-leaf dis-
play is presented in Excerpt 2.3. In this excerpt, the stem numbers are separated
from the leaf numbers by a vertical set of asterisks rather than an actual line.

EXCERPT 2.3 • Stem-and-Leaf Display

Frequency Stem & Leaf

1.00 2 * 2
8.00 2 * 56667899

19.00 3 * 0001122223333333444
13.00 3 * 5567788899999
10.00 4 * 0000112344
17.00 4 * 55555666677888899
9.00 5 * 000124444
4.00 5 * 5567

Stem width: 10
Each leaf: 1 case(s)

FIGURE 1 Stem and Leaf Plot of Age

Source: Chyung, S. Y. (2007). Age and gender differences in online behavior, self-efficacy, and
academic performance. Quarterly Review of Distance Education, 8(3), 213–222.

To make sense of this stem-and-leaf display, we must do two things. First, we
deal with the stem. Near the bottom of Excerpt 2.3, there is a note indicating the
stem width is 10. This means we should multiple each stem number by 10 as we in-
terpret the data. Thus, the stem numbers actually range from 20 to 50, not 2 to 5.
Second, we combine stem with leaf. On the top row, there is a 2 on the left (stem)
side of the column of asterisks and a 2 on the right (leaf) side. This indicates that
there was one person in the group who was 22 years old. (We get 22 by adding the
leaf number of 2 to the true stem number of 20.) The second row has eight digits
on the leaf side, thus indicating that eight people fell into this row’s interval (25–29).
Using both stem and leaf from this row, we see that one of those eight people was
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25 years old, three were 26, one was 27, one was 28, and two were 29. All other
rows of this stem-and-leaf display are interpreted in the same way.

Notice that the individual ages are on display in the stem-and-leaf display
shown in Excerpt 2.3. There is, therefore, no loss of information. Take another look
at Excerpt 2.2, where a grouped frequency distribution was presented. Because of
the loss of information associated with grouped frequency distributions, you can-
not tell how old the youngest and oldest patients were, what specific ages appeared
within any interval, or whether gaps exist inside any intervals.

Histograms and Bar Graphs

In a histogram, vertical columns (or thin lines) are used to indicate how many times
any given score appears in the data set. With this picture technique, the baseline
(i.e., the horizontal axis) is labeled to correspond with observed scores on the de-
pendent variable whereas the vertical axis is labeled with frequencies.1 Then,
columns (or lines) are positioned above each baseline value to indicate how often
each of these scores was observed. Whereas a tall bar indicates a high frequency of
occurrence, a short bar indicates that the baseline score turned up infrequently.

A bar graph is almost identical to a histogram in both form and purpose. The
only difference between these two techniques for summarizing data concerns the
nature of the dependent variable that defines the baseline. In a histogram, the hori-
zontal axis is labeled with numerical values that represent a quantitative variable.
In contrast, the horizontal axis of a bar graph represents different categories of a
qualitative variable. In a bar graph, the ordering of the columns is quite arbitrary,
whereas the ordering of the columns in a histogram must be numerically logical.

In Excerpt 2.4, we see an example of a histogram. Notice how this graph al-
lows us to quickly discern that about 80 percent of the 1,127 individuals in episodic
migraine group were experiencing severe headaches more than once every three
months but not on a weekly basis. Also notice that the columns must be arranged
as they are because the variable on the baseline is clearly quantitative in nature.

An example of a bar graph is presented in Excerpt 2.5. Here, the order of the
bars is completely arbitrary. The short bars could have been positioned on the left
with the taller bars positioned on the right, or the bars could have been arranged al-
phabetically based on the labels beneath the bars.

Frequency Distributions in Words

Researchers sometimes present the information of a frequency distribution in words
rather than in a picture. Excerpt 2.6 illustrates how this can be done for a grouped
frequency distribution.

1Technically speaking, the horizontal and vertical axes of any graph are called the abscissa and ordinate,
respectively.
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EXCERPT 2.4 • Histogram

Source: Radat, F., Lantéri-Minet, M., Nachit-Ouinekh, F., Massiou, H., Lucas, C., Pradalier,
A., et al. (2008). The GRIM2005 study of migraine consultation in France: III: Psychologi-
cal features of subjects with migraine. Cephalalgia, 29, 338–350.
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EXCERPT 2.5 • Bar Graph

Source: Faseru, B., Cox, L. S., Bronars, C. A., Opole, I., Reed, G. A., Mayo, M. S., et al.
(2010). Design, recruitment, and retention of African-American smokers in a pharmacokinetic
study. BMC Medical Research Methodology, 10, 1–8.
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In describing data gathered from human research participants, animal subjects,
or inanimate objects, many researchers summarize their data by presenting only a
mean and a standard deviation.2 Few researchers provide descriptive summaries like
we have seen in Excerpts 2.1 through 2.6. This is unfortunate because such picture
techniques, as you can see, allow us to get a good “feel” for a researcher’s data.

Distributional Shape

If researchers always summarized their quantitative data using one of the picture
techniques just considered, then you could see whether the observed scores tended
to congregate at one (or more) point along the score continuum. Moreover, a fre-
quency distribution, a stem-and-leaf display, a histogram, or a bar graph allow you
to tell whether a researcher’s data are symmetrical. To illustrate this nice feature,
take another look at Excerpt 2.1. That frequency distribution shows nicely that (1)
the children varied widely in terms of how frequently they engaged in vigorous
physical activity (VPA) each week, (2) over half of the children were involved in
this kind of activity at least five days a week, and (3) less than 10 percent of the
children engaged in VPA just once a week or not at all.

Unfortunately, pictures of data sets do not appear in journal articles very often
because they are costly to prepare and because they take up a large amount of space.
By using some verbal descriptors, however, researchers can tell their readers what
their data sets look like. To decipher such messages, you must understand the
meaning of a few terms that researchers use to describe the distributional shape
of their data.

If the scores in a data set approximate the shape of a normal distribution,
most of the scores are clustered near the middle of the continuum of observed
scores, and there is a gradual and symmetrical decrease in frequency in both direc-
tions away from the middle area of scores. Data sets that are normally distributed
are said to resemble a bell-shaped curve, because a side drawing of a bell begins
low on either side and then bulges upward in the center. In Excerpts 2.2 and 2.4, we
see two sets of data that resemble, somewhat, a normal distribution.

2We consider the mean and the standard deviation later in this chapter.

EXCERPT 2.6 • A Frequency Distribution Described in a Sentence

The respondents ranged in age from 21–25 (14%), 26–30 (18%), 31–35 (16%),
36–40 (20%), 41–45 (10%), 46–50 (12%), 51–56 (8%), to 56–50 years (2%).

Source: Heinrichs, J. H., & Lim, J. (2010). Information literacy and office tool competencies:
A benchmark study. Journal of Education for Business, 85(3), 153–164.
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In skewed distributions, most of the scores end up being high or low, with a
small percentage of scores strung out in one direction away from the majority. Skewed
distributions, consequently, are not symmetrical. If the tail of the distribution (formed
by the small percentage of scores strung out in one direction) points toward the upper
end of the score continuum, the distribution is said to be positively skewed; if the tail
points toward the lower end of the score continuum, the term negatively skewed
applies. In Excerpt 2.7, we see an example of a negatively skewed distribution.

EXCERPT 2.7 • Negative Skewness

Source: Sloma, A., Backlund, L. G., Strender, L-E., & Skånér, Y. (2010). Knowledge of stroke
risk factors among primary care patients with previous stroke of TIA: A questionnaire study.
BMC Family Practice, 11(47), 1–10.

P
er

ce
n

ta
g

e

2.2

0.6

2.8

1.7
2.2

5.0

3.9

6.6

8.8

7.7

22.5

13.7
14.3

8.2

25

20

15

10

5

0
0 1 2 3 4 5 6

Number of Riskfactors Identified
7 8 9 10 11 12 13

FIGURE 2 Proportion of patients who could correctly identify different numbers
of stroke/TIA risk factors.

If the scores tend to congregate around more than one point along the score
continuum, the distribution is said to be multimodal in nature. If there are two such
places where scores are grouped together, we could be more specific and say that
the data are distributed in a bimodal fashion. If scores are congregated at three dis-
tinct points, we use the term trimodal.3 To see a bimodal distribution, take another

3Distributions having just one “hump” are said to be unimodal in nature.
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look at the stem-and-leaf display in Excerpt 2.3. The primary mode is the 30–34 age
category. There is a secondary mode, however, represented by the individuals with
ages between 45 and 49.

If scores are fairly evenly distributed along the score continuum without any
clustering at all, the data set is said to be rectangular (or uniform). Such a distri-
butional shape would probably show up if someone (1) asked each person in a large
group to indicate his or her birth month, and (2) created a histogram with 12 bars,
beginning with January, arranged on the baseline. The bars making up this his-
togram would probably be approximately the same height. Looked at collectively,
the bars making up this histogram would resemble a rectangle.

In Excerpts 2.8 through 2.10, we see a few examples of how researchers
sometimes go out of their way to describe the distributional shape of their data sets.
Such researchers should be commended for indicating what their data sets look like,
because these descriptions help others understand the nature of the data collected.

EXCERPTS 2.8–2.10 • References to Different Distributional Shapes

Preliminary analyses revealed that the data were normally distributed.

Source: de la Sablonnière, R., Tougas, F., & Perenlei, O. (2010). Beyond social and temporal
comparisons: The role of temporal inter-group comparisons in the context of dramatic social
change in Mongolia. Journal of Social Psychology, 150(1), 98–115.

The sample’s actual range of scores on the Emotional Social Support scale covered
the entire theoretical range of the scale (6–30), but the distribution was extremely
negatively skewed. . . .

Source: Rosenthal, B. S., Wilson, W. C., & Futch, V. A. (2010). Traumatic, Protection, and distress
in late adolescence: A multi-determinant approach. Adolescence, 44(176), 693–703.

The histograms of the score distributions [for] both the INSPIRIT and coping religion
scales [indicated] slight tendencies toward bimodal distributions.

Source: Lowis, M. J., Edwards, A. C., & Burton, M. (2010). Coping with retirement: Well-being,
health, and religion. Journal of Psychology, 143(4), 427–448.

As we have seen, two features of distributional shape are modality and skew-
ness. A third feature is related to the concept of kurtosis. This third way of looking
at distributional shape deals with the possibility that a set of scores can be non-normal
even though there is only one mode and even though there is no skewness in the
data. This is possible because there may be an unusually large number of scores at
the center of the distribution, thus causing the distribution to be overly peaked.
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Or, the hump in the middle of the distribution may be smaller than is the case in nor-
mal distributions, with both tails being thicker than in the famous bell-shaped curve.

When the concept of kurtosis is discussed in research reports, you may encounter
the terms leptokurtic and platykurtic, which denote distributional shapes that are
more peaked and less peaked (as compared with the normal distribution), respectively.
The term mesokurtic signifies a distributional shape that is neither overly peaked
nor overly flat.

As illustrated in Excerpts 2.7 through 2.10, researchers can communicate
information about distributional shape via a picture or a label. They can also com-
pute numerical indices that assess the degree of skewness and kurtosis present in
their data. In Excerpt 2.11, we see a case in which a group of researchers presented
such indices in an effort to help their readers understand what kind of distributional
shape was created by each set of scores that had been gathered.

4Some formulas for computing skewness and kurtosis indices yield a value of for a perfectly normal dis-
tribution. Most researchers, however, use the formulas that give values of zero (to normal distributions) for
both skewness and kurtosis.

+3

EXCERPT 2.11 • Quantifying Skewness and Kurtosis

Internalized and externalized CB mean scores were calculated for each partici-
pant. . . . The distribution of externalized CB mean scores is much less normal
(skewness kurtosis ) relative to the internalized CB mean scores
(skewness kurtosis = ).

Source: Field, N. P., & Filanosky, C. (2010). Continuing bonds, risk factors for complicated
grief, and adjustment to bereavement. Death Studies, 34(1), 1–29.

-0.49= 0.62;
= 6.10= 2.43;

To properly interpret coefficients of skewness and kurtosis, keep in mind three
things. First, both indices turn out equal to zero for a normal distribution.4 Second,
a skewness value lower than zero indicates that a distribution is negatively skewed,
whereas a value larger than zero indicates that a distribution is positively skewed;
a kurtosis value less than zero indicates that a distribution is platykurtic, whereas a
value greater than zero indicates that the distribution is leptokurtic. Finally, although
there are no clear-cut guidelines for interpreting measures of skewness and kurtosis
(mainly because there are different ways to compute such indices), most researchers
consider data to be approximately normal in shape if the skewness and kurtosis val-
ues turn out to be anywhere from to 

Depending on the objectives of the data analysis, a researcher should examine
coefficients of skewness and kurtosis before deciding how to further analyze the
data. If a data set is found to be grossly non-normal, the researcher may opt to do
further analysis of the data using statistical procedures created for the non-normal

+1.0.-1.0
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case. Or, the data can be normalized by means of a formula that revises the value
of each score such that the revised data set represents a closer approximation to the
normal. In Chapters 10–15, we consider examples of both of these options.

Measures of Central Tendency

To help readers get a feel for the data that have been collected, researchers
almost always say something about the typical or representative score in the
group. They do this by computing and reporting one or more measures of cen-
tral tendency. There are three such measures that are frequently seen in the pub-
lished literature, each of which provides a numerical index of the average score
in the distribution.

The Mode, Median, and Mean

The mode is simply the most frequently occurring score. For example, given the
nine scores 6, 2, 5, 1, 2, 9, 3, 6, and 2, the mode is equal to 2. The median is the num-
ber that lies at the midpoint of the distribution of earned scores; it divides the
distribution into two equally large parts. For the set of nine scores just presented,
the median is equal to 3. Four of the nine scores are smaller than 3; four are
larger.5 The mean is the point that minimizes the collective distances of scores
from that point. It is found by dividing the sum of the scores by the number of
scores in the data set. Thus, for the group of nine scores presented here, the mean
is equal to 4.

In journal articles, authors sometimes use abbreviations or symbols when
referring to their measure(s) of central tendency. The abbreviations Mo and Mdn, of
course, correspond to the mode and median, respectively. The letter M always
stands for the mean, even though all three measures of central tendency begin with
this letter. The mean is also symbolized by and 

In many research reports, the numerical value of only one measure of central
tendency is provided. (That was the case with the model journal article presented
in Chapter 1; take a look at Excerpt 1.9 to see which one was used.) Because it is
not unusual for a real data set to be like our sample set of nine scores in that the
mode, median, and mean assume different numerical values; researchers sometimes
compute and report two measures of central tendency, or all three, to help readers
better understand the data being summarized.

In Excerpt 2.12, we see a case where all three averages—the mode, the median,
and the mean—were provided for each of two groups of hospital patients. It is help-
ful to have all three quantitative assessments of the average hospital stay. Together,

m.X

5When there is an even number of scores, the median is a number halfway between the two middle scores
(once the scores are ordered from low to high). For example, if 9 is omitted from our sample set of scores,
the median for the remaining eight scores is 2.5—that is, the number halfway between 2 and 3.
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they paint a more complete picture of the data than would have been the case if only
one had been reported.

The Relative Position of the Mode, Median, and Mean

In a true normal distribution (or in any unimodal distribution that is perfectly sym-
metrical), the values of the mode, median, and mean are identical. Such distribu-
tions are rarely seen, however. In the data sets typically found in applied research
studies, these three measures of central tendency assume different values. As a
reader of research reports, you should know not only that this happens but also how
the distributional shape of the data affects the relative position of the mode, median,
and mean.

In a positively skewed distribution, a few scores are strung out toward the high
end of the score continuum, thus forming a tail that points to the right. In this kind
of distribution, the modal score ends up being the lowest (i.e., positioned farthest to
the left along the horizontal axis), whereas the mean ends up assuming the highest
value (i.e., positioned farthest to the right). In negatively skewed distributions, just
the opposite happens; the mode ends up being located farthest to the right along the
baseline, whereas the mean assumes the lowest value. In Figure 2.1, we see a picture
showing where these three measures of central tendency are positioned in skewed
distributions.

After you examine Figure 2.1, return to Excerpt 2.3 and look at the stem-and-
leaf display that summarizes the ages of 81 individuals. Because the distribution is
not skewed very much, we should expect the mean, the median, and the mode to
end up being somewhat similar. The actual values for these three measures of central
tendency are 39.6, 39.9, and 33.0, respectively.

To see a case where the computed measures of central tendency turn out to be
quite dissimilar, thus implying skewed data, consider again Excerpt 2.12. The mean,
median, and mode for the first group of hospital patients are different from one an-
other; in the second group, the mean and the mode are highly dissimilar (especially
considering the cost of staying overnight in the hospital). To see if you can determine

EXCERPT 2.12 • Reporting Multiple Measures of Central Tendency

It is the opinion of the authors that patients are often needlessly kept in hospital as
inpatients. . . . The mean stay of the cohort patients was 12.9 days (median � 10,
mode � 9), with the mean stay of patients who spent a potentially avoidable night
of 13.7 days (median � 10.5, mode ).

Source: Forde, D., O’Connor, M. B., & Gilligan. (2009). Potentially avoidable inpatient nights
among warfarin receiving patients; an audit of a single university teaching hospital. BMC Research
Notes, 2(41), 1–5.

= 6



30 Chapter 2

Positively Skewed
Distribution

Negatively Skewed
Distribution

Mode

Median

Mean

Mode

Median

Mean

FIGURE 2.1 Location of the Mean, Median, and Mode in Skewed Distributions

the nature of skewness from reported values of central tendency, would you guess
that the two distributions of scores reported in Excerpt 2.12 were positively skewed
or negatively skewed?

In a bimodal distribution, there are two points along the score continuum
where scores tend to pile up. If the distribution is symmetrical, the mean and median
are located halfway between the two modes. In a symmetrical trimodal distribution,
the median and mean assume a value equal to the middle of the three modes. Real
data sets, however, rarely produce symmetrical bimodal or trimodal distributions.
Any asymmetry (i.e., skewness) causes the median to be pulled off center toward
the side of the distribution that has the longer tail—and the mean is pulled even far-
ther in that direction.

With full-fledged rectangular distributions, the mean and median assume a
value halfway between the high and low data points. In such distributions, there is
no mode because all earned scores occur with equal frequency. If the distribution
turns out to be only roughly rectangular, the median and mean are located close
together (and close to the halfway point between the high and low scores), but the
mode could end up anywhere.

Other Measures of Central Tendency

Although the mode, median, and mean are the most popular measures of central
tendency, there are other techniques for summarizing the average score in a data set.
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6For any set of N numbers, the geometric mean is equal to the Nth root of the product of the numbers. Thus,
if our numbers are 2, 2, and 16, the product of the numbers is 64, and the cube root of this product gives us
the geometric mean: 4.

EXCERPT 2.13 • The Geometric Mean

Scalp hair samples, well known as a suitable specimen for monitoring human expo-
sure to mercury, were used in this study. . . . The geometric mean (geomean) rather
than the arithmetic mean was used to represent the hair mercury concentrations.

Source: Ryo, K., Ito, A., Takatori, R., Tai, Y., Tokunaga, J., Arikawa, K., et al. (2010). Correlation
between mercury concentrations in hair and dental amalgam fillings. Anti-Aging Medicine,
7(3), 14–17.

Measures of Variability

Descriptions of a data set’s distributional shape and reports as to the central ten-
dency value(s) help us better understand the nature of data collected by a researcher.
Although terms (e.g., roughly normal) and numbers (e.g., ) help, they are
not sufficient. To get a true feel for the data that have been collected, we must also
be told something about the variability among the scores. Let us consider now the
standard ways that researchers summarize this aspect of their data sets.

The Meaning of Variability

Most groups of scores possess some degree of variability. That is, at least some of
the scores differ (vary) from one another. A measure of variability simply indi-
cates the degree of this dispersion among the scores. If the scores are very similar,
there is little dispersion and little variability. If the scores are very dissimilar, there
is a high degree of dispersion (variability). In short, a measure of variability does
nothing more than indicate how spread out the scores are.

The term variability can also be used to pinpoint where a group of scores
might fall on an imaginary homogeneous–heterogeneous continuum. If the scores
are similar, they are homogeneous (and have low variability). If the scores are dis-
similar, they are heterogeneous (and have high variability).

Even though a measure of central tendency provides a numerical index of
the average score in a group, we must know the variability of the scores to better

M = 67.1

Examples include, the geometric mean, the harmonic mean, and the trimmed mean.
Although you are unlikely to see these measures of central tendency reported very
often, researchers may use them if their scores are extremely asymmetric or if the
high or low scores are of questionable validity. In Excerpt 2.13, we see a case when
the geometric mean is used for these first of these reasons.6
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understand the entire group of scores. For example, consider the following two groups
of IQ scores:

Group I Group II

102 128
99 78

103 93
96 101

In both groups the mean IQ is equal to 100. Although the two groups have the
same mean score, their variability is obviously different. Whereas the scores in the
first group are very homogeneous (low variability), the scores in the second group
are far more heterogeneous (high variability).

The specific measures of variability that we consider next are similar in that
the numerical index is zero if all of the scores in the data set are identical, a small
positive number if the scores vary to a small degree, or a large positive number if
there is a great deal of dispersion among the scores. (No measure of variability, no
matter how computed, can ever turn out equal to a negative value.)

The Range, Interquartile Range, Semi-Interquartile 
Range, and Box Plot

The range is the simplest measure of variability. It is the difference between the
lowest and highest scores. For example, in Group I of the example just considered,
the range is equal to or 7. The range is usually reported by citing the
extreme scores, but sometimes it is reported as the difference between the high and
low scores. When providing information about the range to their readers, authors
usually write out the word Range. Occasionally, however, this first measure of vari-
ability is abbreviated as R.

To see how the range can be helpful when we try to understand a researcher’s
data, consider Excerpts 2.14 and 2.15. Notice in Excerpt 2.14 how information con-
cerning the range allows us to sense that the participants in this study are quite
heterogeneous in terms of age. In contrast, the presentation of just the mean in
Excerpt 2.15 puts us in the position of not knowing anything about how much vari-
ability exists among the parents’ scores. Perhaps it was a very homogeneous group,
with everyone having a near-normal level of marital dissatisfaction. Or, maybe the
group was bimodal, with half the parents highly distressed and the other half not
distressed at all. Unless the range (or some other measure of variability) is provided,
we are completely in the dark as to how similar or different the parents are in terms
of their scores on marital distress.

Whereas the range provides an index of dispersion among the full group of
scores, the interquartile range indicates how much spread exists among the middle
50 percent of the scores. Like the range, the interquartile range is defined as the dis-
tance between a low score and a high score; these two indices of dispersion differ,

103 -  96,
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however, in that the former is based on the high and low scores within the full group
of data points, whereas the latter is based on only half of the data—the middle half.

In any group of scores, the numerical value that separates the top 25 percent
scores from the bottom 75 percent scores is the upper quartile (symbolized by 
Conversely, the numerical value that separates the bottom 25 percent scores from
the top 75 percent scores is the lower quartile 7 The interquartile range is sim-
ply the distance between and Stated differently, the interquartile range is the
distance between the 75th and 25th percentile points.

In Excerpt 2.16, we see a case in which the upper and lower quartiles are pre-
sented. In this excerpt, the values of and give us information as to the disper-
sion among the middle 50 percent of the scores. Using that information along with
that provided by the range, we can tell that the middle half of the individuals are be-
tween 59 and 71 years old, with the oldest one-fourth of the study’s participants
being between 71 and 86, and the youngest one-fourth being between 28 and 59.

Q3Q1

Q1.Q3

(Q1).

Q3).

7The middle quartile, divides any group of scores into upper and lower halves. Accordingly, is always
equal to the median.

Q2Q2,

EXCERPTS 2.14–2.15 • Summarizing Data with and without the Range

Participants ranged in age from 27 to 54; their average age was 42.4.

Source: Wilson, E. K., Dalberth, B. T., Koo, H. P., & Gard, J. C. (2010). Parents’ perspectives
on talking to preteenage children about sex. Perspectives on Sexual & Reproductive Health,
42(1), 56–63.

The parents’ mean score of 49.9 on the Global Marital Distress (dissatisfaction) scale
of the Marital Satisfaction Inventory [turned out] within the normal range, indicating
that these parents were in non-distressed marriages.

Source: Kilmann, P. R., Vendemia, J. M. C., Parnell, M. M., & Urbaniak, G. C. (2009). Par-
ent characteristics linked with daughters’ attachment styles. Adolescence, 44(175), 557–568.

EXCERPT 2.16 • The Interquartile Range

The median age of all participants was 66 years (interquartile range 59–71; range
28–86 years).

Source: Donaghey, C. L., McMillan, T. M., O’Neill, B. (2010). Errorless learning is superior
to trial and error when learning a practical skill in rehabilitation: a randomized controlled trial.
Clinical Rehabilitation, 24(3), 195–201.



34 Chapter 2

Sometimes, a researcher computes the semi-interquartile range to index the
amount of dispersion among a group of scores. As you may guess on the basis of
its name, this measure of variability is simply equal to one-half the size of the
interquartile range; in other words, the semi-interquartile range is nothing more
than 

With a box plot, the degree of variability within a data set is summarized with
a picture. To accomplish this objective, a rectangle (box) is drawn such that it can
be “stretched out” parallel to the axis representing the dependent variable. Some 
researchers position the dependent variable on a vertical axis on the left side of the
graph, and in those cases the box plot stretches upward and downward. Other 
researchers put the dependent variable on the horizontal axis at the bottom of the
graph, and box plots in these cases stretch toward the left and right.

Regardless of how a box plot is oriented, it shows graphically the variability in
the data. The positions of the rectangle’s ends are determined by and the upper
and lower quartile points. Two vertical lines—sometimes called the whiskers—are
drawn to show variability beyond the 75th and 25th percentiles. Researchers use dif-
ferent rules for drawing the whiskers, however. Sometimes the whiskers extend to the
highest and lowest observed scores. In other graphs, the whiskers are drawn so they
extend out to points that represent the 10th and 90th percentiles (or perhaps to the 5th
and 95th percentiles). Some researchers use a rule that says that neither whisker
should be longer than 1.5 times the height of the rectangle, with scores farther out
than this considered to be outliers that are then indicated by small circles or asterisks.

In Excerpt 2.17, we see a case in which box plots were used to show the vari-
ability among three groups that took a test to assess their knowledge of and skills
in applying evidence-based practice in physical therapy. This set of box plots shows
that, on average, the faculty members scored better than either of the two student
groups. The box plots also show that the faculty group was more varied in the scores
they earned on the test. (Be sure to read the note beneath the box plot, as it explains
the meaning of whisker length.)

Although box-and-whisker plots are designed to communicate information
about variability, they also reveal things about distributional shape. If the whiskers
are of equal lengths, then we can infer that the distribution of scores is probably
symmetrical. We cannot be sure of that, but such a guess is likely to be a good one.
However, we should guess that the distribution of scores is skewed if the whiskers
are of unequal lengths. (If the longer whisker extends toward the higher end of the
score continuum, the distribution is probably positively skewed; conversely, nega-
tively skewed distributions cause the longer whisker to extend toward lower scores.)

Standard Deviation and Variance

Two additional indices of dispersion, the standard deviation and the variance, are
usually better indices of dispersion than are the first three measures of variability
we considered. This is because these two measures are each based on all of the

Q1,Q3

(Q3 - Q12>2.
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scores (and not just the high and low scores or the upper and lower quartile points).
The standard deviation is determined by (1) figuring how much each score deviates
from the mean and (2) putting these deviation scores into a computational formula.
The variance is found by squaring the value of the standard deviation.

In reporting their standard deviations, authors may use the abbreviation SD,
the symbol s or or simply write out the word sigma. Occasionally, authors report
the standard deviation using a plus/minus format—for example,
where the first number (14.83) stands for the mean and the second number (2.51)
stands for the standard deviation. The variance, being the square of the standard
deviation, is symbolized as 

Excerpts 2.18 and 2.19 illustrate two of the ways researchers indicate the nu-
merical value of the standard deviation. In the first of these, the abbreviation SD is
used, whereas in the second the plus/minus format is used. These two formats for
presenting the standard deviation are often seen in research reports.

Excerpt 2.20 shows how information on the standard deviation can be
included in a table. In this excerpt, each row of numbers corresponds to a different
variable considered important within the researchers’ study. In this table, notice that
the abbreviation SD is used to represent the term standard deviation.

s2 or s2.

14.83 ; 2.51,
s,

EXCERPT 2.17 • Box Plots

Source: Tilson, J. K. (2010). Validation of the Modified Fresno Test: Assessing physical thera-
pists’ evidence based practice knowledge and skills. BMC Medical Education, 10(38), 1–9.

EBP-expert Faculty

EBP-trained Students

EBP-novice Students

Modified Fresno Test Score
0 50 100 150 200

FIGURE 1 Modified Fresno Test scores by group.

Box and whisker plot of modified Fresno Test scores for EBP–novice PT Students
(n � 31), EBP-trained PT Students (n � 50), and EBP–expert PT Faculty (n � 27).
The central box spans from the lower to the upper quartile, the middle line represents
the median, the “�” sign represents the mean, the whiskers extend from the 10th
percentile to the 90th percentile of scores.
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Although the standard deviation appears in research reports far more often
than does any other measure of variability, a few researchers choose to describe the
dispersion in their data sets by reporting the variance. Excerpt 2.21 is a case in
point. This content of this excerpt illustrates nicely the danger of considering only
measures of central tendency. The means made the boys and girls appear to be sim-
ilar in terms of reading scores. However, the two groups differ in terms of how dis-
persed their scores are.

Before concluding our discussion of the standard deviation and variance, I
offer this helpful hint concerning how to make sense out of these two indices of
variability. Simply stated, I suggest using an article’s reported standard deviation
(or variance) to estimate what the range of scores probably was. Because the range

EXCERPTS 2.18–2.19 • Reporting on the Standard Deviation

The mean age of the HC group was 69.79 years 

Source: Sapir, S., Ramig, L. O., Spielman, J. L., & Fox, C. (2010). Formant centralization ratio:
A proposal for a new acoustic measure of dysarthric speech. Journal of Speech, Language &
Hearing Research, 53(1), 114–125.

The age of the participants ranged from 28 to 73 years, with a mean age of 49.8
years.

Source: Faris, J. A., Douglas, K. K., Maples, D. C., Berg, L. R., & Thrailkill, A. (2010). Job
satisfaction of advanced practice nurses in the Veterans Health Administration. Journal of the
American Academy of Nurse Practitioners, 22(1), 35–44.

(;7.9)

(SD = 7.51).

EXCERPT 2.20 • Reporting the Standard Deviation in a Table

TABLE 2 Sample size, mean, standard deviation, and range for AVI-SOS
clientele descriptive variables

Variable N Mean SD Range

Age 105 41.6 8.5 19–61
Years lived in Victoria 103 17.3 13.4 0–55
Number of places slept last week 105 2.5 2.0 1–7
Years needle exchange client 105 7.2 5.3 0–19

Source: Exner, H., Gibson, E. K., Stone, R., Lindquist, J., Cowen, L., & Roth, E. A. (2009).
Worry as a window into the lives of people who use injection drugs: A factor analytic approach.
Harm Reduction Journal, 6(20), 1–6.



Descriptive Statistics 37

is such a simple concept, the standard deviation or variance can be demystified by
converting it into an estimated range.

To make a standard deviation interpretable, just multiply the reported value of
this measure of variability by about 4 to obtain your guess as to what the range of
the scores most likely was. Using 4 as the multiplier, this rule of thumb tells you to
guess that the range is equal to 20 for a set of scores in which the standard devia-
tion is equal to 5. (If the research report indicates that the variance is equal to 9, you
first take the square root of 9 to get the standard deviation, and then you multiply
by 4 to arrive at a guess that the range is equal to 12.)

When giving you this rule of thumb, I said that you should multiply the stan-
dard deviation by “about 4.” To guess more accurately what the range most likely
was in a researcher’s data set, your multiplier sometimes must be a bit smaller or
larger than 4 because the multiplier number must be adjusted on the basis of the
number of scores on which the standard deviation is based. If there are 25 or so
scores, use 4. If N is near 100, multiply the standard deviation by 5. If N is gigan-
tic, multiply by 6. With small Ns, use a multiplier that is smaller than 4. With 10–20
scores in the group, multiplying by 3 works fairly well; when N is smaller than 10,
setting the multiplier equal to 2 usually produces a good guess as to range.

It may strike you as somewhat silly to be guessing the range based on the stan-
dard deviation. If researchers regularly included the values of the standard devia-
tion and the range when summarizing their data (as was done in Excerpt 2.20), there
would be no need to make a guess as to the size of R. Unfortunately, most
researchers present only the standard deviation—and by itself, a standard deviation
provides little insight into the degree of variability within a set of scores.

One final comment is in order regarding this technique of using SD to guess
R. What you get is nothing more than a rough approximation, and you should not
expect your guess of R to “hit the nail on the head.” Using the standard deviation
and range presented in Excerpt 2.20 (and using a multiplier of 5 because the N is
about 100), we see that our guess of R is never perfect for any of the four rows of
numbers in the excerpt. However, each of our four guesses turns out to approximate
well the actual range, and it helps us understand how much spread is in a data set
if only the standard deviation is presented.

EXCERPT 2.21 • Using the Variance to Measure Dispersion

To explore possible gender differences in reading performance, we analysed data
from [two samples]. Although the difference between the average [reading] scores
of males and females in these two samples was very small, the variance of reading
performance was significantly greater for males in both groups.

Source: Hawke, J. L., Olson, R. K., Willcut, E. G., Wadsworth, S. J., & DeFries, J. C. (2009).
Gender ratios for reading difficulties. Dyslexia, 15(3), 239–242.
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Other Measures of Variability

Of the five measures of variability discussed so far, you will encounter the range
and the standard deviation most often when reading researcher-based journal arti-
cles. Occasionally, you may come across examples of the interquartile range, the
semi-interquartile range, and the variance, and once in a great while you may
encounter some other measure of variability.

In Excerpt 2.22, we see a case where the coefficient of variation was used.
As indicated within this excerpt, this measure of dispersion is nothing more than
the standard deviation divided by the mean.

EXCERPT 2.22 • The Coefficient of Variation

To compare the amount of variability generated by movements performed under dif-
ferent experimental conditions, timing and spatial variability at movement reversals
were measured using the coefficient of variation (i.e., standard deviation divided by
the mean) of movement duration and movement amplitude, respectively.

Source: Shafir, T., & Brown, S. H. (2010). Timing and the control of rhythmic upper-limb
movements. Journal of Motor Behavior, 42(1), 71–84.

The coefficient of variation is useful when comparing the variability in two
groups of scores in which the means are known to be different. For example, sup-
pose we wanted to determine which of two workers has the more consistent com-
muting time driving to work in the morning. If one of these workers lives 5 miles
from work and the second lives 25 miles from work, a direct comparison of their
standard deviations (each based on 100 days of commuting to work) does not
yield a fair comparison because the worker with the longer commute is expected
to have more variability. What is fair is to divide each commuter’s standard devi-
ation by his or her mean. Such a measure of variability is called the coefficient of
variation.

Standard Scores

All the techniques covered thus far in this chapter describe features of the entire
data set. In other words, the focus of attention is on all N scores whenever a researcher
summarizes a group of numbers by using one of the available picture techniques, a
word or number that reveals the distributional shape, a numerical index of central
tendency, or a quantification of the amount of dispersion that exists among the
scores. Sometimes, however, researchers want to focus their attention on a single
score within the group rather than on the full data set. When they do this, they
usually convert the raw score being examined into a standard score.
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Although many different kinds of standard scores have been developed over
the years, the ones used most frequently in research studies are called z-scores and
T-scores. These two standard scores are identical in that each one indicates how
many standard deviations a particular raw score lies above or below the group mean.
In other words, the numerical value of the standard deviation is first looked upon as
defining the length of an imaginary yardstick, with that yardstick then used to mea-
sure the distance between the group mean and the individual score being consid-
ered. For example, if you and several other people took a test that produced scores
having a mean of 40 and a standard deviation of 8, and if your score on this test
happened to be 52, you would be one and one-half yardsticks above the mean.

The two standard scores used most by researchers—z-scores and T-scores—
perform exactly the same function. The only difference between them concerns the
arbitrary values given to the new mean score and the length of the yardstick within
the revised data set following conversion of one or more raw scores into standard
scores. With z-scores, the mean is fixed at zero and the yardstick’s length is set equal
to 1. As a consequence, a z-score directly provides an answer to the question, “How
many SDs is a given score above or below the mean?” Thus, a z-score of
indicates that the person being focused on is 2 standard deviations above the group
mean. Likewise, a z-score of for someone else indicates that this person scored
1.2 standard deviations below the mean. A z-score close to 0, of course, indicates
that the original raw score is near the group mean.

With T-scores, the original raw score mean and standard deviation are con-
verted to 50 and 10, respectively. Thus, a person whose raw score positioned him
or her 2 standard deviations above the mean receives a T-score of 70. Someone else
positioned 1.2 standard deviations below the mean receives a T-score of 38. And
someone whose raw score is near the group mean has a T-score near 50.

Although researchers typically apply their statistical procedures to the raw
scores that have been collected, they occasionally convert the original scores into
z-scores or T-scores. Excerpts 2.23 and 2.24 provide evidence that these two stan-
dard scores are sometimes referred to in research summaries.

-1.2

+2.0

EXCERPTS 2.23–2.24 • Standard Scores (z and T)

MSFC scores were determined for all participants. . . . Standard z scores were
created for each MSFC component using the baseline mean and standard deviation
values. . . . Impairment on each component and composite MSFC measure was
defined as a z score greater than 

Source: Drake, A. S., Weinstock-Guttman, B., Morrow, S. A., Hojnacki, D., Munschauer,
F. E., & Benedict, R. H. B. (2010). Psychometrics and normative data for the Multiple Sclerosis
Functional Composite: Replacing the PASAT with the Symbol Digit Modalities Test. Multiple
Sclerosis, 16(2), 228–237.

-1.5.

(continued )
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A Few Cautions

Before concluding this chapter, I want to alert you to the fact that two of the terms
discussed earlier—skewed and quartile—are occasionally used by researchers who
define them differently than I have. I want to prepare you for the alternative mean-
ings associated with these two concepts.

Regarding the term skewed, a few researchers use this word to describe a com-
plete data set that is out of the ordinary. Used in this way, the term has nothing to do
with the notion of distributional shape, but instead is synonymous to the term atypical.
In Excerpt 2.25, we see an example of how the word skewed was used in this fashion.

EXCERPTS 2.23–2.24 • (continued)

Maria’s scored SPS indicated an overall Suicide Probability T-score of 82. This
score was 32 points above the mean score of 50 and was more than three standard
deviations above the mean.

Source: Valadez, A., Juhnke, G. A., Coll, K. M., Granello, P. F., Peters, S., & Zambrano, E. (2009).
The Suicide Probability Scale: A means to assess substance abusing clients’ suicide risk.
Journal of Professional Counseling: Practice, Theory & Research, 37(1), 51–65.

EXCERPT 2.25 • Use of the Term Skewed to Mean Unusual or Atypical

The standardized instructions may have skewed these results in favor of a prepon-
derance of “fair” ratings. The standardized instructions indicated that any street,
sidewalk, public transit stop, public parks or grounds, public schools or any non-
private land should be marked in “fair” condition if it showed irregular maintenance
(including those with even small amounts of cracked concrete or paint or moderately
overgrown vegetation) and overall the space was “in decent condition, but (rater)
would recommend additional upkeep.” Such instructions logically resulted in most
raters ranking public spaces as being in fair condition.

Source: Parsons, J. A., Singh, G., Scott, A. N., Nisenbaum, R., Balasubramaniam, P., Jabbar,
A., et al. (2010). Standardized observation of neighbourhood disorder: Does it work in Canada?
International Journal of Health Geographics, 9, 1–19.

The formal, statistical definition of quartile as used in this book is “one of
three points that divide a group of scores into four subgroups, each of which con-
tains 25 percent of the full group.” Certain researchers use the term quartile to des-
ignate the subgroups themselves. When used this way, there are four quartiles (not
three), with scores falling into the quartiles (not between them). Excerpt 2.26 pro-
vides an example of quartile being used in this fashion.
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My second warning concerns the use of the term average. In elementary
school, students are taught that (1) the average score is the mean score and (2) the
median and the mode are not conceptually the same as the average. Unfortunately,
you must undo your earlier learning if you are still under the impression that the
words average and mean are synonymous.

In statistics, the term average is synonymous with the phrase “measure of cen-
tral tendency,” and either is nothing more than a generic label for any of several
techniques that attempt to describe the typical or center score in a data set. Hence,
if a researcher gives us information as to the average score, we cannot be absolutely
sure which average is being presented. It might be the mode, it might be the me-
dian, or it might be any of the many other kinds of average that can be computed.
Nevertheless, you seldom will be wrong when you see the word average if you
guess that reference is being made to the arithmetic mean.

My final comment of the chapter concerns scores in a data set that lie far away
from the rest of the scores. Such scores are called outliers, and they can come about
because someone does not try when taking a test, does not understand the instruc-
tions, or consciously attempts to sabotage the researcher’s investigation. Accord-
ingly, researchers should (1) inspect their data sets to see if any outliers are present
and (2) either discard such data points before performing any statistical analyses or
perform analyses in two ways: with the outlier(s) included and with the outlier(s)
excluded. In Excerpts 2.27 and 2.28, we see two cases in which data were exam-
ined for possible outliers. Notice how the researchers associated with these excerpts
explain the rules they use to determine how deviant a score must be before it is
tagged as an outlier; also, notice how these rules differ.

If allowed to remain in a data set, outliers can create skewness and in other
ways create problems for the researcher. Accordingly, the researchers who con-
ducted the studies that appear in Excerpts 2.27 and 2.28 deserve credit for taking
extra time to look for outliers before conducting any additional data analyses.

I should point out, however, that outliers potentially can be of legitimate inter-
est in and of themselves. Instead of quickly tossing aside any outliers, researchers
would be well advised to investigate any “weird cases” within their data sets. Even 
if the identified outliers have come about because of poorly understood directions,

EXCERPT 2.26 • Use of the Term Quartile to Designate Four Subgroups

SES was a strong, significant predictor [of students taking higher-level math
courses]. This finding is of little surprise with those in the highest-SES quartile more
likely to complete math courses beyond Algebra 2 when compared to students in
lower-SES quartiles.

Source: Daniel T. S. (2010). Predictive factors in intensive math course-taking in high school.
Professional School Counseling, 13(3), 196–207.
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erratic measuring devices, low motivation, or effort to disrupt the study, researchers
in these situations might ask the simple question, “Why did this occur?” Outliers have
the potential, if considered thoughtfully, to provide insights into the genetic, psycho-
logical, or environmental factors that stand behind extremely high or low scores.

One Final Excerpt

As we finish this chapter, let us look at one final excerpt. Although it is quite short
and despite the fact that it contains no tables or pictures, this excerpt stands as a
good example of how researchers should describe their data. Judge for yourself.
Read Excerpt 2.29 and then ask yourself: Can I imagine what the data looked like?

EXCERPTS 2.27–2.28 • Dealing with Outliers

There was only one outlier that deviated by more than three standard deviations from
the variable mean. . . .

Source: de la Sablonnière, R., Tougas, F., & Perenlei, O. (2010). Beyond social and temporal
comparisons: The role of temporal inter-group comparisons in the context of dramatic social
change in Mongolia. Journal of Social Psychology, 150(1), 98–115.

Outlier individual data points . . . were excluded [if] the values exceeded the inner
fences of the IQR 

Source: Simola, J., Stenbacka, L., & Vanni, S. (2009). Topography of attention in the primary
visual cortex. European Journal of Neuroscience, 29(1), 188–196.

(6  Q1 - 1.5*IQR or 7 Q3 + 1.5*IQR).

EXCERPT 2.29 • A Good Descriptive Summary

The social communication questionnaire (SCQ) for autistic spectrum disorder was
previously validated in clinical populations [yet] to date there has not been a report
on the use of the [40-item] SCQ in a sample representing the general population. . . .
A total of 153 questionnaires completed by parents of [regular primary school chil-
dren] were included in the final analysis. . . . The data had a range of 0–20, a mode
of 1 and a mean of The distribution was not normal, and was
skewed to the right (skewness kurtosis ). [T]here were four outliers
in the sample, each of whom had total SCQ scores more than two standard devia-
tions above the mean total SCQ score for the sample. The corrected mean of the sam-
ple without the outlier values was and the corrected sample was
normally distributed (skewness kurtosis ).

Source: Mulligan, A., Richardson, T., Anney, R. J. L., & Gill, M. (2009). The Social Com-
munication Questionnaire in a sample of the general population of school-going children. Irish
Journal of Medical Science, 178, 193–199.

= -0.27= 0.67,
3.89, SD = 2.77,

= 3.94= 1.59,
4.22, SD = 3.45.
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Average
Bar graph
Bimodal
Bivariate
Box plot
Coefficient of variation
Dispersion
Distributional shape
Grouped frequency 

distribution
Heterogeneous
Histogram
Homogeneous
Interquartile range
Kurtosis
Leptokurtic
Mean
Measure of central 

tendency
Measure of variability
Median
Mesokurtic
Mode

Review Terms

Multimodal
Negatively skewed
Normal distribution
Outlier
Platykurtic
Positively skewed
Quartile
Range
Rectangular
Semi-interquartile range
Sigma
Simple frequency distribution
Skewed distribution
Standard deviation
Standard score
Stem-and-leaf display
T-score
Trimodal
Ungrouped frequency 

distribution
Univariate
Variance
z-score
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panion website at http://www.ReadingStats.com.

Review Questions and Answers begin on page 531.
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In Chapter 2, we looked at the various statistical procedures researchers use when
they want to describe single-variable data sets. We saw examples where data on
two or more variables were summarized, but in each of those cases the data were
summarized one variable at a time. Although there are occasions when these
univariate techniques permit researchers to describe their data sets, most empiri-
cal investigations involve questions that call for descriptive techniques that simul-
taneously summarize data on more than one variable.

In this chapter, we consider situations in which data on two variables
have been collected and summarized, with interest residing in the relationship
between the two variables. Not surprisingly, the statistical procedures that we
will examine here are considered to be bivariate in nature. Later (in Chapter
16), we consider techniques designed for situations wherein the researcher
wishes to simultaneously summarize the relationships among three or more
variables.

Three preliminary points are worth mentioning as I begin my effort to
help you refine your skills at deciphering statistical summaries of bivariate
data sets. First, the focus in this chapter is on techniques that simply summa-
rize the data. In other words, we are still dealing with statistical techniques that
are fully descriptive in nature. Second, this chapter is similar to Chapter 2 in
that we consider ways to summarize data that involve both picture and numer-
ical indices. Finally, the material covered in Chapter 4, “Reliability and
Validity,” draws heavily on the information presented here. With these intro-
ductory points now behind us, let us turn to the central concept of this chapter:
correlation.

C H A P T E R 3
Bivariate Correlation

44



The Key Concept behind Correlation: Relationship

Imagine that each of nine adults who want to lose weight is measured on two vari-
ables: average daily time spent exercising (measured in minutes) and drop in weight
over a two-week period (measured as percentage of initial weight). The data from
this imaginary study might turn out as follows:

Individual Time Spent Exercising Weight Loss

Carol 75 2
Robert 100 3
Margaret 60 1
Tom 20 0
William 70 2
Mary 120 4
Suzanne 40 1
Craig 65 2
Jennifer 80 3

Although it would be possible to look at each variable separately and say something
about the central tendency, variability, and distributional shape of the nine scores (first
for exercise time, then for weight loss), the key concept of correlation requires that
we look at the data on our two variables simultaneously. In doing this, we are trying
to see (1) whether there is a relationship between the two sets of scores, and (2) how
strong or weak that relationship is, presuming that a relationship does, in fact, exist.

On a simple level, the basic question being dealt with by correlation can be
answered in one of three possible ways. Within any bivariate data set, it may be the
case that the high scores on the first variable tend to be paired with the high scores
on the second variable (implying, of course, that low scores on the first variable tend
to be paired with low scores on the second variable). I refer to this first possibility
as the high–high, low–low case. The second possible answer to the basic correla-
tional question represents the inverse of our first case. In other words, it may be the
case that high scores on the first variable tend to be paired with low scores on
the second variable (implying, of course, that low scores on the first variable tend
to be paired with high scores on the second variable). My shorthand summary
phrase for this second possibility is high–low, low–high. Finally, it is possible that
little systematic tendency exists in the data at all. In other words, it may be the case
that some of the high and low scores on the first variable are paired with high scores
on the second variable, whereas other high and low scores on the first variable are
paired with low scores on the second variable. I refer to this third possibility sim-
ply by the three-word phrase little systematic tendency.

As a check on whether I have been clear in the previous paragraph, take
another look at the hypothetical data presented earlier on average daily exercise
time and weight loss for our nine individuals. More specifically, indicate how that
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bivariate relationship should be labeled. Does it deserve the label high–high,
low–low? Or the label high–low, low–high? Or the label little systematic tendency?
If you have not done so already, look again at the data presented and formulate your
answer to this question.

To discern the nature of the relationship between exercise time and weight
loss, one must first identify each variable’s high and low scores. The top three val-
ues for the exercise variable are 120, 100, and 80, whereas the lowest three values
in this same column are 60, 40, and 20. Within the second column, the top three val-
ues are 4, 3, and 3; the three lowest values are 1, 1, and 0. After identifying each
variable’s high and low scores, the next (and final) step is to look at both columns
of data simultaneously and see which of the three answers to the basic correlational
question fits the data. For our hypothetical data set, we clearly have a high–high,
low–low situation, with the three largest exercise values being paired with the three
largest weight loss values and the three lowest values in either column being paired
with the low values in the other column.

The method I have used to find out what kind of relationship describes our
hypothetical data set is instructive, I hope, for anyone not familiar with the core con-
cept of correlation. That strategy, however, is not very sophisticated. Moreover, you
will not have a chance to use it very often, because researchers almost always
summarize their bivariate data sets by means of pictures, a single numerical index,
a descriptive phrase, or some combination of these three reporting techniques. Let
us now turn our attention to these three methods for summarizing the nature and
strength of bivariate relationships.

Scatter Plots

Like histograms and bar graphs, a scatter plot has a horizontal axis and a vertical
axis. These axes are labeled to correspond to the two variables involved in the cor-
relational analysis. The abscissa is marked off numerically so as to accommo-
date the obtained scores collected by the researcher on the variable represented by the
horizontal axis; in a similar fashion, the ordinate is labeled so as to accommodate
the obtained scores on the other variable. (With correlation, the decision as to which
variable is put on which axis is fully arbitrary; the nature of the relationship between
the two variables is revealed regardless of how the two axes are labeled.) After the
axes are set up, the next step involves placing a dot into the scatter diagram for each
object that was measured, with the horizontal and vertical positioning of each dot
dictated by the scores earned by that object on the two variables involved in the study.

In Excerpt 3.1, we see a scatter plot associated with a study involving a group
of individuals with scoliosis, a disease characterized by an abnormal bending of the
spine to the side. Each of these individuals completed two self-report questionnaires
concerning their “trunk” problem. One of the instruments was the SRS-22, which
provided a score on “self-image” (one of the instrument’s subscales). The other
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questionnaire was a new instrument called the Trunk Appearance Perception Scale
(TAPS) that yielded three scores per person, with a mean computed for each indi-
vidual. On each instrument, a person’s score ranged anywhere from 1 to 5, with
these end-of-the-continuum scores representing bad and good posture, respectively.

The data from the scoliosis study are presented within Figure 3, with the
TAPS on the abscissa, the SRS-22 on the ordinate, and each small square repre-
senting a person and his or her scores on the two instruments. Thus, the lowest small
square in the scatter plot came from a person who had a score of 2.3 on the TAPS
and a score of 1.4 on the SRS-22. The labeled axes allow us to know, approximately,
the two scores associated with every other small square in the scatter plot. Collec-
tively, the full set of data points show a tendency for high TAPS scores to be paired
with high SRS-22 scores (and for low score on one instrument to be paired with low
scores on the other instrument).

A scatter plot reveals the relationship between two variables through the pat-
tern that is formed by the full set of dots. Researchers often insert a straight line

EXCERPT 3.1 • A Scatter Plot

Source: Bago, J., Sanchez-Raya, J., Perez-Grueso, F. J. S, & Climent, J. M. (2010). The Trunk
Appearance Perception Scale (TAPS): A new tool to evaluate subjective impression of trunk
deformity in patients with idiopathic scoliosis. Scoliosis, 5(6), 1–9.
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FIGURE 3 Scatter plot between the SRS-22 self-image subscale and the mean
score of TAPS.
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through the data points to help us see the nature of the relationship. If the line
extends from lower-left to upper-right (as it would in Excerpt 3.1), we have a
high–high, low–low relationship. However, if the line extends from upper-left to
lower-right, we have a high–low, low–high relationships. If the line passing through
the dots has a near zero tilt, this indicates that the two variables are not related very
much at all. The strength of the relationship can be determined by asking how close
the dots seem to lie from the line. If the dots are close to the line, the relationship
is strong; if the dots are scattered both close to and far from the line (as in Excerpt
3.1), the relationship is best thought of as moderate, or even weak.

To discern what pattern exists when there is no tilted line included, I use a
simple (although not completely foolproof) two-step method. First, I draw an imag-
inary perimeter line, or what I think of as a “fence,” around the full set of data
points—and in so doing, I try to achieve a tight fit. Second, I look at the shape pro-
duced by this perimeter line and examine its tilt and its thickness. Depending on
these two characteristics of the data set’s scatter, I arrive at an answer to the basic
correlational question concerning the nature and strength of the relationship be-
tween the two variables.

The oval produced by my perimeter line will likely be tilted, and its tilt gives
me a sense for whether the relationship is of the (1) high–high, low–low, (2) high–low,
low–high, or (3) little systematic tendency variety. The oval’s thickness reveals the
strength of the relationship. If the oval is elongated and thin, then I conclude that there
is a strong relationship between the two variables. However, if the oval is not too much
longer than it is wide, then I conclude that a weak relationship exists.

The Correlation Coefficient

Although a scatter plot has the clear advantage of showing the scores for each mea-
sured object on the two variables of interest, many journals are reluctant to publish
such pictures because they take up large amounts of space. For that reason, and also
because the interpretation of a scatter diagram involves an element of subjectivity,
numerical summaries of bivariate relationships appear in research reports far more
frequently than do pictorial summaries. The numerical summary is called a correlation
coefficient.

Symbolized as r, a correlation coefficient is normally reported as a decimal
number somewhere between �1.00 and �1.00. In Excerpt 3.2, we see four differ-
ent correlation coefficients.

To help you learn how to interpret correlation coefficients, I have drawn a
straight horizontal line to represent the continuum of possible values that result
from researchers putting data into a correlational formula:

–1.00 0.00 +1.00



Bivariate Correlation 49

This correlational continuum helps you pin down the meaning of several adjectives
that researchers use when talking about correlation coefficients or relationships:
direct, high, indirect, inverse, low, moderate, negative, perfect, positive, strong, and
weak.

First, consider the two halves of the correlational continuum. Any r that falls
on the right side represents a positive correlation; this indicates a direct relation-
ship between the two measured variables. (Earlier, I referred to such cases by the
term high–high, low–low.) However, any result that ends up on the left side is a
negative correlation, and this indicates an indirect, or inverse, relationship (i.e.,
high–low, low–high). If r lands on either end of our correlation continuum, the term
perfect may be used to describe the obtained correlation. The term high comes into
play when r assumes a value close to either end (thus implying a strong relation-
ship); conversely, the term low is used when r lands close to the middle of the con-
tinuum (thus implying a weak relationship). Not surprisingly, any r that ends up in
the middle area of the left or right sides of our continuum is called moderate.

In Excerpts 3.3 through 3.5, we see cases where researchers use adjectives
to label their rs. In the first two of these excerpts, we see the concepts of weak
and moderate being used to describe correlation coefficients, whereas in the
third excerpt, we see the concept of strong used. All four of the correlations in
these excerpts were positive. If each of these rs had turned out to be the same size
as reported but negative in sign, the descriptive labels of weak, moderate, and

EXCERPT 3.2 • Correlation Coefficients

Scales to measure job demands and control were constructed for this study. . . . Corre-
lations using the current scales closely matched those previously reported: At T1
(Time 1), for example, demands correlated at r � .50 with stress and at �.40 with job
satisfaction, whereas the corresponding correlations involving control were �.40 and .36.

Source: Bradley, G. L. (2010). Work-induced changes in feelings of mastery. Journal of
Psychology, 144(2), 97–119.

EXCERPTS 3.3–3.5 • Use of Modifying Adjectives for the Term Correlation

Furthermore, [the questionnaire items] “More screening if higher reimbursement”
and “Proportion of male patients with alcohol problems” were weakly correlated
with the use of screening instruments (Pearson’s r � 0.10 and 0.09, respectively).

Source: Nygaard, P., Paschall, M. J., Aasland, O. G., & Lund, K. E. (2010). Use and barriers
to use of screening and brief interventions for alcohol problems among Norwegian general
practitioners. Alcohol and Alcoholism, 45(2), 207–212.

(continued )
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strong would still have been appropriate, because these terms contrast a computed
r with zero.

Before concluding our discussion of how to interpret correlation coefficients,
I feel obligated to reiterate the point that when the issue of relationship is addressed,
the central question being answered by r is: “To what extent are the high scores of
one variable paired with the high scores of the other variable?” The term high in this
question is considered separately for each variable. Hence, a strong positive correla-
tion can exist even though the mean of the scores of one variable is substantially dif-
ferent from the mean of the scores on the other variable. As proof of this claim,
consider again the data presented earlier concerning nine individuals who were mea-
sured in terms of exercise and weight loss; the correlation between the two sets of
scores turns out equal to �.96, despite the fact that the two means are quite differ-
ent (2 versus 70). This example makes clear, I hope, the fact that a correlation does
not deal with the question of whether two means are similar or different.1

The Correlation Matrix

When interest resides in the bivariate relationship between just two variables or
among a small number of variables, researchers typically present their rs within the
text of their article. (This reporting strategy is shown in Excerpts 3.2 through 3.5.)
When interest centers on the bivariate relationships among many variables, how-
ever, the resulting rs are often summarized within a special table called a
correlation matrix.

It should be noted that several bivariate correlations can be computed among
a set of variables, even for relatively small sets of variables. With eight variables,

Scores on MIDAS School Math subscale were moderately correlated (r � .58) with
scores on Ohio State Math Achievement Test. . . .

Source: Shearer, C. B., & Darrell A. L. (2009). Exploring the application of multiple intelli-
gences theory to career counseling. The Career Development Quarterly, 58(1), 3–13.

The strong correlation (.716) between age at graduation and pre-MBA work experience
is reasonable: Older graduates are likely to have more pre-MBA work experience.

Source:Yeaple, R. N., Johnston, M. W., & Whittingham, K. L. (2009). Measuring the economic
value of pre-MBA work experience. Journal of Education for Business, 85(1), 13–20.

1In many research studies, the focus is on the difference between means. Beginning in Chapter 10, our dis-
cussion of t-test and F-tests show how researchers compare means.

EXCERPTS 3.3–3.5 • (continued)
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for example, 28 separate bivariate rs can be computed. With 10 variables, there are
45 rs. In general, the number of bivariate correlations is equal to , where
k indicates the number of variables.

In Excerpt 3.6, we see a correlation matrix that summarizes the measured 
bivariate relationships among six variables. In the study associated with this excerpt,
90 college students took a test of creativity (the Idea Generation Test) and filled out
a personality survey that measured each student on the “Big 5” dimension of Open-
ness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism. As you can
see, this correlation matrix contains rs arranged in a triangle. Each r indicates the
correlation between the two variables that label that r’s row and column. For example,
the value of .38 is the correlation between Openness and Agreeableness.

k(k - 1)>2

EXCERPT 3.6 • A Standard Correlation Matrix

TABLE 3 Correlations Between the Idea Generation Test and Personality
Dimensions

Test 1 2 3 4 5 6

1. Idea Generation 1
2. Openness .10 1
3. Conscientiousness �.04 .34 1
4. Extraversion .22 .02 .08 1
5. Agreeableness .00 .38 .28 .41 1
6. Neuroticism �.01 .01 .01 �.39 �.10 1

Source: Ellwood, S., Pallier, G., Snyder, A., & Gallate, J. (2009). The incubation effect: Hatching
a solution? Creativity Research Journal, 21(1), 6–14.

Two things are noteworthy about the correlation matrix shown in Excerpt 3.6.
First, when a row and a column refer to the same variable (as is the case with the
top row and the left column, the second row and the second column, etc.), there is
a “1” positioned at the intersection of that row and column. Clearly, the correlation
of any variable with itself is perfect. Thus, the correlation coefficients (each equal
to 1) in the diagonal are not informative; the “meat” of the correlation matrix lies
elsewhere.

Second, there are no correlation coefficients above the diagonal. If correla-
tions appear there, they would be a mirror image of the rs positioned below the
diagonal. The value .10 would appear on the top row in the second column, -.04
would appear on the top row in the third column, and so on. Such rs, if they were
put into the correlation matrix, are fully redundant with the rs that already are pre-
sent; accordingly, they add nothing.
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In Excerpt 3.6, the correlation matrix is set up with the 15 bivariate correla-
tion coefficients positioned below the diagonal of 1s. At times, you will come across
a correlation matrix in which (1) the values of the correlation coefficients are posi-
tioned above rather than below the diagonal, or (2) each diagonal element has either
a dash or nothing at all. Such alternative presentations should not cause you any dif-
ficulty, because they still contain all possible bivariate correlations that are inter-
preted in the same way that we interpreted the rs in Excerpt 3.6.

Excerpt 3.7 illustrates how two correlation matrices can be combined into
one table. In the study associated with this table, 572 Dutch adults filled out three
personality inventories (dealing with self-efficacy, intention, and action planning)
and also answered questions about their current and past consumption of fruit. A
similar group of 585 individuals did the same thing, except their consumption
questions dealt with snacks, not fruit. After collecting the data, the researchers
computed, separately for each group, bivariate correlation coefficients among the
five variables. Using the note beneath the correlation matrix as a guide, we can
look to see how the correlation between any two variables compares across the
two groups. The two correlations between current and past consumption were
quite similar (0.76 and 0.60). However, the correlations between self-efficacy and
consumption were quite different (0.57 for the fruit group; �0.36 for the snack
group).

EXCERPT 3.7 • Two Correlation Matrices Shown in a Single Table

TABLE 1 Pearson Correlations between Cognitions, Past Behavior and
Current Outcome Behaviorsa,b

1 2 3 4 5

1. Self-efficacy — 0.58 0.40 0.63 0.57
2. Intention 0.38 — 0.48 0.42 0.36
3. Action planning 0.17 0.57 — 0.31 0.33
4. Past fruit/snack consumption �0.42 �0.31 �0.18 — 0.76
5. Fruit/snack consumption �0.36 �0.29 �0.22 0.60 —

aAll correlations between variables in the fruit consumption study are depicted above the 
diagonal; correlations between variables in the snack consumption study are depicted below
the diagonal.
bAll correlations are significant at the 0.001 level (two-tailed).

Source: van Osch, L., Beenackers, M., Reubsaet, A., Lechner, L., Candel, M., & de Vries, H.
(2009). Action planning as predictor of health protective and risk behavior: An investigation
of fruit and snack consumption. International Journal of Behavior Nutrition and Physical 
Activity, 69(6), 1–10.
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I should point out that researchers sometimes put things in the diagonal other
than 1s (as in Excerpt 3.6), dashes (as in Excerpt 3.7), or empty spaces. Occasion-
ally, you may see numbers in the diagonal that are not correlation coefficients but
rather reliability coefficients. (We consider the topic of reliability in Chapter 4.)
Also, you are likely to come across a correlation matrix in which the row or col-
umn that contains no correlation coefficients has been deleted. For example, in
Excerpt 3.6, the top row (for Test 1) could be eliminated without altering the amount
of statistical information being communicated, as could the sixth column. When
this is done, correlation coefficients appear in the table’s diagonal. (This practice of
eliminating a row or a column, however, never takes place in conjunction with a
correlation matrix such as that shown in Excerpt 3.7, wherein two correlation ma-
trices are combined into a single table.)

Different Kinds of Correlational Procedures

In this section, we take a brief look at several different correlational procedures that
have been developed. As you will see, all these techniques are similar in that they
are designed for the case in which data have been collected on two variables.2 These
bivariate correlational techniques differ, however, in the nature of the two variables.
In light of this important difference, you must learn a few things about how vari-
ables differ.

The first important distinction is between quantitative and qualitative charac-
teristics. With a quantitative variable, the targets of the measuring process vary as
to how much of the characteristic is possessed. In contrast, a qualitative variable
comes into play when the things being measured vary from one another in terms of
the categorical group to which they belong relative to the characteristic of interest.
Thus, if we focus our attention on people’s heights, we have a quantitative variable
(because some people possess more “tallness” than others). If, however, we focus
our attention on people’s favorite national park, we would be dealing with a quali-
tative variable (because people simply fall into categories based on which park they
like best).

From the standpoint of correlation, quantitative variables can manifest them-
selves in one of two ways in the data a researcher collects. Possibly, the only thing
the researcher wants to do is order individuals (or animals, or objects, or whatever)
from the one possessing the greatest amount of the relevant characteristic to the one
possessing the least. The numbers used to indicate ordered position usually are as-
signed such that 1 goes to the person with the greatest amount of the characteristic,
2 goes to the person with the second greatest amount, and so on. Such numbers are

2Some authors use the term zero-order correlation when referring to bivariate correlations to distinguish this
simplest kind of correlation—that involves data on just two variables—from other kinds of correlations that
involve data on three or more variables (e.g., partial correlations, multiple correlations, canonical correlations).
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called ranks and are said to represent an ordinal scale of measurement. A
researcher’s data is also ordinal in nature if each person or thing being measured is
put into one of several ordered categories, with everyone who falls into the same
category given the same score (e.g., the numbers 1, 2, 3, and 4 used to represent
freshmen, sophomores, juniors, and seniors).

With a second kind of quantitative variable, measurements are more precise.
Here, the score associated with each person supposedly reveals how much of the
characteristic of interest is possessed by that individual—and it does this without
regard for the standing of any other measured person. Whereas ranks constitute data
that provide relative comparisons, this second (and more precise) way of dealing
with quantitative variables provide absolute comparisons. In this book, I use the
term raw score to refer to any piece of data that provides an absolute (rather than
relative) assessment of one’s standing on a quantitative variable.3

Qualitative variables come in two main varieties. If the subgroups into which
people are classified truly have no quantitative connection with each other, then the
variable corresponding to those subgroups is said to be nominal in nature. Your
favorite academic subject, the brand of jelly you most recently used, and your state of
residence exemplify this kind of variable. If there are only two categories associated
with the qualitative variable, then the variable of interest is said to be dichotomous
in nature. A dichotomous variable actually can be viewed as a special case of the
nominal situation, with examples being “course outcome” in courses where the only
grades are pass and fail (or credit and no credit), gender, party affiliation during pri-
mary elections, and graduation status following four years of college.

In Excerpts 3.8 through 3.11, we see examples of different kinds of variables.
The first two of these excerpts illustrate the two kinds of quantitative variables we
have discussed: ranks and raw scores. The last two of these excerpts exemplify qual-
itative variables (the first being a four-category nominal variable, the second being
a dichotomous variable).

3Whereas most statisticians draw a distinction between interval and ratio measurement scales and between
discrete and continuous variables, readers of journal articles do not need to understand the technical differ-
ences between these terms in order to decipher research reports.

EXCERPTS 3.8–3.11 • Different Kinds of Data

The questionnaire also asked about perceptions of work-related stress. . . . Nurses
ranked the following stressors in order of importance: critical illness or acuity of 
patients, dying patients, rotating shifts or schedule, short staffing, long work hours,
and demanding families.

Source: Gallagher, R., & Gormley, D. K. (2009). Perceptions of stress, burnout, and support
systems in pediatric bone marrow transplantation nursing. Clinical Journal of Oncology
Nursing, 13(6), 681–685.
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Researchers frequently derive a raw score for each individual being studied by
combining that individual’s responses to the separate questions in a test or survey. As
Excerpts 3.12 and 3.13 show, the separate items can each be ordinal or even dichoto-
mous in nature, and yet the sum of those item scores is looked upon as being what I
call a raw score. Although theoretical statistical authorities argue back and forth as to
whether it is prudent to generate raw scores by combining ordinal or dichotomous
data, doing so is an extremely common practice among applied researchers.

EXCERPTS 3.12–3.13 • Combining Ordinal or Dichotomous 
Data to Get Raw Scores

A five-point Likert-type scale ranging from strongly disagree (1) to strongly agree
(5) was used to rate eight items for each of the five sources of support, yielding a total
of 40 items. A total score was obtained by summing the amount of support perceived
from the five sources on each of the eight items. Possible scores ranged from 40–200.

Source: Sammarco, A., & Konecny, L. M. (2010). Quality of life, social support, and uncer-
tainty among Latina and Caucasian breast cancer survivors: A comparative study. Oncology
Nursing Forum, 37(1), 93–99.

(continued )

A comprehension test consisting of 12 multiple choice and fill-in-the-blank ques-
tions was used to assess participants’ comprehension and retention of the textbook
lesson. . . . Means were computed for male and female students in each condition
based on the number of correct answers out of 12 total questions.

Source: Good, J. J., Woodzicka, J. A., & Wingfield, L. C. (2010). The effects of gender stereo-
typic and counter-stereotypic textbook images on science performance. Journal of Social Psy-
chology, 150(2), 132–147.

We combined Hispanic/Latino ethnicity and race to create a race/ethnicity variable
with the following four levels: (1) Hispanic/ Latino; (2) non-Hispanic Black/African
American; (3) non-Hispanic White; and (4) Other.

Source: Duncan, D. T., Johnson, R. M., Molnar, B. E., & Azrael, D. (2009). Association
between neighborhood safety and overweight status among urban adolescents. BMC Public
Health, 9, 289–297.

Gender is represented by a dichotomous variable (male � 1 and female � 0).

Source: Fernandes, D. C., & Neves, J. A. (2010). Urban bias in development and educational
attainment in Brazil. Journal of Developing Areas, 43(2), 271–288.

EXCERPTS 3.8–3.11 • (continued)
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One final kind of variable must be mentioned briefly. Sometimes, a researcher
begins with a quantitative variable but then classifies individuals into two categories
on the basis of how much of the characteristic of interest is possessed. For exam-
ple, a researcher conceivably could measure people in terms of the quantitative vari-
able of height, place each individual into a tall or short category, and then disregard
the initial measurements of height (that took the form of ranks or raw scores).
Whenever this is done, the researcher transforms quantitative data into a two-
category qualitative state. The term artificial dichotomy is used to describe the
final data set. An example of this kind of data conversion appears in Excerpt 3.14.

Pearson’s Product–Moment Correlation

The most frequently used bivariate correlational procedure is called Pearson’s
product–moment correlation, and is designed for the situation in which (1) each
of the two variables is quantitative in nature and (2) each variable is measured so
as to produce raw scores. The scatter diagram presented in Excerpt 3.1 provides a
good example of the kind of bivariate situation that is dealt with by means of Pear-
son’s technique.

Excerpts 3.15 and 3.16 illustrate the use of this extremely popular bivariate
correlational technique. Note, in the first of these excerpts, that the phrase
product–moment is used without the label Pearson. In the second excerpt, note that

The final MSKQ consists of 25 multiple-choice statements and takes about 20 minutes
to complete. The score is obtained by summing the number of correct answers and
ranges from 0 to 25.

Source: Giordano, A., Uccelli, M. M., Pucci, E., Martinelli, V., Borreani, C., et al. (2010). The
Multiple Sclerosis Knowledge Questionnaire: A self-administered instrument for recently 
diagnosed patients. Multiple Sclerosis, 16(1), 100–111.

EXCERPT 3.14 • Creating An Artificial Dichotomy

General racism was assessed with the question “Thinking about your race or ethnicity,
how often have you felt treated badly or unfairly because of your race or ethnicity?”
In descriptive analysis, response categories for general racism were dichotomized
(never or rarely versus sometimes, often, or all the time).

Source: Shariff-Marco, S., Klassen, A. C., & Bowie, J. V. (2010). Racial/ethnic differences in
self-reported racism and its association with cancer-related health behaviors. American Journal
of Public Health, 100(2), 364–374.

EXCERPTS 3.12–3.13 • (continued)
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EXCERPTS 3.15–3.16 • Pearson’s Product–Moment Correlation

The simple product-moment correlation between faculty interaction and openness to
diversity is positive and statistically significant (r � 0.22).

Source: Pike, G. R. (2009). The differential effects on on- and off-campus living arrangements
on students’ openness to diversity. NASPA Journal, 46(4), 629–45.

However, unlike previous studies that reveal positive correlations among the worka-
holism factors, the present study showed that the WI-3 related negatively to WI-E 
(r � �.24) and D-3 (r � �.12).

Source: Huang, J., Hu, C., & Wu, T. (2010). Psychometric properties of the Chinese version
of the Workaholism Battery. Journal of Psychology, 144(2), 163–183.

only the symbol r is presented, and there is no adjective such as Pearson’s, Pear-
son’s product–moment, or product–moment. (In cases like this, where the symbol r
stands by itself without a clarifying label, it is a good bet you are looking at a Pearson
product–moment correlation coefficient.)

Spearman’s Rho and Kendall’s Tau

The second most popular bivariate correlational technique is called Spearman’s
rho. This kind of correlation is similar Pearson’s in that it is appropriate for the sit-
uation in which both variables are quantitative in nature. With Spearman’s tech-
nique, however, each of the two variables is measured in such a way as to produce
ranks. This correlational technique often goes by the name rank–order correlation
(instead of Spearman’s rho). The resulting correlation coefficient, if symbolized, is
usually referred to as or �.

To illustrate how raw scores can be converted into ranks, I created some
hypothetical raw scores for the height (in inches) and weight (in pounds) for five
men. Those data are located in the first two columns of numbers. In the third and
fourth columns, I show the ranks the five men would have if we got ready to do a
Spearman’s rank–order correlation. For these data, Spearman’s correlation � .50.

Height Weight Height Weight
Individual Raw Score Raw Score Rank Rank

Alex 67 175 4 4
Claude 73 210 1 2
David 70 225 2 1
Lee 66 180 5 3
Andrew 68 155 3 5

rs
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Kendall’s tau is very similar to Spearman’s rho in that both these bivariate
correlational techniques are designed for the case in which each of two quantita-
tive variables is measured in such a way as to produce data in the form of ranks.
The difference between rho and tau is related to the issue of ties. To illustrate what
I mean by ties, suppose six students take a short exam and earn these scores: 10, 9,
7, 7, 4, and 3. These raw scores, when converted to ranks, become 1, 2, 3.5, 3.5, 5,
and 6, where the top score of 10 receives a rank of 1, the next-best score (9) receives
a rank of 2, and so on. The third- and fourth-best scores tied with a score of 7, and
the rank given to each of these individuals is equal to the mean of the separate ranks
they would have received if they had not tied. (If the two 7s had been 8 and 6, the
separate ranks would have been 3 and 4, respectively; the mean of 3 and 4 is 3.5,
and this rank is given to each of the persons who actually earned a 7.)

Kendall’s tau is simply a bivariate correlational procedure that does a better job
of dealing with tied ranks than does Spearman’s rho. Recently, I came across a journal
article that contained two sets of ranks, each of which went from 1 to 13. However,
there were three pairs of ties within each array of ranks. (Of the 13 objects being eval-
uated, nine had a tied rank on the X variable or on the Y variable or on both variables.)
I correlated the ranks twice, once to get Spearman’s rho and once to get Kendall’s tau.
The resulting correlation coefficients were .89 and .75, respectively. Many statisticians
consider tau to be the more accurate of these two correlation coefficients due to the ties.

Only rarely does a researcher display the actual ranks used to compute
Spearman’s rho. Most of the time, the only information you are given is (1) the
specification of the two variables being correlated and (2) the resulting correlation
coefficient. Excerpts 3.17 and 3.18, therefore, are more typical of what you see in
published journal articles than the four columns of data I created for the five men.

EXCERPTS 3.17–3.18 • Spearman’s Rank–Order Correlation

A correlation of � � .557 was found between self-reported activity intensity and
direct observation.

Source: Belton, S., & Donncha, C. M. (2010). Reliability and validity of a new physical activity
self-report measure for younger children. Measurement in Physical Education & Exercise Science,
14(1), 15–28.

A correlation of rs � 0.57 between the sum of near fall incidents and the sum of falls
during the study period was found.

Source: Nilsagård, Y., Lundholm, C., Denison, E., & Gunnarsson, L.-G. (2009). Predicting
accidental falls in people with multiple sclerosis—A longitudinal study. Clinical Rehabilitation,
23(3), 259–269.
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In Excerpts 3.19 and 3.20, we see two cases where Kendall’s tau was used. In
the second of these excerpts, note that the correlation was called tau-b. When
researchers use the labels tau and tau-b, they are most likely referring to the same
thing. (Actually, there are three versions of Kendall’s tau: tau-a, tau-b, and tau-c.
Only tau-b and tau-c contain a built-in correction for tied ranks.)

EXCERPT 3.19 • Kendall’s Tau

To check whether extraneous bodily movements and irrelevant vocalizations were
fewer among the older children, we treated these two sets of behaviours separately.
In each case we examined whether their frequency correlated with the children’s age.
The appropriate statistic here was Kendall’s tau [which revealed] a decrement with
age in the case of extraneous bodily movements [� � �.316] but not in the case of
irrelevant vocalizations.

Source: Ellis, S. A. Turner; Miles, T. R.; Wheeler, T. J.; Thomson, Michael. (2009). Extrane-
ous bodily movements and irrelevant vocalizations by dyslexic and non-dyslexic boys during
calculation tasks. Dyslexia, 15(2), 155–163.

EXCERPT 3.20 • Kendall’s Tau-b

A pilot-study including 42 nursing-home patients investigated inter-rater reliability
of the Cornell Scale, by having three raters, one geriatric psychiatrist (GP) and two
of the research nurses, a registered nurse (RN) and a nurse specialized in psychiatry
(NP), score the Cornell Scale on the basis of responses from the primary carers. . . .
The correlation coefficients (Kendall’s tau-b) of the Cornell sum scores were 0.964
(GP vs RN), 0.961 (GP vs NP) and 0.957 (RN vs NP).

Source: Barca, M. L., Engedal, K., Laks, J., & Selbaek, G. (2010). A 12 months follow-up
study of depression among nursing-home patients in Norway. Journal of Affective Disorders,
120, 141–148.

Point Biserial and Biserial Correlations

Sometimes a researcher correlates two variables that are measured so as to produce
a set of raw scores for one variable and a set of 0s and 1s for the other (dichotomous)
variable. For example, a researcher might want to see if a relationship exists between
the height of basketball players and whether they score any points in a game. For this
kind of bivariate situation, a correlational technique called point biserial has been
designed. The resulting correlation coefficient is usually symbolized .

If a researcher has data on two variables where one variable’s data are in the form
of raw scores whereas the other variable’s data represent an artificial dichotomy, then

rpb
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the relationship between the two variables are assessed by means of a technique
called biserial correlation. Returning to our basketball example, suppose a
researcher wanted to correlate height with scoring productivity, with the second
of these variables dealt with by checking to see whether each player’s average is
less than 10 points or some value in double digits. Here, scoring productivity is
measured by imposing an artificial dichotomy on a set of raw scores. Accordingly,
the biserial technique is used to assess the nature and strength of the relationship 
between the two variables. This kind of bivariate correlation is usually symbol-
ized by .

In Excerpt 3.21, we see a case where the point-biserial correlation was used
in a published research article. In this study, gender was the binary (i.e., dichoto-
mous) variable. Grade-point average (GPA) and satisfaction-with-major were not
dichotomous, as GPA was measured on a traditional 0 to 4.0 scale, whereas the satis-
faction variable was measured on a 1 to 7 Likert scale.

rbis

Phi and Tetrachoric Correlations

If both of a researcher’s variables are dichotomous in nature, then the relationship
between the two variables is assessed by means of a correlational technique called
phi (if each variable represents a true dichotomy) or a technique called tetrachoric
correlation (if both variables represent artificial dichotomies). An example calling
for the first of these situations involves correlating, among high school students,
the variables of gender (male/female) and car ownership (yes/no). For an example
of a place where tetrachoric correlation is appropriate, imagine that we measure
each of several persons in terms of height (with people classified as tall or short
depending on whether they measure over 5�8�) and weight (with people classified
as “OK” or “Not OK” depending on whether they are within 10 pounds 
of their ideal weight). Here, both height and weight are forced into being
dichotomies.

Excerpt 3.22 illustrates the use of phi, demonstrating nicely how the two vari-
ables involved in a correlation can each represent a true dichotomy. The notion of
left versus right is involved in all three of the variables mentioned.

EXCERPT 3.21 • Point-Biserial Correlation

The first phase of the analysis involved splitting the sample [of undergraduate busi-
ness students] into roughly equal subsamples (n � 229; n � 222). . . . Gender had
significant correlations with GPA [rpb � .16 and rpb � .18] and Satisfaction-With-
Major [rpb � .24 and rpb � .18] in both samples (point-biserial).

Source: Wefald, A. J., & Downey, R. G. (2009). Construct dimensionality of engagement and
its relation with satisfaction. Journal of Psychology, 143(1), 91–112.
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EXCERPT 3.22 • Phi

Phi correlation was used to evaluate the relationship between the side of the abdomen
in which ETAP [exercise-related transient abdominal pain] was reported and both
the direction of lateral curvature of the spine, if present, and side of the spine raised
in the case of roto-scoliosis. . . . The site in which ETAP was reported within the
abdomen was not related to the direction of scoliosis.

Source: Morton, D. P., & Callister, R. (2009). Influence of posture and body type on the
experience of exercise-related transient abdominal pain. Journal of Science and Medicine in
Sport, 13(5), 485–488.

EXCERPT 3.23 • Cramer’s V

There was a positive association [Cramer’s V � 0.15] between the stage of change
and abstinence in Month 12 after detoxification. . . . Half of the individuals initially
in Action were abstinent (55.2%, n � 179) compared to 37.7% of the Contemplators
(n � 23) and 25.0% (n � 2) of the Precontemplators.

Source: Freyer-Adam, J., Coder, B., Ottersbach, C., Tonigan, J. S., Rumpf, H., John, U., &
Hapke, U. (2009). The performance of two motivation measures and outcome after alcohol
detoxification. Alcohol & Alcoholism, 44(1), 77–83.

Cramer’s V

If a researcher collects bivariate data on two variables where each variable is nom-
inal in nature, the relationship between the two variables can be measured by means
of a correlational technique called Cramer’s V. In Excerpt 3.23, we see a case
where Cramer’s V was used. In this study focused on a group of alcohol abusers,
two of the variables of interest were abstinence and the stage of change. As indi-
cated in the excerpt, Cramer’s V measured the strength of the relationship between
these variables. This correlational technique, unlike most others we have consid-
ered, yields coefficients that must lie somewhere between 0 and 1.

Warnings about Correlation

At this point, you may be tempted to consider yourself a semi-expert when it comes to
deciphering discussions about correlation. You now know what a scatter diagram is,
you have looked at the correlational continuum (and know that correlation coefficients
typically extend from �1.00 to �1.00), you understand what a correlation matrix is,
and you have considered several different kinds of bivariate correlation. Before you 
assume that you know everything there is to know about measuring the relationship
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between two variables, I want to provide you with six warnings that deal with causal-
ity, the coefficient of determination, the possibility of outliers, the assumption of lin-
earity, the notion of independence, and criteria for claims of high and low correlations.

Correlation and Cause

It is important for you to know that a correlation coefficient does not speak to the
issue of cause and effect. In other words, whether a particular variable has a causal
impact on a different variable cannot be determined by measuring the two variables
simultaneously and then correlating the two sets of data. Many recipients of
research reports (and even a few researchers) make the mistake of thinking that a
high correlation implies that one variable has a causal influence on the other vari-
able. To prevent yourself from making this mistake, I suggest that you memorize
this simple statement: correlation � cause.

Competent researchers often collect data using strategies that allow them to
address the issue of cause. Those strategies are typically complex and require a con-
sideration of issues that cannot be discussed here. In time, however, I am confident
that you will understand the extra demands that are placed on researchers who want
to investigate the potential causal connections between variables. For now, all I can
do is ask that you believe me when I say that bivariate correlational data alone can-
not be used to establish a cause-and-effect situation.

Coefficient of Determination

To get a better feel for the strength of the relationship between two variables, many
researchers square the value of the correlation coefficient. For example, if r turns
out equal to .80, the researcher squares .80 and obtains .64. When r is squared like
this, the resulting value is called the coefficient of determination.

The coefficient of determination indicates the proportion of variability in
one variable that is associated with (or explained by) variability in the other vari-
able. The value of lies somewhere between 0 and �1.00, and researchers usu-
ally multiply by 100 so they can talk about the percentage of explained variability.
In Excerpt 3.24, we see an example from a stress/eyewitness study where hasr2

r2

EXCERPT 3.24 • r2 and Explained Variation

Pearson’s correlation coefficient between the change in heart rate (labyrinth mean
heart rate–baseline mean heart rate) and state anxiety score showed a reliable 
association, r � .76 [and] r2 � .58. Change in heart rate accounted for 58% of the
variance in state anxiety score.

Source: Valentine, T., & Mesout, J. (2009). Eyewitness identification under stress in the London
Dungeon. Applied Cognitive Psychology, 23(2), 151–161.



Bivariate Correlation 63

been converted into a percentage. As this excerpt indicates, researchers some-
times refer to this percentage as the amount of variance in one variable that is ac-
counted for by the other variable, or they sometimes say that this percentage
indicates the amount of shared variance.

As suggested by the material in Excerpt 3.24, the value of indicates how
much (proportionately speaking) variability in either variable is explained by the
other variable. The implication of this is that the raw correlation coefficient (i.e., the
value of r when not squared) exaggerates how strong the relationship really is between
two variables. Note that r must be stronger than .70 for there to be at least 50 percent
explained variability. Or, consider the case where ; here, only one-fourth of
the variability is explained.

Outliers

My third warning concerns the effect on r of one or more data points located away
from the bulk of the scores. Such data points are called outliers, and they can cause
the size of a correlation coefficient to understate or exaggerate the strength of the
relationship between two variables. In Excerpt 3.25, we see a case where the
researchers were aware of the danger of outliers, so they examined their scatter plots
before making claims based on their correlation coefficients.

r = .50

r2

EXCERPT 3.25 • Outliers

[C]orrelations were run for the whole sample and for married and custodial fathers
separately. . . . [W]e examined the scatterplots to ensure that the relations were not
attributable to one or a few outliers. The plots show clear group tendencies not 
inflated by extreme data points.

Source: Bernier, A., & Miljkovitch, R. (2009). Intergenerational transmission of attachment in
father–child dyads: The case of single parenthood. Journal of Genetic Psychology, 170(1),
31–52.

In contrast to the good example provided in Excerpt 3.25, most researchers
fail to check to see if one or more outliers serve to distort the statistical summary
of the bivariate relationships they study. There are not many scatter plots in journal
articles, and thus you cannot examine the data yourself to see if outliers were
present. Almost always, only the correlation coefficient is provided. Give the
researcher some extra credit, however, whenever you see a statement to the effect
that the correlation coefficient was computed after an examination of a scatter plot
revealed no outliers (or revealed an outlier that was removed prior to computing the
correlation coefficient).
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Linearity

The most popular technique for assessing the strength of a bivariate relationship is
Pearson’s product–moment correlation. This correlational procedure works nicely
if the two variables have a linear relationship. Pearson’s technique does not work
well, however, if a curvilinear relationship exists between the two variables.

A linear relationship does not require that all data points (in a scatter plot) lie
on a straight line. Instead, what is required is that the path of the data points be
straight. The path itself can be very narrow, with most data points falling near an
imaginary straight line, or the path can be very wide—so long as the path is straight.
(Regardless of how narrow or wide the path is, the path to which we refer can be
tilted at any angle.)

If a curvilinear relationship exists between two variables, Pearson’s correla-
tion underestimates the strength of the relationship present in the data. Accordingly,
you can place more confidence in any correlation coefficient you see when the re-
searcher who presents it indicates that a scatter plot was inspected to see whether
the relationship was linear before Pearson’s r was used to summarize the nature and
strength of the relationship. Conversely, add a few grains of salt to the rs that are
thrown your way without statements concerning the linearity of the data.

In Excerpt 3.26, we see an example where a pair of researchers checked to see
if their bivariate data sets were linear. These researchers deserve high praise for tak-
ing the time to check out the linearity assumption before computing Pearson’s r.
Unfortunately, most researchers collect their data and compute correlation coeffi-
cients without ever thinking about linearity.

EXCERPT 3.26 • Linearity

Examination of the scatter plots provided further information on linearity [and] no
evidence of curvilinear relationship was identified.

Source: Tam, D. M. Y., & Coleman, H. (2009). Construction and validation of a professional
suitability scale for social work practice. Journal of Social Work Education, 45(1), 47–63.

Correlation and Independence

In many empirical studies, the researcher either builds or uses different tests in an
effort to assess different skills, traits, or characteristics of the people, animals, or
objects from whom measurements are taken. Obviously, time and money is wasted
if two or more of these tests are redundant. Stated differently, it is desirable (in
many studies) for each measuring instrument to accomplish something unique com-
pared to the other measuring instruments being used. Two instruments that do this
are said to be independent.
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The technique of correlation often helps researchers assess the extent to
which their measuring instruments are independent. Independence exists to the
extent that r turns out to be close to zero. In other words, low correlations imply
independence, whereas high positive or negative correlations signal lack of 
independence.

Excerpt 3.27 illustrates how authors sometimes refer to the independence of
variables. The full journal article from which this excerpt was taken presented only
one of the three correlation coefficients referred to here. Perhaps those unseen cor-
relation were quite close to zero. What we know for sure, however, is that the other
two rs turned out somewhere between �.26 and �.26. (This segment of the corre-
lational continuum seems to me to be a bit wide in order for variables to be con-
sidered to be independent. I would make that segment only one-fourth as wide as
these researchers did.)

EXCERPT 3.27 • Independence

[A] Pearson’s correlation test was performed on [each pair of] the three variables.
The highest correlation between any two variables was r = .26, indicating indepen-
dence among the three dependent variables.

Source: Ivanov, B., Pfau, M., & Parker, K. A. (2009). Can inoculation withstand multiple attacks?
An examination of the effectiveness of the inoculation strategy compared to the supportive and
restoration strategies. Communication Research, 36(5), 655–676.

Relationship Strength

My final warning concerns the labels that researchers attach to their correlation
coefficients. There are no hard and fast rules that dictate when labels such as strong
or moderate or weak should be used. In other words, there is subjectivity involved
in deciding whether a given r is high or low. Not surprisingly, researchers are some-
times biased (by how they wanted their results to turn out) when they select an
adjective to describe their obtained rs. Being aware that this happens, you must
realize that you have the full right to look at a researcher’s r and label it however
you wish, even if your label is different from the researcher’s.

Consider Excerpt 3.28. In this passage, the researchers assert that two of the
obtained rs indicate “a moderate correlation.” Knowing now about how the coeffi-
cient of determination is computed and interpreted, you ought to be a bit hesitant to
swallow the researchers’ assertion that -.241 and -.186 are moderate correlations.
If squared and then turned into percentages, these rs indicate that income explained
less than 6 percent of the variability in either of the two divorce determinants
mentioned.
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EXCERPT 3.28 • Questionable Labels Used to Describe Relationships

Income also showed moderate correlations with divorce determinants such as incom-
petence in supporting family (–.241) and economic bankruptcy (–.186).

Source: Chun, Y., & Sohn, T. (2009). Determinants of consensual divorce in Korea: Gender,
socio-economic status, and life course. Journal of Comparative Family Studies, 40(5),
775–789.
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Empirical research articles focus on data that have been collected, summarized, and
analyzed. The conclusions drawn and the recommendations made in such studies can
be no better than the data on which they are based. As a consequence, most researchers
describe the quality of the instruments used to collect their data. These descriptions 
of instrument quality usually appear in the method section of the article, either in the
portion that focuses on materials or in the description of the dependent variables.

Regardless of where it appears, the description of instrument quality typically
deals with two measurement-related concepts—reliability and validity. In this
chapter, I discuss the meaning of these two concepts, various techniques employed
by researchers to assess the reliability and validity of their measuring instruments,
and numerical indices of instrument quality that are reported. My overall objective
here is to help you refine your skills at deciphering and evaluating reports of relia-
bility and validity.

Reliability

This discussion of reliability is divided into three sections. We begin by looking at
the core meaning of the term reliability. Next, we examine a variety of techniques
that researchers use to quantify the degree to which their data are reliable. Finally,
I provide five cautionary comments concerning reports of reliability that will help
you as you read technical research reports.

The Meaning of Reliability and the Reliability Coefficient

The basic idea of reliability is summed up by the word consistency. Researchers
can and do evaluate the reliability of their instruments from different perspectives,
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but the basic question that cuts across these various perspectives (and techniques)
is always the same: “To what extent can we say that the data are consistent?”

As you will see, the way in which reliability is conceptualized by researchers
can take one of three basic forms. In some studies, researchers ask, “To what degree
does a person’s measured performance remain consistent across repeated testings?”
In other studies, the question of interest takes a slightly different form: “To what ex-
tent do the individual items that go together to make up a test or an inventory consis-
tently measure the same underlying characteristic?” In still other studies, the concern
over reliability is expressed in the question, “How much consistency is there among
the ratings provided by a group of raters?” Despite the differences among these three
questions, the notion of consistency is at the heart of the matter in each case.

Different statistical procedures have been developed to assess the degree to
which a researcher’s data are reliable, and we will consider some of the more fre-
quently used procedures in a moment. Before doing that, however, I want to point
out how the different procedures are similar. Besides dealing, in one way or another,
with the concept of consistency, each of the reliability techniques leads to a single
numerical index. Called a reliability coefficient, this descriptive summary of the
data’s consistency normally assumes a value somewhere between 0.00 and �1.00,
with these two “end points” representing situations where consistency is either 
totally absent or totally present.

Different Approaches to Reliability

Test–Retest Reliability. In many studies, a researcher measures a single group of
people (or animals or things) twice with the same measuring instrument, with the
two testings separated by a period of time. The interval of time may be as short as
one day or it can be as long as a year or more. Regardless of the length of time between
the two testings, the researcher simply correlates the two sets of scores to find out
how much consistency is in the data. The resulting correlation coefficient is simply
renamed the test–retest reliability coefficient.1

With a test–retest approach to reliability, the resulting coefficient addresses
the issue of consistency, or stability, over time. For this reason, the test–retest reli-
ability coefficient is frequently referred to as the coefficient of stability. As with
other forms of reliability, coefficients of stability reflect high reliability to the extent
that they are close to 1.00.

In Excerpts 4.1 and 4.2, we see two examples of test–retest reliability. In the
first of these excerpts, there is no indication of the statistical procedure used to com-
pute the reliability coefficient. In cases like these, you will probably be right if you
guess that the stability coefficient came from Pearson’s correlation. (This is a safe
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1As you recall from Chapter 3, correlation coefficients can assume values anywhere between �1.00 and �1.00.
Reliability, however, cannot logically turn out to be negative. Therefore, if the test–retest correlation coefficient
turns out to be negative, it will be changed to 0.00 when relabeled as a reliability coefficient.
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bet, because test–retest reliability is typically estimated via r.) As shown in Excerpt
4.2, another technique used to estimate test–retest reliability is called the intraclass
correlation. The intraclass correlation procedure is quite versatile, and it can be
used for a variety of purposes (e.g., to see if ratings from raters are reliable). In the
case of a test–retest situation, all you need to know is that the intraclass correlation
yields the same estimate of reliability as does Pearson’s correlation.

With most characteristics, the degree of stability decreases as the interval be-
tween test and retest increases. For this reason, high coefficients of stability are
more impressive when the time interval is longer. If a researcher does not indicate
the length of time between the two testings, then the claims made about stability
must be taken with a grain of salt. Stability is not very convincing if a trait remains
stable for only an hour.

Alternate-Forms Reliability.2 Instead of assessing stability over time, researchers
sometimes measure people with two forms of the same instrument. The two forms are
similar in that they supposedly focus on the same characteristic (e.g., intelligence) of
the people being measured, but they differ with respect to the precise questions
included within each form. If the two forms do in fact measure the same thing (and if
they are used in close temporal proximity), we would expect a high degree of
consistency between the scores obtained for any examinee across the two testings.
With alternate-forms reliability, a researcher is simply determining the degree to
which this is the case.

2The terms parallel-forms reliability and equivalent-forms reliability are synonymous (as used by most
applied researchers) with the term alternate-forms reliability.

EXCERPTS 4.1–4.2 • Test–Retest Reliability

The total score [of the Harvey Developmental Scale] shows a test–retest reliability
of .95 after nine months and .96 after three years.

Source: Tremblay, K. N., Richer, L., Lachance, L., & Cote, A. (2010). Psychopathological
manifestations of children with intellectual disabilities according to their cognitive and adaptive
behavior profile. Research in Developmental Disabilities, 31(1), 57–9.

The first 20 participants were assessed twice for test–retest reproducibility. Their 1-wk
test–retest intraclass correlation coefficient (ICC) ranged from 0.92 to 0.99 across
the six muscles assessed.

Source: Lee, M. J., Kilbreath, S. L., Singh, M. F., Zeman, B., & Davis, G. M. (2010). Effect
of progressive resistance training on muscle performance after chronic stroke. Medicine and
Science in Sports and Exercise, 42(1), 23–34.
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To quantify the degree of alternate-forms reliability that exists, the researcher
administers two forms of the same instrument to a single group of individuals with
a short time interval between the two testings.3 After a score becomes available
for each person on each form, the two sets of data are correlated. The resulting
correlation coefficient is interpreted directly as the alternate-forms reliability 
coefficient.4 Many researchers refer to this two-digit value as the coefficient of
equivalence.

To see an example where this form of reliability was used, consider Excerpt 4.3.
Notice how the researcher points out that her alternate-forms reliability coefficient
(that turned out equal to .91) was found by simply correlating the participants’
scores on the two forms of the Situational Judgment Test (SJT). Most likely, this
correlation was a Pearson’s r. Note that the two forms of the SJT were equated in
terms of number of items, item difficulty, and the leadership dimensions dealt with.
Clearly, a concerted effort was made to make the two forms equivalent. Together,
the test development process and the extremely high correlation of .91 provide
strong evidence that the two forms were equivalent.

EXCERPT 4.3 • Alternate-Forms Reliability

Alternate forms reliability was assessed in Study 2. . . . Two forms of the SJT were
developed with items equated on difficulty and dimension representation. The 
resulting forms [had] 72 items each. A coefficient of equivalence showed a strong,
positive correlation between the two forms (r � .91), which indicates that the two
forms are equivalent measures and can used to similarly measure leadership ability.

Source: Grant, K. L. (2009). The validation of a situational judgment test to measure leadership
behavior. Unpublished master’s thesis. Western Kentucky University. Bowling Green, Kentucky.

3The two forms will probably be administered in a counterbalanced order, meaning that each instrument is
administered first to one-half of the examinees.
4As is the case with test–retest reliability, any negative correlation would be changed to 0. Reliability by defi-
nition has a lower limit of 0.

Internal Consistency Reliability. Instead of focusing on stability across time or
on equivalence across forms, researchers sometimes assess the degree to which
their measuring instruments possess internal consistency. When this perspective is
taken, reliability is defined as consistency across the parts of a measuring instrument,
with the “parts” being individual questions or subsets of questions. To the extent
that these parts “hang together” and measure the same thing, the full instrument is
said to possess high internal consistency reliability.

To assess internal consistency, a researcher need only administer a test (or
questionnaire) a single time to a single group of individuals. After all responses
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have been scored, one of several statistical procedures is then applied to the data,
with the result being a number between 0.00 and �1.00. As with test–retest and
equivalent-forms procedures, the instrument is considered to be better to the extent
that the resulting coefficient is close to the upper limit of this continuum of possible
results.

One of the procedures that can be used to obtain the internal consistency re-
liability coefficient involves splitting each examinee’s performance into two halves,
usually by determining how the examinee did on the odd-numbered items grouped
together (i.e., one half of the test) and the even-numbered items grouped together
(i.e., the other half). After each person’s total score on each half of the instrument
is computed, these two sets of scores are correlated. Once obtained, the r is inserted
into a special formula (called Spearman-Brown).The final numerical result is
called the split-half reliability coefficient.

Use of the split-half procedure for assessing internal consistency can be seen in
Excerpts 4.4 and 4.5. Note in the first excerpt what is in parentheses immediately after
the reliability coefficient is presented. This information clarifies that the Spearman-
Brown formula was used to “correct” the correlation (between the two seven-item
halves) in order to make the reliability estimate appropriate for a test of equal length
to the 14-item test being evaluated. The Spearman-Brown correction is needed be-
cause reliability tends to be higher for longer tests (and lower for shorter tests). The
Spearman-Brown correction formula “boosts” the correlation coefficient upwards
so as to undo the “damage” caused by splitting the test in half. In Excerpt 4.5, we
see an example of Guttman’s split-half reliability. The Guttman procedure is like
the normal split-half procedure, except that the former technique does not require
the two halves to have equal variances whereas the latter technique does.

EXCERPTS 4.4–4.5 • Split-Half Reliability

Reliability of the questionnaire was quantified using all 184 child responses. . . .
Additionally, split-half internal consistency method was employed to determine 
reliability. The reliability of the 14-item questionnaire was .56 (equal-length Spearman-
Brown, n � 184).

Source: Geller, K. S., Dzewaltowski, D. A., Rosenkranz, R. R., & Karteroliotis, K. (2009).
Measuring children’s self-efficacy and proxy efficacy related to fruit and vegetable consump-
tion. Journal of School Health, 79(2), 51–57.

The internal consistency of the scale was assessed [via] Guttman’s split-half
method. . . . Following the removal of six out of 22 items, [the] Guttman split-half
value for the remaining 16 items was 0.77.

Source: Maijala, H., Åstedt-Kurki, P., & Åstedt-Kurki, P. (2009). From substantive theory
towards a family nursing scale. Nurse Researcher, 16(3), 29–44.
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A second approach to assessing internal consistency is called Kuder-Richardson
#20 (K-R 20). This procedure, like the split-half procedure, uses data from a single
test that has been given just once to a single group of respondents. After the full test
is scored, the researcher simply puts the obtained data into a formula that provides
the K-R 20 reliability coefficient. The result is somewhat like a split-half reliabil-
ity, but better, because the split-half approach to assessing internal consistency
yields a result that can vary depending on which items are put in the odd-numbered
slots and which are placed in the even-numbered slots. In other words, if the items
that go together to make up a full test are “scrambled” in terms of the way they are
ordered, this likely affects the value of the split-half reliability coefficient. Thus,
whenever the split-half procedure is used to assess the reliability of a measuring in-
strument, we do not know whether the resulting reliability coefficient is favorable
(i.e., high) or unfavorable (i.e., low) as compared with what would have been the
case if the items had been ordered differently.

With K-R 20, the result is guaranteed to be neither favorable nor unfavorable,
because the formula for K-R 20 was designed to produce a result equivalent to what
you would get if you (1) scramble the order of the test items over and over again
until you have all possible orders, (2) compute a split-half reliability coefficient for
each of these forms of the test, and (3) take the mean value of those various coeffi-
cients. Of course, the researcher who wants to obtain the K-R 20 coefficient does
not have to go to the trouble to do these three things. A simple little formula is avail-
able that brings about the desired result almost instantaneously.

In Excerpts 4.6 and 4.7, we see an example of how Kuder-Richardson relia-
bility results are often reported in published research reports. In the first of these
excerpts, K-R 20 is used. In Excerpt 4.7, we see the use of K-R 21, a procedure that
once had the advantage (before computers) of being easier to compute. K-R 21 is
no longer used as much because its results are not quite as good as those provided
by K-R 20.

EXCERPTS 4.6–4.7 • Ruder-Richardson 20 and Kuder-Richardson 
21 Reliabilities

The reliability of internal consistency (KR-20) was .926.

Source: Chen, L., Ho, R., & Yen, Y. (2010). Marking strategies in metacognition-evaluated
computer-based testing. Journal of Educational Technology & Society, 13(1), 246–259.

The instrument [demonstrated] a Kuder-Richardson-21 (KR-21) reliability coefficient
of .70.

Source: Gallo, M. A., & Odu, M. (2009). Examining the relationship between class scheduling
and student achievement in college algebra. Community College Review, 36(4), 299–325.
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A third method for assessing internal consistency is referred to as coefficient
alpha, Cronbach’s alpha, or simply alpha. This technique is identical to K-R 20
whenever the instrument’s items are scored in a dichotomous fashion (e.g., “1” for
correct, “0” for incorrect). However, alpha is more versatile because it can be used
with instruments made up of items that can be scored with three or more possible
values. Examples of such a situation include (1) a four-question essay test, where
each examinee’s response to each question is evaluated on a 0–10 scale; or (2) a
Likert-type questionnaire where the five response options for each statement extend
from “strongly agree” to “strongly disagree” and are scored with the integers 5
through 1. Excerpts 4.8 and 4.9 show two instances in which Cronbach’s alpha was
used to evaluate internal consistency. These excerpts demonstrate the versatility of
Cronbach’s technique for assessing internal consistency, because the two instru-
ments used very different scoring systems. Whereas the instrument in Excerpt 4.8
had “1” or “0” scores (to indicate correct or incorrect responses to test questions),
the instrument in Excerpt 4.9 utilized a 5-point Likert-type response format aimed
at assessing the respondents’ attitudes.

EXCERPTS 4.8–4.9 • Coefficient Alpha Reliability

Comprehension test. It consisted of 32 items and responses were given using four
multiple-choice alternatives. . . . For each correct answer to a comprehension item
participants received one point, otherwise they received zero points. . . . Cronbach’s
alpha for the overall comprehension test was .76.

Source: de Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2010). Attention
guidance in learning from a complex animation: Seeing is understanding? Learning and
Instruction, 20, 111–122.

Students completed the empathic concern subscale [consisting] of 7 items (sample
item: “I often have tender, concerned feelings for people less fortunate than me”).
Items were rated on a 5-point scale ranging from 1 (does not describe me) to 5
(describes me very well). . . . Cronbach’s alpha for [this] subscale in the current
study was .76.

Source: McGinley, M., Carlo, G., Crockett, L. J., Raffaelli, M., Torres Stone, R. A., & Iturbide,
M. I. (2010). Stressed and helping: The relations among acculturative stress, gender, and
prosocial tendencies in Mexican Americans. Journal of Social Psychology, 150(1), 34–56.

Interrater Reliability

Researchers sometimes collect data by having raters evaluate a set of objects, pictures,
applicants, or whatever. To quantify the degree of consistency among the raters, the
researcher computes an index of interrater reliability. Five popular procedures for
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doing this include a percentage-agreement measure, Pearson’s correlation, Kendall’s
coefficient of concordance, Cohen’s kappa, and the intraclass correlation.

The simplest measure of interrater reliability involves nothing more than a
percentage of the occasions where the raters agree in the ratings they assign to what-
ever is being rated. In Excerpt 4.10, we see an example of this approach to inter-
rater reliability. This excerpt is instructional because it contains a clear explanation
of how the two reliability figures were computed.

EXCERPT 4.10 • Percentage Agreement as Measure of Interrater Reliability

An agreement was recorded if both observers identically scored the answer as correct
or incorrect. A disagreement was recorded if questions were not scored identically.
Percent agreement for each probe was calculated by dividing the number of agree-
ments by the number of agreements plus disagreements and multiplying by 100.
Interrater reliability for the first dependent variable was 94.6%. . . . Interrater relia-
bility for the second dependent variable was 97.7%.

Source: Mazzotti, V. L., Wood, C. L., Test, D. W., & Fowler, C. H. (2010). Effects of computer-
assisted instruction on students’ knowledge of the self-determined learning model of instruc-
tion and disruptive behavior. Journal of Special Education, in press.

EXCERPT 4.11 • Using Pearson’s r to Assess Interrater Reliability

Two high school English teachers, blind to students and to the study’s hypothesis,
rated each paper independently [on a 7-point Likert scale]. . . . Interobserver agree-
ment for holistic quality for the essays (using Pearson r) was .95.

Source: Jacobson, L. T., & Reid, R. (2010). Improving the persuasive essay writing of high
school students with ADHD. Exceptional Children, 76(2), 156–174.

The second method for quantifying interrater reliability uses Pearson’s product-
moment correlation. Whereas the percentage-agreement procedures can be used with
data that are categorical, ranks, or raw scores, Pearson’s procedure can be used only
when the raters’ ratings are raw scores. In Excerpt 4.11, we see an example of Pear-
son’s correlation being used to assess the interrater reliability among two raters.

Kendall’s procedure is appropriate for situations where each rater is asked
to rank the things being evaluated. If these ranks turn out to be in complete agree-
ment across the various evaluators, then the coefficient of concordance will turn
out equal to �1.00. To the extent that the evaluators disagree with one another,
Kendall’s procedure will yield a smaller value. In Excerpt 4.12, we see a case in
which Kendall’s coefficient of concordance was used.
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Kendall’s coefficient of concordance establishes how much interrater reliabil-
ity exists among ranked data. Cohen’s kappa accomplishes the same purpose when
the data are nominal (i.e., categorical) in nature. In other words, kappa is designed
for situations where raters classify the items being rated into discrete categories. If
all raters agree that a particular item belongs in a given category, and if there is a
total agreement for all items being evaluated (even though different items end up in
different categories), then kappa assumes the value of �1.00. To the extent that
raters disagree, kappa assumes a smaller value.

To see a case in which Cohen’s kappa was used, consider Excerpt 4.13. In the
study that provided this excerpt, the researchers examined 225 social networking
Web pages created by 17- to 20-year-olds. Each had a reference to alcohol. Two
raters classified each Web page in terms of preset categories (e.g., explicit or figu-
rative reference to alcohol). These categories were fully nominal in nature. Cohen’s
kappa was used to see how consistently the two raters assigned the Web pages to
the categories.

EXCERPT 4.12 • Kendall’s Coefficient of Concordance

A standardized measure of neurological dysfunction specifically designed for TBI
currently does not exist and the lack of assessment of this domain represents a sub-
stantial gap. To address this, the Neurological Outcome Scale for Traumatic Brain
Injury (NOS-TBI) was developed. . . . Overall interrater agreement between inde-
pendent raters (Kendall’s Coefficient of Concordance) for the NOS-TBI total score
was excellent (W � .995).

Source: McCauley, S. R., Wilde, E. A., Kelly, T. M., Weyand, A. M., Yallampalli, R., Waldron,
E. J., et al. (2010). The Neurological Outcome Scale for Traumatic Brain Injury (NOS-TBI):
II. Reliability and convergent validity. Journal of Neurotrauma, 27(6), 991–997.

EXCERPT 4.13 • Cohen’s Kappa

We evaluated 400 randomly selected public MySpace profiles of self-reported 17- to
20-year-olds. . . . Two authors (L.R.B. and M.M.) conducted the initial evaluation
to identify profiles with alcohol references. . . . 225 profiles contained references to
alcohol and were included in all analyses (56.3%). . . . Cohen’s Kappa statistic was
used to evaluate the extent to which there was agreement in the coding of the web
profiles before discussion [resolved differences of opinion]. The Kappa value for the
identification of references to alcohol use was 0.82.

Source: Moreno, M. M., Briner, L. R., Williams, A., Brockman, L., Walker, L., & Christakis,
D. A. (2010). A content analysis of displayed alcohol references on a social networking web
site. Journal of Adolescent Health, 47(2), 168–175.



Reliability and Validity 77

The final method for assessing interrater reliability to be considered here is
called intraclass correlation (ICC), a multipurpose statistical procedure, as it can
be used for either correlational or reliability purposes. Even if we restrict our think-
ing to reliability, ICC is still versatile. Earlier in this chapter, we saw a case where
the intraclass correlation was used to estimate test–retest reliability. Now, we con-
sider how ICC can be used to assess interrater reliability.

Intraclass correlation is similar to the other reliability procedures we have
considered in terms of the core concept being dealt with (consistency), the theoret-
ical limits of the data-based coefficient (0 to 1.00), and the desire on the part of the
researcher to end up with a value as close to 1.00 as possible. It differs from the
other reliability procedures in that there are several ICC procedures. The six most
popular of these procedures are distinguished by two numbers put inside parenthe-
ses following the letters ICC. For example, ICC (3,1) designates one of the six most
frequently used versions of intraclass correlation. The first number indicates which
of three possible statistical models has been assumed by the researchers to under-
lie their data. The second number indicates whether the researchers are interested
in the reliability of a single rater (or, one-time use of a measuring instrument) or in
the reliability of the mean score provided by a group of raters (or, the mean value
produced by using a measuring instrument more than once). The second number
within the parentheses is a 1 for the first of these two cases; if interest lies in the re-
liability of means, the second number is a value greater than 1 that designates how
many scores are averaged together to generate each mean.

I will not attempt to differentiate any further among the six main cases of ICC.
Instead, I simply want to point out that researchers should explain in their research
reports (1) which of the six ICC procedures was used and (2) the reason(s) behind
the choice made. You have a right to expect clarity regarding these two issues be-
cause the ICC-estimated reliability coefficient can vary widely depending on which
of the six available formulas is used to compute it.

In Excerpts 4.14 and 4.15, we see two examples where the intraclass correla-
tion was used to assess interrater reliability. Notice that the researchers associated
with the second of these excerpts indicate which of the six main types of ICC they
used—model 2 for a single rater. Because the coefficient provided by ICC can vary

EXCERPTS 4.14–4.15 • Intraclass Correlation

All participants wrote their personal vision, and [then] three raters rated the vision
statements according to definitions of challenge and imagery. . . . In our study, inter-
rater reliability was intraclass correlation coefficient (ICC) � .93 for challenging and
ICC � .87 for imagery.

Source: Masuda, A. D., Kane, T. D., Stoptaugh, C. F., & Minor, K. A. (2010). The role of a
vivid and challenging personal vision in goal hierarchies. Journal of Psychology, 144(3),
221–242.

(continued )
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widely depending on which of the six main formulas are used to obtain the intra-
class correlation, we have a right to think more highly about the information in the
second excerpt. It would have been even nicer if the authors of Excerpt 4.15 had
explained why they chose ICC (2,1) instead of other variations of this reliability
procedure.

The Standard Error of Measurement

Some researchers, when discussing reliability, present a numerical value for the
standard error of measurement (SEM) that can be used to estimate the range
within which a score would likely fall if a given measured object were to be re-
measured. To illustrate, suppose an intelligence test is administered to a group of
children, and also suppose that Tommy ends up with an IQ score of 112. If the SEM
associated with the IQ scores in this group were equal to 4, then we would build an
interval for Tommy (by adding 4 to 112 and subtracting 4 from 112) extending from
108 to 116. This interval, or confidence band, helps us interpret Tommy’s IQ be-
cause we can now say that Tommy would likely score somewhere between 108 and
116 if the same intelligence test were to be re-administered and if Tommy did not
change between the two testings.5

In a very real sense, the SEM can be thought of as an index of consistency
that is inversely related to reliability. To the extent that reliability is high, the SEM
is small (and vice versa). There is one other main difference between these two
ways of assessing consistency. Reliability coefficients are tied to a scale that extends
from 0 to 1.00, and in this sense they are completely “metric free.” In contrast, an
SEM is always tied to the nature of the scores generated by a test, and in this sense
it is not “metric free.” Simply stated, the continuum for reliability coefficients has
no units of measurement, whereas the SEM is always “in” the same measurement
units as are the scores around which confidence bands are built.

In Excerpt 4.16, we see a case in which the SEM was used in study dealing
with stroke victims. In part of their investigation, the researchers compared four dif-
ferent ways of measuring upper-extremity mobility in patients: the Fugl-Meyer

5By creating an interval via the formula “score±SEM,” we end up with a 68 percent confidence band. If we
double or triple the SEM within this little formula, we end up with a 95 percent or a 99 percent confidence
band, respectively.

The interrater reliability of the BESTest total scores was excellent, with an ICC (2,1)
of .91.

Source: Horak, F. B., Wrisley, D. M., & Frank, J. (2009). The Balance Evaluation Systems
Test (BESTest) to differentiate balance deficits. Physical Therapy, 89(5), 484–498.

EXCERPTS 4.14–4.15 • (continued)
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Warning about Reliability

Before we turn to the topic of validity, there are five important warnings about re-
liability to which you should become sensitive. It would be nice if all researchers
were also aware of these five concerns; unfortunately, that is not the case.

First, keep in mind that different methods for assessing reliability consider the
issue of consistency from different perspectives. Thus, a high coefficient of stabil-
ity does not necessarily mean that internal consistency is high (and vice versa).
Even within the internal consistency category, a high value for split-half reliability
does not necessarily mean that K-R 20 would be equally high for the same data.
The various methods for assessing reliability accomplish different purposes, and the
results do not necessarily generalize across methods. Because of this, I like to see
various approaches to reliability used within the same study.

My second warning concerns the fact that reliability coefficients really apply
to data and not to measuring instruments. To understand the full truth of this claim,
imagine that a test designed for a college-level class in physics is administered twice
to a group of college students, producing a test–retest reliability coefficient of .90.
Now, if that same test is administered on two occasions to a group of first-grade 
students (with the same time interval between test and retest), the coefficient of sta-
bility would not be anywhere near .90. (The first graders would probably guess at
all questions, and the test–retest reliability for this younger group most likely would

EXCERPT 4.16 • Standard Error of Measurement

We quantified random measurement errors with the standard error of measurement
(SEM). . . . Our findings suggest that changes of more than 6 points, 3 points, 4 points,
and 12 points in the total scores on the UE-FM (highest possible score: 66), UE-
STREAM (20), ARAT (57), and WMFT (75), respectively, for each patient assessed
by an individual rater are not likely to be attributable to chance variation or measure-
ment error and can be interpreted by clinicians as a real change with 95% confidence.

Source: Lin, J., Hsu, M., Sheu, C., Wu, T., Lin, R., Chen, C., et al. (2009). Psychometric com-
parisons of 4 measures for assessing upper-extremity function in people with stroke. Physical
Therapy, 89(8), 840–850.

Motor Test (UE-FM), the Stroke Rehabilitation Assessment of Movement (UE-
STREAM), the Action Research Arm Test (ARAT), and the Wolf Motor Function
Test (WMFT). In this excerpt, the number 6 associated with the UE-FM came about
by doubling that test’s SEM. (Similarly, the numbers 3, 4, and 12 are twice as large
as the other tests’ SEMs.) We know this because the researchers report that a change
of more than 6 points “can be interpreted by clinicians as a real change with 95%
confidence.”
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end up close to 0.00.) Try to remember, therefore, that reliability is conceptually
and computationally connected to the data produced by the use of a measuring 
instrument, not to the measuring instrument as it sits on the shelf.

Excerpts 4.17 and 4.18 illustrate the fact that reliability is a property of data,
not of the instrument that produces the data. Reliability can vary across groups that
vary in gender, age, health status, profession, or any number of other characteristics.
As Excerpt 4.18 illustrates, reliability can also vary depending on the timing or con-
ditions under which the test is administered.

EXCERPTS 4.17–4.18 • Different Reliabilities from Different Samples
and Days

The [test–retest] correlation for grades 2–5 was .51; for the eighth graders, the cor-
relation was .62; and for the adults, the correlation was .68, indicating increased re-
liability among older students.

Source: Pitts, J. (2009). Identifying and using a teacher-friendly learning-styles instrument.
Clearing House, 82(5), 225–232.

An interesting finding with the INV-R was the variation in coefficient alpha accord-
ing to day of measurement. . . . On day 1 of the cycle, the alpha was 0.71; on day 2,
it rose to 0.75, and on day 3, it was 0.84.

Source: Ingersoll, G. L., Wasilewski,A., Haller, M. E., Pandya, K., Bennett, J., He, H., et al. (2010).
Effect of Concord Grape Juice on chemotherapy-induced nausea and vomiting: Results of a
pilot study. Oncology Nursing Forum, 37(2), 213–221.

Some researchers realize that reliability is a property of scores produced by
the administration of a measuring instrument (rather than a property of the printed
instrument itself). With this in mind, they not only cite reliability coefficients ob-
tained by previous researchers who used the same instrument, but also gather reli-
ability evidence within their own investigation. This practice is not widely
practiced, unfortunately. Most of the time, researchers simply reiterate the reliabil-
ity evidence gathered earlier by previous researchers who developed or used the
same instrument. Those researchers who take the extra time to assess the reliability
of the data gathered in their own investigation deserve credit for knowing that reli-
ability ought to be reestablished in any current study.

My next warning calls on you to recognize that any reliability coefficient is
simply an estimate of consistency. If a different batch of examinees or raters is used,
you should expect the reliability coefficient to be at least slightly different—even if
the new batch of examinees or raters contains people who are highly similar to the
original ones. If the groups are small, there would probably be more fluctuation in
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the reliability coefficient than if the groups are large. Accordingly, place more faith
in the results associated with large groups. Regardless of how large the group of ex-
aminees or raters is, however, give credit to researchers who use the word estimated
in conjunction with the word reliability.

Another important warning concerns estimates of internal consistency. If 
a test is administered under great time pressure, the various estimates of internal
consistency—split-half, K-R 20, and coefficient alpha—will be spuriously high
(i.e., too big). Accordingly, do not be overly impressed with high internal consis-
tency reliability coefficients if data have been collected under a strict time limit or
if there is no mention as to conditions under which the data were collected.

Finally, keep in mind that reliability is not the only criterion that should be
used to assess the quality of data. A second important feature of the data produced
by measuring instruments (or raters) has to do with the concept of validity. The re-
maining portion of this chapter is devoted to a consideration of what validity means
and how it is reported.

Validity

Whereas the best one-word synonym for reliability is consistency, the core essence
of validity is captured nicely by the word accuracy. From this general perspective,
a researcher’s data are valid to the extent that the results of the measurement process
are accurate. Stated differently, a measuring instrument is valid to the extent that it
measures what it purports to measure.

In this portion of the chapter, we first consider the relationship between reli-
ability and validity. Next, we examine several of the frequently used procedures for
assessing validity. Finally, I offer a few warnings concerning published claims that
you may see about this aspect of data quality.

The Relationship between Reliability and Validity

It is possible for a researcher’s data to be highly reliable even though the measur-
ing instrument does not measure what it claims to measure. However, an instru-
ment’s data must be reliable if they are valid. Thus, high reliability is a necessary
but not sufficient condition for high validity. A simple example may help to make
this connection clear.

Suppose a test is constructed to measure the ability of fifth-grade children to
solve arithmetic word problems. Also suppose that the test scores produced by an
administration of this test are highly reliable. In fact, let’s imagine that the coeffi-
cient of stability turns out equal to the maximum possible value, �1.00. Even
though the data from our hypothetical test demonstrate maximum consistency over
time, the issue of accuracy remains unclear. The test may be measuring what it
claims to measure—math ability applied to word problems; however, it may be that
this test really measures reading ability.
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Now, reverse our imaginary situation. Assume for the moment that all you
know is that the test is valid. In other words, assume that this newly designed mea-
suring instrument does, in fact, produce scores that accurately reflect the ability of
fifth graders to solve arithmetic word problems. If our instrument produces scores
that are valid, then those scores, of necessity, must also be reliable. Stated differ-
ently, accuracy requires consistency.

Different Kinds of Validity

In published articles, researchers often present evidence concerning a specific kind
of validity. Validity takes various forms because there are different ways in which
scores can be accurate. To be a discriminating reader of the research literature, you
must be familiar with the purposes and statistical techniques associated with the
popular validity procedures. The three most frequently used procedures are content
validity, criterion-related validity, and construct validity.

Content Validity. With certain tests, questionnaires, or inventories, an important
question concerns the degree to which the various items collectively cover the
material that the instrument is supposed to cover. This question can be translated
into a concern over the instrument’s content validity. Usually, an instrument’s
standing with respect to content validity is determined simply by having experts
carefully compare the content of the test against a syllabus or outline that specifies the
instrument’s claimed domain. Subjective opinion from such experts establishes—or
does not establish—the content validity of the instrument.

In Excerpt 4.19, we see a case in which content validity is discussed by a team
of researchers. As you will see, these researchers were extremely thorough in their
effort to assess—and improve—the content validity of the new measuring instru-
ment they had developed.

EXCERPT 4.19 • Content Validity

In order to establish the content validity, the questionnaire was sent to a panel of six
experts (three sports management faculty members and three martial arts instruc-
tors). The panel members were given the conceptual definitions of each motivation
factor and instructed to retain items based on their relevance and representation of
the factors and clarity of wording. Based on the feedback received, items that were
unclear, irrelevant or redundant (four items) were eliminated. Additional modifica-
tions were made on a number of items, mainly to clarify wording. The questionnaire
was then field-tested on a group of college students (N � 10) who are currently in-
volved in some form of martial arts. They were asked to further analyse the clarity,
wording and relevance of the items.

Source: Ko, Y. J., Kim, Y. K., & Valacich, J. (2010). Martial arts participation: Consumer mo-
tivation. International Journal of Sports Marketing & Sponsorship, 11(2), 105–123.
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Criterion-Related Validity. Researchers sometimes assess the degree to which
their new instruments provide accurate measurements by comparing scores from
the new instrument with scores on a relevant criterion variable. The new instrument
under investigation might be a short, easy-to-give intelligence test, and in this case
the criterion would probably be an existing reputable intelligence test (possibly 
the Stanford-Binet). Or, maybe the new test is an innovative college entrance
examination; hence, the criterion variable would be a measure of academic success
in college (possibly grade point average). The validity of either of those new tests
would be determined by (1) finding out how various people perform on the new 
test and on the criterion variable, and (2) correlating these two sets of scores. 
The resulting r is called the validity coefficient, with high values of r indicating
high validity.

There are two kinds of criterion-related validity. If the new test is adminis-
tered at about the same time that data are collected on the criterion variable, then
the term concurrent validity is used. Continuing the first example provided in the
preceding paragraph, if people were given the new and existing intelligence tests
with only a short time interval between their administrations, the correlation be-
tween the two data sets would speak to the issue of concurrent validity. If, however,
people were given the new test years before they took the criterion test, then r would
be a measure of predictive validity.

In Excerpts 4.20 and 4.21, we see cases where the expressed concern of the
researchers was with concurrent and predictive validity. In these excerpts, note that
bivariate correlation coefficients—most likely Pearson’s rs—were used to evaluate
the criterion-related validity of the tests being investigated.

EXCERPTS 4.20–4.21 • Concurrent and Predictive Validity

The LEP is intended to assess learners’ level of cognitive development [and] has
demonstrated moderate concurrent validity with other developmental measures 
designed to measure similar concepts (.46 to .57 with the MID: Measure of Intel-
lectual Development).

Source: Granello, D. H. (2010). Cognitive complexity among practicing counselors:
How thinking changes with experience. Journal of Counseling & Development, 88(1),
92–100.

The predictive validation study of the GMAT was [assessed] via Pearson correlation
analysis. . . . Its correlation with GPA at the end of the MBA program was .60.

Source: Koys, D. (2010). GMAT versus alternatives: Predictive validity evidence from Central
Europe and the Middle East. Journal of Education for Business, 85(3), 180–185.
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You may come across a research report in which the generic term criterion-
related validity is used. When you do, you may have to make a guess as to whether
reference is being made to concurrent validity or to predictive validity. Usually, you
will have no difficulty figuring this out. Just ask yourself: Were the criterion data
collected at the same time as or later than the test data associated with the test that
is being validated?

Construct Validity. Many measuring instruments are developed to reveal how
much of a personality or psychological construct is possessed by the examinees to
whom the instrument is administered. To establish the degree of construct validity
associated with such instruments, the test developer (as well as the test’s users)
ought to do one or a combination of three things: (1) provide correlational evidence
showing that the construct has a strong relationship with certain measured variables
and a weak relationship with other variables, with the strong and weak relationships
conceptually tied to the new instrument’s construct in a logical manner; (2) show
that certain groups obtain higher mean scores on the new instrument than other
groups, with the high- and low-scoring groups being determined on logical grounds
prior to the administration of the new instrument; or (3) conduct a factor analysis on
scores from the new instrument.

Excerpt 4.22 provides an example of the first of these approaches to construct
validity. This excerpt deserves your close attention because it contains a clear ex-
planation of how correlational evidence is examined for the purpose of establishing
convergent validity and discriminant (divergent) validity.

EXCERPT 4.22 • Construct Validity Using Correlations

To estimate construct validity of the questionnaires measuring social anxiety 
disorder, we used the following criteria. . . . (a) The intercorrelations of LSAS,
SIAS, and SPS should be large and significantly differ from zero (convergent 
validity). (b) The correlations between these measures should be larger than their
respective correlations to the other questionnaires (MADRS-S, BAI, and QOLI)
because of the latters’ intention to measure other constructs (discriminant valid-
ity). [Results] showed high convergent validity and fully met the criterion of cor-
relations being strong among social anxiety disorder questionnaires. Regarding
discriminant validity, the social anxiety disorder measures were uncorrelated or
correlated to a lesser degree with QOLI than with each other, indicating discrim-
inant validity.

Source: Hedman, E., Ljótsson, B., Rück, C., Furmark, T., Carlbring, P., Lindefors, N., et al.
(2010). Internet administration of self-report measures commonly used in research on so-
cial anxiety disorder: A psychometric evaluation. Computers in Human Behavior, 26,
736–740.
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It is not always easy to demonstrate that a measuring instrument is involved
in a network of relationships where certain of those relationships are strong whereas
others are weak. However, claims of construct validity are more impressive when
evidence regarding both convergent and discriminant validity is provided. Of course,
not all measuring instruments are created to deal with personality or psychological
constructs, and even those that can be validated with non-correlational evidence.
When you do encounter validation evidence like that illustrated in Excerpt 4.22,
give some “bonus points” (in your evaluation) to those researchers who have utilized
the two-pronged approach.6

In Excerpt 4.23, we see an example of the “known group” approach to con-
struct validity. In the study associated with this excerpt, the researchers investigated
the validity of a new test designed to assess an examinee’s knowledge of coronary
heart disease. In this study, the evidence for construct validity came from showing
that a group of experienced cardiovascular nurses could perform better on the test
than a group of patients admitted to the hospital.

6Unfortunately, some researchers make the mistake of thinking that discriminant validity is supported by mod-
erate or strong negative correlations. When evidence for construct validity is gathered via convergent and dis-
criminant correlations, the appropriate two “opposites” are not rs that are positive and negative, but rather
ones that are high and low.

EXCERPT 4.23 • Construct Validity Using Comparison Groups

Forty-nine women who had no prior CHD and presented to a primary care office for
their routine medical care were recruited for the study by the office staff as the control
group (Group 1). . . . Twenty-three female registered cardiovascular nurses who rou-
tinely cared for cardiac patients in a Midwest hospital were recruited by one of the re-
searchers as a known group (Group 2) for the known group validity test. . . . Based on
their education and clinical expertise, these cardiovascular nurses were expected to
have higher CHD knowledge scores than laywomen without any organized educational
program. . . . Statistical analyses were [conducted] to evaluate the construct validity of
the new CHD knowledge tool by [investigating] the tool’s ability to differentiate the
control group (Group 1) from a known group (Group 2) in the known group validity
test. . . . The significantly lower CHD knowledge scores of the control group in com-
parison to that of cardiovascular nurses provides a known group validity of the tool.

Source: Thanavaro, J. L., Thanavaro, S., & Delicath, T. (2010). Coronary heart disease knowl-
edge tool for women. Journal of the American Academy of Nurse Practitioners, 22(2), 62–69.

The third procedure frequently used to assess construct validity involves a 
sophisticated statistical technique called factor analysis. I discuss the details of 
factor analysis in Chapter 20. For now, I simply want you to see an illustration of



86 Chapter 4

how the results of such an investigation are typically summarized. I do not expect
you to understand everything in Excerpt 4.24; my only purpose in presenting it is
to alert you to the fact that construct validity is often assessed statistically using
technique called factor analysis.

7This is true for all varieties of validity except content validity.

EXCERPT 4.24 • Construct Validity Using Factor Analysis

Construct validity was established for the noncognitive scales (i.e., affective mea-
sures and self-reported data) through factor analyses using the data from the sixth-
and eighth-grade samples in this study. The results of the factor analyses for these
scales of the MSLES revealed that the one factor model for each scale was the best
fit, confirming that each scale was unidimensional.

Source: McBeth, W., & Volk, T. L. (2010). The National Environmental Literacy Project: A
baseline study of middle grade students in the United States. Journal of Environmental Edu-
cation, 41(1), 55–67.

Warnings about Validity Claims

Before concluding our discussion of validity, I want to sensitize you to a few con-
cerns regarding validity claims. Because researchers typically have a vested inter-
est in their studies, they are eager to have others believe that their data are accurate.
Readers of research literature must be on guard for unjustified claims of validity and
for cases where the issue of validity is not addressed at all.

First, remember that reliability is a necessary but not sufficient condition for
validity. Accordingly, do not be lulled into an unjustified sense of security con-
cerning the accuracy of research data by a technical and persuasive discussion of
consistency. Reliability and validity deal with different concepts, and a presentation
of reliability coefficients—no matter how high—should not cause one’s concern for
validity to evaporate.

Next, keep in mind that validity (like reliability) is really a characteristic of
the data produced by a measuring instrument and not a characteristic of the mea-
suring instrument itself.7 If a so-called valid instrument is used to collect data from
people who are too young or who cannot read or who lack any motivation to do
well, then the scores produced by that instrument will be of questionable validity.
The important point here is simply this: The people used by a researcher and the
conditions under which measurements are collected must be similar to the people
and conditions involved in validation studies before you should accept the re-
searcher’s claim that his or her research data are valid because those data came from
an instrument having “proven validity.”
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My third warning concerns content validity. Earlier, I indicated that this form
of validity usually involves a subjective evaluation of the measuring instrument’s
content. Clearly, this evaluation ought to be conducted by individuals who possess
(1) the technical expertise to make good judgments as to content relevance and (2)
a willingness to provide, if necessary, negative feedback to the test developer. When
reporting on efforts made to assess content validity, researchers should describe in
detail who examined the content, what they were asked to do, and how their evalu-
ative comments turned out.

With respect to criterion-related and construct validity, a similar warning
seems important enough to mention. With these approaches to assessing validity,
scores from the instrument being validated are correlated with the scores associated
with one or more “other” variables. If the other variables are illogical or if the va-
lidity of the scores associated with such variables is low, then the computed valid-
ity coefficients conceivably could make a truly good instrument look as if it is
defective (or vice versa). Thus, regarding the predictive, concurrent, or construct va-
lidity of a new measuring instrument, the researcher should first discuss the quality
of the data that are paired with the new instrument’s data.

My next warning concerns the fact that the validity coefficients associated
with criterion-related or construct probes are simply estimates, not definitive state-
ments. Just as with reliability, the correlation coefficients reported to back up claims
of validity would likely fluctuate if the study were to be replicated with a new batch
of examinees. This is true even if the test-takers in the original and replicated stud-
ies are similar. Such fluctuations can be expected to be larger if the validity coeffi-
cients are based on small groups of people; accordingly, give researchers more
credit when their validity investigations are based on large groups.

Finally, keep in mind that efforts to assess predictive and concurrent validity
utilize correlation coefficients to estimate the extent to which a measuring instru-
ment can be said to yield accurate scores. When construct validity is dealt with by
assessing an instrument’s convergent/discriminant capabilities or by conducting a
factor analysis, correlation again is the vehicle through which validity is revealed.
Because correlation plays such a central role in the validity of these kinds of in-
vestigations, it is important for you to remember the warnings about correlation that
were presented near the end of Chapter 3. In particular, do not forget that pro-
vides a better index of a relationship’s strength than does r.

Final Comments

Within this discussion of reliability and validity, I have not addressed a question that
most likely passed through your mind at least once as we considered different pro-
cedures for assessing consistency and accuracy: “How high must the reliability and
validity coefficients be before we can trust the results and conclusions of the
study?” Before leaving this chapter, I want to answer this fully legitimate question.

r2
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For both reliability and validity, it would be neat and tidy if there were some
absolute dividing point (e.g., .50) that separates large from small coefficients. Un-
fortunately, no such dividing point exists. In evaluating the reliability and validity
of data, the issue of “large enough” has to be answered in a relative manner. The
question that the researcher (and you) should ask is, “How do the reliability and
validity of data associated with the measuring instrument(s) used in a given study
compare with the reliability and validity of data associated with other available in-
struments?” If the answer to this query about relative quality turns out to be “pretty
good,” then you should evaluate the researcher’s data in a positive manner—even if
the absolute size of reported coefficients leaves lots of room for improvement.

My next comment concerns the possible use of multiple methods to assess in-
strument quality. Because there is no rule or law that prohibits researchers from
using two or more approaches when estimating reliability or validity, it is surpris-
ing that so many research reports contain discussions of one and (if validity is dis-
cussed at all) only one kind of validity. That kind of research report is common
because researchers typically overlook the critical importance of having good data
to work with and instead seem intent on quickly analyzing whatever data have been
collected. Give credit to those few researchers who present multiple kinds of evi-
dence when discussing reliability and validity.

My third point is simple: Give credit to a researcher who indicates that he or
she considered the merits of more than one measuring instrument before deciding
on which test or survey to use. Too many researchers, I fear, decide first that they
want to measure a particular trait or skill and then latch on to the first thing they see
or hear about that has a name that matches that trait or skill. In Excerpt 4.25, we
see an example of a better way of going about instrument selection. (In this excerpt,
note that the third criterion includes a consideration of reliability and validity.)

EXCERPT 4.25 • Reasons Provided as to Why a Given Instrument 
Was Selected

Eight survey instruments that measured trust were evaluated using predetermined
criteria.

The criteria described an instrument that (1) measures trust on a continuum
scale; (2) has a short completion time (<10 min); (3) is available, reliable, and valid;
and (4) has the ability to measure multiple dimensions of trust. The Organizational
Trust Index (OTI) survey instrument was selected for use in this study as it best met
the established criteria, including the ability to measure the five dimensions of trust
identified during the literature review.

Source: Alston, F., & Tippett, D. (2009). Does a technology-driven organization’s culture 
influence the trust employees have in their managers? Engineering Management Journal,
21(2), 3–10.
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My last general comment about reliability and validity is related to the fact
that data quality, by itself, does not determine the degree to which a study’s results
can be trusted. It is possible for a study’s conclusions to be totally worthless even
though the data analyzed possess high degrees of reliability and validity. A study
can go down the tubes despite the existence of good data if the wrong statistical pro-
cedure is used to analyze data, if the conclusions extend beyond what the data le-
gitimately allow, or if the design of the study is deficient. Reliability and validity
are important concepts to keep in mind as you read technical reports of research in-
vestigations, but other important concerns must be attended to as well.
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In Chapters 2 through 4, we considered various statistical procedures that are
used to organize and summarize data. At times, the researcher’s sole objective is
to describe the people (or things) in terms of the characteristic(s) associated 
with the data. When that is the case, the statistical task is finished as soon as the
data are displayed in an organized picture, are reduced to compact indices (e.g.,
the mean and standard deviation), are described in terms of distributional shape,
are evaluated relative to the concerns of reliability and validity, and, in the case
of a bivariate concern, are examined to discern the strength and direction of a 
relationship.

In many instances, however, the researcher’s primary objective is to draw con-
clusions that extend beyond the specific data that are collected. In this kind of study,
the data are considered to represent a sample—and the goal of the investigation is
to make one or more statements about the larger group of which the sample is only
a part. Such statements, when based on sample data but designed to extend beyond
the sample, are called statistical inferences. Not surprisingly, the term inferential
statistics is used to label the portion of statistics dealing with the principles and
techniques that allow researchers to generalize their findings beyond the actual data
sets obtained.

In this chapter, we consider the basic principles of inferential statistics. We
begin by considering the simple notions of sample, population, and scientific
guess. Next, we take a look at eight of the main types of samples used by applied
researchers. Then we consider certain problems that crop up to block a researcher’s
effort to generalize findings to the desired population. Finally, a few tips are 
offered concerning specific things to look for as you read professional research
reports.

C H A P T E R 5
Foundations of 
Inferential Statistics
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Statistical Inference

Whenever a statistical inference is made, a sample is first extracted (or is considered
to have come from) a larger group called the population. Measurements are then
taken on the people or objects that compose the sample. Once these measurements
are summarized—for example, by computing a correlation coefficient—an educated
guess is made as to the numerical value of the same statistical concept (which, in our
example, would be the correlation coefficient) in the population. This educated guess
as to the population’s numerical characteristic is the statistical inference.

If measurements could be obtained on all people (or objects) contained in the
population, statistical inference would be unnecessary. For instance, suppose the
coach of the girls’ basketball team at a local high school wants to know the median
height of 12 varsity team members. It would be silly for the coach to use inferen-
tial statistics to answer this question. Instead of the coach making an educated guess
as to the team’s median height (after seeing how tall a few of the girls are), it would
be easy to measure the height of each member of the varsity team and then obtain
the precise answer to the question.

In many situations, researchers cannot answer their questions about their pop-
ulations as easily as could the coach in the basketball example. Two reasons seem
to account for the wide use of inferential statistics. One of these explanations con-
cerns the measurement process, whereas the other concerns the nature of the pop-
ulation. Because inferential statistics are used so often by applied researchers, it is
worthwhile to pause for a moment and consider these two explanations as to why
only portions of populations are measured, with educated guesses being made on
the basis of the sample data.

First of all, it is sometimes too costly (in dollars or time) to measure every
member of the population. For example, the intelligence of all students in a high
school cannot be measured with an individual intelligence test because (1) teachers
would be upset by having each student removed from classes for two consecutive pe-
riods to take the test and (2) the school’s budget would not contain the funds needed
to pay a psychologist to do this testing. In this situation, it would be better for the
principal to make an educated guess about the average intelligence of the high school
students than to have no data-based idea whatsoever as to the students’ intellectual
capabilities. The principal’s guess about the average intelligence is based on a sam-
ple of students taken from the population made up of all students in the high school.
In this example, the principal is sampling from a tangible population because each
member of the student body could end up in the sample and be tested.

The second reason for using inferential statistics is even more compelling than
the issue of limited funds and time. Often, the population of interest extends into
the future. For example, the high school principal in the previous example proba-
bly would like to have information about the intellectual capabilities of the school’s
student body so improvements in the curriculum could be made. Such changes are
made on the assumption that next year’s students will not be dissimilar from this
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year’s students. Even if the funds and time could be found to administer an indi-
vidual intelligence test to every student in the school, the obtained data would be
viewed as coming from a portion of the population of interest. That population is
made up of students who attend the school now plus students who follow in their
footsteps. Clearly, measurements cannot be obtained from all members of such a
population because a portion of the population has not yet “arrived on the scene.”
In this case, the principal creates an abstract population to fit an existing sample.

Several years ago, I participated as a subject in a study to see if various lev-
els of consumed oxygen have an effect, during strenuous exercise, on blood com-
position. The researcher who conducted this study was interested in what took place
physiologically during exercise on a stationary bicycle among non-sedentary young
men between the ages of 25 and 35. That researcher’s population was not just 
active males who were 25–35 years old at the time of the investigation. The popu-
lation was defined to include active males who would be in this age range at the
time the research summary got published—approximately 18 months following the
data collection. Inferential statistics were used because the research participants of
the investigation were considered to be a representative sample of a population of
similar individuals that extended into the future.

To clarify the way statistical inference works, consider the two pictures in
Figure 5.1. These pictures are identical in that (1) measurements are taken only on
the people (or objects) that compose the sample; (2) the educated guess, or inference,
extends from the sample to the population; and (3) the value of the population char-
acteristic is not known (nor can it ever be known as a result of the inferential
process). Although these illustrations show that the inference concerns the mean, the
pictures could have been set up to show that the educated guess deals with the me-
dian, the variance, the product–moment correlation, or any other statistical concept.

As you can see, the only differences between the two pictures involve the solid
versus dotted nature of the larger circle and the black arrows. In the top picture, the
population is tangible in nature, with each member within the larger circle available
for inclusion in the sample. When this is the case, the researcher actually begins
with the population and then ends up with the sample. In Figure 5.1, the lower pic-
ture is meant to represent the inferential setup in which the sequence of events is
reversed. Here, the researcher begins with the sample and then creates an abstract
population that is considered to include people (or objects) like those included in
the sample.

Excerpts 5.1 and 5.2 illustrate the distinction between tangible and abstract
populations. In the first of these excerpts, the population was made up all residents
of Cyprus who were listed in the phone directory. This was a tangible population
because (1) every person in the population had a unique name and phone number
and (2) any of those individuals could have ended up in the sample. In Excerpt 5.2,
the population was abstract. The people who composed the sample in this study
were not “pulled from” (i.e., drawn out of) a larger group; instead, they got into the
sample because they voluntarily responded to recruitment advertisements. Because
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(a) Sampling from a tangible population

(b) Creation of an abstract population
to fit an existing sample

FIGURE 5.1 Two Kinds of Sample/Population Situations

EXCERPT 5.1–5.2 • Tangible and Abstract Populations

This study is one of the very first research projects on Mental Health (MH) issues in
Cyprus and, to the author’s best knowledge, the first community assessment with the
public at large as evaluator. . . . All study participants were randomly selected from
the phone directory, which lists citizens’ phone numbers in alphabetical order.
Specifically, all directory pages were numbered, and then the table of random digits
was consulted to select a page at random. All the names on the selected page were
again numbered, and the table of random digits was once again consulted to select
prospective participants.

Source: Georgiades, S. (2009). Mental health in Cyprus: An exploratory investigation.
International Journal of Mental Health, 38(2), 3–20.

(continued )
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the researchers associated with Excerpt 5.2 used inferential statistics with the data
collected from their research participants, it is clear that they wanted to generalize
the study’s findings beyond those specific individuals. Thus, the population in this
study was abstract because it existed only hypothetically as a larger “mirror image”
of the sample.

The Concepts of Statistic and Parameter

When researchers engage in inferential statistics, they must deal with four questions
before they can make their educated guess, or inference, that extends from the sam-
ple to the population:

1. What is/are the relevant population(s)?
2. How will a sample be extracted from each population of interest, presuming

the population(s) is/are tangible in nature?
3. What characteristic of the sample people, animals, or objects will serve as the

target of the measurement process?
4. What will be the study’s statistical focus?

The first of these four questions is completely up to the researcher and is dic-
tated by the study’s topical focus. The second question is considered in detail in the
next section. The third question, of course, is answered when the researcher decides
what to study.1 The notion of a measurement process is also involved in this question,
thus making the issues of reliability and validity (covered in Chapter 4) important to
consider when judging whether the researcher did an adequate job in measuring the

1You may, at times, disagree with the researcher as to whether the characteristic of the people, animals, or objects
in the population is important. Nevertheless, I doubt that you will ever experience difficulty determining what
variables were examined. A clear answer to this question is usually contained in the article’s title, the statement
of purpose, or the discussion of dependent variables.

Individuals were recruited for a large online study using a wide variety of different
methods (e.g., posters, business cards, online and magazine ads, e-mail listserv 
announcements, and snowball sampling from existing participants). All advertising
directed potential participants to a Web site that described the study, eligibility, and
incentives. Interested participants completed a brief demographic questionnaire and
provided contact information.

Source: Holmberg, D., Blair, K. L., & Phillips, M. (2010). Women’s sexual satisfaction as a
predictor of well-being in same-sex versus mixed-sex relationships. Journal of Sex Research,
47(1), 1–11.

EXCERPTS 5.1–5.2 • (continued)
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research participants. This brings us to the fourth question, a concern for the statistical
focus of the inference.

After the researcher has measured the sample on the variable(s) of interest,
there are many alternative ways in which the data can be summarized. The researcher
could compute, for example, a measure of central tendency, a measure of variability,
a measure of skewness, or a measure of relationship. However, even within each of
these broad categories, the researcher has alternatives as to how the data will be sum-
marized. With central tendency, for example, the researcher might decide to focus on
the median rather than on the mean or the mode. If relationship is the issue of inter-
est, a decision might be made to compute Pearson’s product–moment correlation 
coefficient rather than other available correlational indices. The term statistical focus
is used simply to indicate the way in which the data are summarized.

Regardless of how a researcher decides to analyze the sample data, there will
always be two numerical values that correspond to the study’s statistical focus. One
of these is “in” the sample—and it can be computed as soon as the sample is mea-
sured. This numerical value is called the statistic. The second value that corresponds
to the study’s statistical focus is “in” the population, and it is called the parameter.
The parameter, of course, can never be computed because measurements exist for
only a portion of the people, animals, or objects that make up the population.

Because researchers often use symbols to represent the numerical values of
their statistics (and sometimes use different symbols to represent the unknown val-
ues of the corresponding parameters), it is essential that you become familiar with
the symbols associated with inferential statistics. Table 5.1 shows the most fre-
quently used symbols for the statistic and parameter that correspond to the same
statistical focus. As you can easily see, Roman letters are used to represent statis-
tics, whereas Greek letters stand for parameters.

TABLE 5.1 Symbols Used for Corresponding Statistics and Parameters

Statistics Parameter
Statistical Focus (in the sample) (in the population)

Mean X or M �
Variance s2 σ2

Standard deviation s σ
Proportion p P
Product–moment correlation* r ρ
Rank–order correlation rs ρs

Size of group† n N

*Unfortunately, the symbol ρ is used to designate the value of the product–moment correlation in 
the relevant population. This is the letter rho from the Greek alphabet. In Chapter 3, we saw that 
Spearman’s rank–order correlation is also referred to as rho.
†In many articles, the symbol N is used to indicate the size of the sample. It would be better if the 
symbol n could be used instead of N when researchers give us information about their sample sizes.
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Now that I have clarified the notions of statistic and parameter, I can be a bit
more parsimonious in my definition of inferential statistics. When engaged in in-
ferential statistics, a researcher uses information concerning the known value of the
sample statistic to make an educated guess as to the unknown value of the popula-
tion parameter. If, for example, the statistical focus is centered on the mean, then
information concerning the known value of M is used to make a scientific guess as
to the value of .

Types of Samples

The nature of the sample used by a researcher as a basis for making an educated guess
as to the parameter’s value obviously has an influence on the inferential process. To be
more specific, the nature of the sample influences either (1) the accuracy of the infer-
ential guess or (2) the definition of the population toward which the inferential guess
is directed. To help you understand the way in which the sample can affect the infer-
ential process in these two ways, I must distinguish among eight kinds of samples that
fall into two main categories: probability samples and nonprobability samples.

Probability Samples

If all members of the population can be specified prior to drawing the sample, if
each member of the population has at least some chance of being included in the
sample, and if the probability of any member of the population being drawn is
known, then the resulting sample is referred to as a probability sample. The four
types of probability samples considered here are simple random samples, stratified
random samples, systematic samples, and cluster samples. As you read about each
of these samples, keep in mind the illustration presented in Figure 5.1a.

Simple Random Samples. With a simple random sample, the researcher, either
literally or figuratively, puts the names of all members of the population into a hat,
shuffles the hat’s contents, and then blindly selects a portion of the names to
determine which members of the total group are or are not included in the sample.
The key feature of this kind of sample is an equal opportunity for each member of
the population to be included in the sample. It is conceivable, of course, that such a
sample could turn out to be grossly unrepresentative of the population (because the
sample turns out to contain the population members who are, for example, strongest
or most intelligent or tallest). It is far more likely, however, that a simple random
sample will lead to a measurement-based statistic that approximates the value of the
parameter. This is especially true when the sample is large rather than small.

In Excerpt 5.3, we see an example of simple random samples being used in
applied research studies. Because there are different kinds of random samples that
can be drawn from a tangible population, these researchers deserve credit for using
the word simple to clarify exactly what type of random sampling procedure was

m
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used in their studies. In this excerpt, you see the term sampling frame. Generally
speaking, a sampling frame is simply a list that enumerates the things—people, an-
imals, objects, or whatever—in the population. In a very real sense, there must be
a sampling frame for simple random samples (or, more generally, for any probabil-
ity sample) to be drawn from a population.

Stratified Random Samples. To reduce the possibility that the sample might turn
out to be unrepresentative of the population, researchers sometimes select a
stratified random sample. To do this, the population must first be subdivided into
two or more parts based on the knowledge of how each member of the population
stands relative to one or more stratifying variables. Then, a sample is drawn that
mirrors the population percentages associated with each segment (or stratum) of the
population. Thus, if a researcher knows that the population contains 60 percent
males and 40 percent females, a random sample stratified on gender should contain
six males for every four females.

An example of a stratified random sample is presented in Excerpt 5.4. This 
is a good example of a well-described stratified random sample because it answers
the question, “Stratified on what?” Too often, researchers either make no mention

EXCERPT 5.3 • Simple Random Sample

The population of interest was all college students at a major southeastern university.
The entire student body, except those under age eighteen who were legally minors,
formed the sampling frame. A simple random sample of 15,000 individuals from the
population of 50,701 students age eighteen or older was e-mailed an invitation to
anonymously participate in a Web-based survey.

Source: Patton, C. L., Nobles, M. R., & Fox, K. A. (2010). Look who’s stalking: Obsessive
pursuit and attachment theory. Journal of Criminal Justice, 38(3), 282–290.

EXCERPT 5.4 • Stratified Random Sample

A target sample size of 40 was obtained through a stratified random sample method.
Students were first grouped according to the final grade (high distinction, distinction,
credit, pass, fail). Students were randomly selected so that the proportion of students
with each grade in the final sample was equal to the proportion of the grades in the
class as a whole. This was done to ensure that the sample was representative of the
full range of abilities in the class.

Source: Neumann, D. L., Neumann, M. M., & Hood, M. (2010). The development and eval-
uation of a survey that makes use of student data to teach statistics. Journal of Statistics Edu-
cation, 18(1), 1–18.
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whatsoever of the variable used to create the strata, or terms like “age-stratified” or
“region-stratified” are used without any specification of how many strata were set
up or what the numerical or geographic boundaries were between the strata.

In some studies using stratified random samples, researchers make the size of
the sample associated with one or more of the strata larger than that strata’s pro-
portionate slice of the population. This oversampling in certain strata is done for
one of three reasons: (1) anticipated difficulty in getting people in certain strata to
participate in the study, (2) a desire to make comparisons between strata (in which
case there are advantages to having equal strata sizes in the sample, even if those
strata differ in size in the population), and (3) a need to update old strata sizes, when
using archival data, because of recent changes in the characteristics of the popula-
tion. In Excerpt 5.5, we see an example of a stratified random sample that involved
oversampling for the first of these three reasons.

EXCERPT 5.5 • Oversampling

Computer-assisted self-interviewing was used to collect data from [a stratified] sam-
ple of household residents in four cities (Baltimore; Durham, NC; St. Louis; and
Seattle) and the U.S. census-defined county subdivisions immediately adjacent to
them. . . . Within the four study sites, we stratified segments by the percentage of
population who were black and oversampled segments with high minority concen-
trations. This procedure yielded a large enough sample of couples in which one or
both partners were black to provide stable estimates of both their behaviors and the
antecedents of those behaviors.

Source: Billy, J. O. G., Grady, W. R., & Sill, M. E. (2009). Sexual risk-taking among adult dat-
ing couples in the United States. Perspectives on Sexual & Reproductive Health, 41(2), 74–83.

Systematic Samples. A third type of probability sample, called a systematic
sample, is created when the researcher goes through an ordered list of members of
the population and selects, for example, every fifth entry on the list to be in the sam-
ple. (Of course, the desired size of the sample and the number of entries on the list
determine how many entries are skipped following the selection of each entry to be
in the sample.) So long as the starting position on the list is determined randomly,
each entry on the full list has an equal chance of ending up in the sample. Thus, if
the researcher decides to generate a sample by selecting every fifth entry, the first
entry selected for the sample should not arbitrarily be the entry at the top of the list
(or the one positioned in the fifth slot); instead, a random decision should determine
which of the first five entries goes into the sample.

Excerpt 5.6 exemplifies the use of a systematic sample. As indicated in this
excerpt, pages out of census data recorded on microfilm reels were the things being
sampled. Every tenth page on a reel ended up in the sample, with the first of those
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pages being selected at random from among pages 1 and 5. (I think the excerpt’s
fifth sentence would be clearer if the words “that page and” had appeared between
the words “designate” and “every.”)

Cluster Samples. The last of the four kinds of probability sampling to be discussed
here involves what are called cluster samples. When this technique is used to
extract a sample from a population, the researcher first develops a list of the clusters
in the population. The clusters might be households, schools, litters, car dealerships,
or any other groupings of the things that make up the population. Next, a sample of
these clusters is randomly selected. Finally, data are collected from each person,
animal, or thing that is in each of the clusters that has been randomly selected, or
data are collected from a randomly selected subset of the members of each cluster.

Excerpt 5.7, we see an example of a cluster sample in which each “cluster”
was a Head Start school in the state of New Hampshire. As indicated in the excerpt,
27 schools were randomly selected. Then, every student in each selected school 
was examined (unless their parents declined the opportunity) by a dentist who
checked for cavities. This technique of cluster sampling made it much easier for

EXCERPT 5.6 • Systematic Sampling

The manuscripts from each census are stored on several thousand microfilm reels.
Most reels contain several hundred pages. Each of these pages contains between 
40 and 50 lines, with each line containing information on one person. . . . The sam-
pling strategy is based on the census page. We generate a random starting point for
each microfilm reel between 1 and 5, and then designate every 10th page thereafter
as a sample page. Thus, for example, if the starting point is 3, we designate the 3rd,
13th, and 23rd pages, continuing in that fashion until the end of the reel.

Source: Davern, M. (2009). Drawing statistical inferences from historical Census data, 1850–1950.
Demography, 46(3), 589–603.

EXCERPT 5.7 • Cluster Samples

We conducted the survey at 27 of the 45 New Hampshire Head Start sites. . . . We
used a simple random one-stage cluster sample design, in which all children at each
selected site would be surveyed. . . . Four volunteer dentists provided oral exami-
nations and determined the presence of untreated dental caries, caries experience,
and treatment urgency.

Source: Anderson, L., Martin, N. R., Burdick, A., Flynn, R. T., & Blaney, D. D. (2010). Oral
health status of New Hampshire Head Start children, 2007–2008. Journal of Public Health
Dentistry, 70(3), 245–248.
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the researchers to collect their study’s data than would have been the case if a sim-
ple random sample of children had been taken from all 45 Head Start schools.

As indicated in Excerpt 5.7, the Head Start dental evaluation study used a one-
stage cluster sample design. You are likely to encounter research reports that refer
to two- or three-stage cluster samples. In these multistage cluster samples, clusters
of one kind are embedded inside clusters of different kind, with the sampling
process beginning with the larger clusters and then continuing down to the smaller
clusters. For example, a three-stage cluster sample of homes in a given state (per-
haps to assess their painted color) might involve selecting a sample of counties first,
then a sample of cities within the selected counties, and finally a sample of resi-
dential neighborhoods within the selected cities. Collecting the study’s data from
the resulting sample of homes, grouped in clusters, is far more convenient than if a
simple random sample of homes were selected from all homes in the state.

Nonprobability Samples

In many research studies, the investigator does not begin with a finite group of per-
sons, animals, or objects in which each member has a known, nonzero probability
of being plucked out of the population for inclusion in the sample. In such situations,
the sample is technically referred to as a nonprobability sample. Occasionally, an
author indicates directly that one or more nonprobability samples served as the basis
for the inferential process. Few authors do this, however, and so you must be able to
identify this kind of sample from the description of the study’s participants.

Although inferential statistics can be used with nonprobability samples, extreme
care must be used in generalizing results from the sample to the population. From 
the research write-up, you probably will be able to determine who (or what) was in
the sample that provided the empirical data. Determining the larger group to whom
such inferential statements legitimately apply is usually a much more difficult task.

We next consider four of the most frequently seen types of nonprobability sam-
ples: purposive samples, convenience samples, quota samples, and snowball samples.

Purposive Samples. In some studies, the researcher starts with a large group of
potential participants. To be included in the sample, however, members of this large
group must meet certain criteria established by the researcher because of the nature
of the questions to be answered by the investigation. Once these screening criteria
are employed to determine which members of the initial group wind up in the
sample, the nature of the population at the receiving end of the “inferential arrow” is
different from the large group of potential persons with  whom the researcher started.
The legitimate population associated with the inferential process is either (1) the
portion of the initial group that satisfied the screening criteria, presuming that only a
subset of these acceptable people (or objects) were actually measured; or (2) an
abstract population made up of people (or objects) similar to those included in
the sample, presuming that each and every “acceptable” person (or object) was
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measured. These two notions of the population, of course, are meant to parallel the
two situations depicted earlier in Figure 5.1.

Excerpt 5.8 illustrates the way researchers sometimes use and describe their
purposive samples. In this passage, notice how the researchers set up inclusion cri-
teria for both members of the adolescent/parent dyads recruited into the study. As
you can see, only younger adolescents and their parents were allowed into the study.

EXCERPT 5.8 • Purposive Samples

A purposive sample of 94 adolescents/parent dyads was recruited from eight middle
schools within a single school district in southern California. The inclusion criteria
for adolescents are as follows: between the ages of 12 and 15 years; able to read 
and speak English; signed informed assent; and signed informed parent consent. 
The inclusion criteria for parent participants are as follows: able to read and speak
English; have legal custody of adolescent participant; and signed consent form for
participation for self and child.

Source: Rutkowski, E. M., & Connelly, C. D. (2010). Obesity risk knowledge and physical
activity in families of adolescents. Journal of Pediatric Nursing, 26(1), 51–57.

The full research report from which Excerpt 5.8 was taken included a highly
detailed description of the people who composed the sample (including demo-
graphic information on the adolescents’ grade point average (GPA), height, weight,
and year in school, as well as information of the parents’ age, educational level, and
marital status). Such descriptions, along with a clear articulation of the inclusion
criteria, are essential in research reports based on purposive samples. The reason for
this is simple—the relevant populations associated with purposive samples are ab-
stract rather than tangible. As pointed out earlier, the nature of an abstract popula-
tion is determined by who or what is in the sample. Clearly, you cannot have a good
sense of the population toward which the inference is directed unless you have a
good sense for who was in the sample.

Convenience Samples. In some studies, no special screening criteria are set up by
the researchers to make certain that the individuals in the sample possess certain
characteristics. Instead, the investigator simply collects data from whoever is
available or can be recruited to participate in the study. Such data-providing groups,
if they serve as the basis for inferential statements, are called convenience samples.

The population corresponding to any convenience sample is an abstract (i.e.,
hypothetical) population. It includes individuals (or objects) similar to those in-
cluded in the sample. Therefore, the sample–population relationship brought about
by convenience samples is always like that pictured earlier in Figure 5.1b.

Excerpt 5.9 illustrates the use of convenience samples. In this excerpt, the resear-
chers clearly label the kind of sample they used. Not all researchers are so forthright.
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EXCERPT 5.9 • Convenience Samples

Our survey targeted a cross-section of students enrolled in various courses in the
College of Business Administration across all levels (e.g., introductory courses to 
senior level courses) and areas of study (e.g., introduction to business, finance,
marketing, strategic management). We derived this convenience sample from classes
that comprise a part of our pre-business and business core curriculum. We selected
the specific classes on the basis of the availability of the researchers to administer
the survey in person and the flexibility of the faculty member in the classroom.

Source: Sipe, S., Johnson, C. D., & Fisher, D. K. (2009). University students’ perceptions of
gender discrimination in the workplace: Reality versus fiction. Journal of Education for Business,
84(6), 339–349.

EXCERPT 5.10 • Quota Samples

Participants were identified using a national quota-sampling procedure. . . . Quota
sampling in the context of this study refers to a sampling method in which the first
of a pre-determined number of participants are selected, the number being 4000 for
this survey. After the number of participants exceeded approximately 4000, the sur-
vey was terminated. The quota-sampling strategy stratified on four age groups:
25–29, 30–34, 35–39 and 40–45 to match 2006 U.S. Census data.

Source: Kronenfeld, L. W., Reba-Harrelson, L.,Von Holle,A., Reyes, M. L., & Bulik, C. M. (2010).
Ethnic and racial differences in body size perception and satisfaction. Body Image, 7(2), 131–136.

It should be noted that the statements presented in Excerpt 5.9 do not consti-
tute the full description of the convenience sample used in this study. The re-
searchers provided information on the students’ age, year in school, ethnicity,
political orientation, work experience, and GPA. Unfortunately, many researchers
put us in a quandary by not providing such descriptions. Unless we have a good
idea of who is in a convenience sample, there is no way to conceptualize the nature
of the abstract population toward which the statistical inferences are aimed.

Quota Samples. The next type of nonprobability sample to be considered is called a
quota sample. Here, the researcher decides that the sample should contain X percent of
a certain kind of person (or object), Y percent of a different kind of person (or object),
and so on. Then, the researcher simply continues to hunt for enough people/things to
measure within each category until all predetermined sample slots have been filled.

In Excerpt 5.10, we see an example of a quota sample. In this investigation,
the researchers wanted to have an overall sample size of 4,000, with a quota for each
of four age categories. These quotas were determined by first examining census data
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to find out what proportion of women ages 25–45 was in each 5-year category; then,
each of those proportions was multiplied by 4,000 to arrive at the needed number
of women in each of the study’s age strata.

On the surface, quota samples and stratified random samples seem to be
highly similar. There is, however, a big difference. To obtain a stratified random
sample, a finite population is first subdivided into sections and then a sample is 
selected randomly from each portion of the population. When combined, those ran-
domly selected groups make up the stratified random sample. A quota sample is also
made up of different groups of people that are combined. Each subgroup, however,
is not randomly extracted from a different stratum of the population; rather, the re-
searcher simply takes whoever comes along until all vacant sample slots are occu-
pied. As a consequence, it is often difficult to know to whom the results of a study
can be generalized when a quota sample serves as the basis for the inference.

Snowball Samples. A snowball sample is like a two-stage convenience or
purposive sample. First, the researcher locates a part of the desired sample by turning
to a group that is conveniently available or to a set of individuals who possess certain
characteristics deemed important by the researcher. Then, those individuals are asked
to help complete the sample by going out and recruiting family members, friends,
acquaintances, or coworkers who might be interested (and who possess, if a
purposive sample is being generated, the needed characteristics). Excerpt 5.11
illustrates how this technique of snowballing is sometimes used in research studies.

EXCERPT 5.11 • Snowball Samples

We recruited participants for the present study [by] using a snowball sampling tech-
nique. Specifically, we e-mailed a Web link to an online survey to approximately 
45 individuals who were employed full-time and whom we knew personally or pro-
fessionally. . . . We invited individuals to participate [and] we asked individuals to
forward the link to other fulltime employees.

Source: Culbertson, S. S., Huffman, A. H., & Alden-Anderson, R. (2010). Leader–member 
exchange and work–family interactions: The mediating role of self-reported challenge- and
hindrance-related stress. Journal of Psychology, 144(1), 15–36.

The Problems of Low Response Rates,
Refusals to Participate, and Attrition

If the researcher uses a probability sample, there will be little ambiguity about the
destination of the inferential statement that is made—as long as the researcher
clearly defines the population that supplied the study’s subjects. Likewise, there
will be little ambiguity associated with the target of inferential statements based
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upon nonprobability samples—as long as the sample is fully described. In each
case, however, the inferential process becomes murky if data are collected from less
than 100 percent of the individuals (or objects) that make up the sample. In this sec-
tion, we consider three frequently seen situations in which inferences are limited
because only a portion of the full sample is measured.

Response Rates

In many studies, the research data are collected by sending a survey, questionnaire,
or test to a group of people by means of a mailed letter or an e-mail message. Usu-
ally, only a portion of the individuals who receive these mailed or e-mailed mea-
surement probes furnishes the researcher with the information that was sought. In
many cases, the recipient of the mailed or e-mailed survey, questionnaire, or test sim-
ply chooses not to open the envelope or the electronic message (or the attachment
to the e-mail message). In other instances, the recipient looks at the research instru-
ment(s) but decides not to take the time to read and respond to the questions. In any
event, the term response rate has been coined to indicate the percentage of sample
individuals who supply the researcher with the requested information.

In Excerpts 5.12 and 5.13, we see two cases in which response rates were re-
ported in recent studies. In the first two of these excerpts, the response rate was far
below the optimum value of 100 percent. Response rates like these are not uncom-
mon. Some researchers attempt to justify their low response rates by saying that “It
is normal to have a low response rate in mailed surveys” or that some so-called re-
search authority says that “A response rate of 30 percent or more is adequate.” You
should be wary of such attempts to justify low response rates. Clearly, the statisti-
cal inferences in these studies extend only to individuals who are similar to those
who returned completed surveys.

EXCERPTS 5.12–5.13 • Response Rates

Of 14,939 mailed questionnaires, 5,381 were returned—a response rate of 36 percent.

Source: Günther, O. H., Kürstein, B., Riedel-Heller, S. G., & König, H. (2010). The role of
monetary and nonmonetary incentives on the choice of practice establishment: A stated pref-
erence study of young physicians in Germany. Health Services Research, 45(1), 212–229.

Of the 3289 email surveys delivered, 2010 unique responders submitted completed
surveys (61% response rate).

Source: Faris, J. A., Douglas, M. K., Maples, D. C., Berg, L. R., & Thrailkill, A. (2010). Job
satisfaction of advanced practice nurses in the Veterans Health Administration, Journal of the
American Academy of Nurse Practitioners, 22(1), 35–44.
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Adequate response rates rarely show up in studies where the researcher sim-
ply sits back and waits for responses from people who have been mailed just once
a survey, questionnaire, or test. As Excerpts 5.14, 5.15, and 5.16 show, researchers
can do certain things both before and after the measuring instrument is mailed in
an effort to achieve a high response rate. Researchers (like those associated with
these three excerpts) who try to get responses from everyone in the target sample
deserve credit for their efforts; on the other hand, you ought to downgrade your
evaluation of those studies in which little or nothing is done to head off the prob-
lem of ending up with a poor response rate.

EXCERPTS 5.14–5.16 • Working to Get a Good Response Rate

As in previous mailings, a self-addressed, stamped envelope was provided with the
questionnaire. Two weeks following the mail-out a reminder phone call was made
to those who had not returned their survey. Reminder post cards were mailed out 
approximately four weeks following the conclusion of the tournament to those spec-
tators who had not yet returned their survey.

Source: Bee, C. C., & Havitz, M. E. (2010). Exploring the relationship between involvement,
fan attraction, psychological commitment and behavioural loyalty in a sports spectator context.
International Journal of Sports Marketing & Sponsorship, 11(2), 140–157.

Data were collected by mail survey from three groups of low-income individuals. . . .
A five-contact survey approach was [employed], including two $1 bills attached to
the survey cover letter, to increase the response rate.

Source: Loibl, C., Grinstein-Weiss, M., Zhan, M., & Red Bird, B. (2010). More than a penny
saved: Long-term changes in behavior among savings program participants. Journal of Con-
sumer Affairs, 44(1), 98–126.

To increase response rates [to the mailed survey], a small lottery incentive involving
four Amazon.com gift certificates was included.

Source: Risley-Curtiss, C. (2010). Social work practitioners and the human-companion animal
bond: A national study. Social Work, 55(1), 38–46.

Most researchers who collect data through the mail or via the Internet want
their findings to generalize to individuals like those in the full group to whom the
measuring instrument was originally sent, not just individuals like those who send
back completed instruments. To get a feel for whether less-than-perfect response
rates ought to restrict the desired level of generalizability, researchers sometimes
conduct a midstream mini-study to see whether a nonresponse bias exists. As indi-
cated in Excerpts 5.17, 5.18, and 5.19, there are different ways to check on a possible
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nonresponse bias. The methods exemplified by the first two of these excerpts are
easier to execute, but they provide the least impressive evidence as to the existence
of any nonresponse bias. In contrast, the method illustrated in Excerpt 5.19 is dif-
ficult to accomplish; it is, however, the best approach for investigating possible non-
response bias.

EXCERPT 5.17–5.19 • Checking for Nonresponse Bias

In order to assess whether this substantial nonresponse rate [46.2%] was systemati-
cally biased, we performed a nonresponse analysis that compared the characteristics
of respondents and complete nonrespondents. . . . The nonresponse analysis of 
demographic variables consisted of a series of bivariate comparisons of the two sub-
groups (respondents and nonrespondents) on key variables: town size, exam quality,
socioeconomic status, sector, and gender.

Source: Negev, M., Garb, Y., Biller, R., Sagy, G., & Tal, A. (2010). Environmental problems,
causes, and solutions: An open question. Journal of Environmental Education, 41(2), 101–115.

Invitations to complete the survey were sent to 4,000 individuals who were known
Internet shoppers and resided in the United States. . . . In total, 493 responded. . . .
To check for possible response bias, early and late respondents were compared on
demographic variables. No statistical differences were found.

Source: Milne, G. R., Labrecque, L. I., & Cromer, C. (2009). Toward an understanding of the
online consumer’s risky behavior and protection practices. Journal of Consumer Affairs, 43(3),
449–473.

We gained data on 7 per cent of non-responders (n � 103) through telephone inter-
views. We compared responders and non-responders and found no difference in de-
mographic and professional characteristics. In terms of ‘therapeutic capacity’ to care
for patients who use illicit drugs, we found no difference in the level of educational
adequacy, role legitimacy, motivation or self-esteem in the role. . . . These results
suggest that, based on the variables measured in the study, the bias caused by the
high non-response rate was not substantial.

Source: Ford, R., & Bammer, G. (2009). A research routine to assess bias introduced by low
response rates in postal surveys. Nurse Researcher, 17(1), 44–53.

Refusal to Participate

In studies where individuals are asked to participate, some people may decline.
Such refusals to participate create the same kind of problem that is brought about
by low response rates. In each case, valid inferences extend only to individuals
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similar to those who actually supplied data, not to the larger group of individuals
who were asked to supply data. In Excerpt 5.20, we see a case in which nearly one-
fourth of the potential members of the sample chose not to participate.

EXCERPT 5.20 • Refusals to Participate

[The researcher] contacted 150 general practitioners working in private practice in a
large city in southern France. She explained the study to them, asked them to par-
ticipate, and, if they agreed, arranged when to administer the experiment. Of these
150, 115 (78%) agreed to participate.

Source: Mas, C., Albaret, M., Sorum, P. C., & Mullet, E. (2010). French general practitioners
vary in their attitudes toward treating terminally ill patients. Palliative Medicine, 24(1), 60–67.

2The problem of attrition is sometimes referred to as mortality.

Just as some researchers perform a check to see whether a less-than-optimal
response rate affects the generalizability of results, certain investigators compare
those who agree to participate with those who decline. If no differences are noted,
a stronger case exists for applying inferential statements to the full group of indi-
viduals invited to participate (and others who are similar) rather than simply to folks
similar to those who supplied data. Researchers who make this kind of comparison
in their studies deserve bonus points from you as you critique their investigations.
Conversely, you have a right to downgrade your evaluation of a study if the re-
searcher overlooks the possible problems caused by refusals to participate.

Attrition

In many studies, less than 100 percent of the participants remain in the study from
beginning to end. In some instances, this problem arises because the procedures or
data-collection activities of the investigation are aversive, boring, or costly to the
participant. In other cases, forgetfulness, schedule changes, or residential relocation
explain why certain individuals become dropouts. Regardless of the causal forces
that bring about the phenomenon of attrition,2 it should be clear why attrition can
affect the inferential process.

When attrition occurs in a study, it may be possible for the researcher to check
for an attrition bias. The purpose and procedures in doing this mirror the goals and
techniques used in checking for a response bias. In Excerpt 5.21, we see an exam-
ple in which the researchers checked to see if their attrition rate (about 27 percent)
was potentially damaging to the study. Notice that the check of a possible attrition
bias involved a comparison of those who remained in the study versus those who
dropped out, with this done separately on nine different variables.
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A Few Warnings

As we approach the end of this chapter, I offer a handful of warnings about the in-
ferential connection between samples and populations. I highly suggest that you be-
come sensitive to these issues, because many professional journals contain articles
in which the researcher’s conclusions seem to extend far beyond what the inferen-
tial process legitimately allows. Unfortunately, more than a few researchers get car-
ried away with the techniques used to analyze their data—and their technical reports
suggest that they gave little or no consideration to the nature of their samples and
populations.

My first warning has to do with a possible mismatch between the source of
the researcher’s data and the destination of the inferential claims. Throughout this
chapter, I have emphasized the importance of a good match between the sample and 
the population. Be on guard when you read or listen to research reports, because the
desired fit between these two groups may leave much to be desired. Consider, for
example, the information presented in Excerpt 5.22.

EXCERPT 5.21 • Checking for Attrition Bias

Of these teachers [in the study’s sample], 987 returned a completed questionnaire
at Time 1 (T1), and 719 did so at Time 2 (T2). . . . Additional analyses examining
the pattern of participant attrition revealed that the T2 sample did not differ signifi-
cantly from those who responded at T1 on nine dimensions (gender, age, marital
status, school sector, years of teaching experience, number of teachers in the school,
number of students in the school, school location, and socioeconomic status of
school area).

Source: Bradley, G. L. (2010). Work-induced changes in feelings of mastery. Journal of 
Psychology, 144(2), 97–119.

EXCERPT 5.22 • Mismatch Between Sample and Intended Population

We sought to develop a dual-process model of sexual aggression by examining the
relationships between men’s implicit power–sex association and explicit power–sex
beliefs, rape myth acceptance, and rape proclivity. . . . In Study 1, we developed and
validated an explicit measure of power–sex beliefs. In Study 2, we used this mea-
sure of explicit power–sex beliefs, and an implicit measure of a power–sex associa-
tion, to compare two alternative dual-process models of rape proclivity. . . .
Participants [in Study 1] were 131 college students from a Midwestern, Catholic
university [who were] enrolled in an upper-level psychology course or an intro-
ductory anthropology course. . . . Participants [in study 2] were 108 men from a

(continued )
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The major concern you ought to have with the passage in Excerpt 5.22 is the
vast difference between the declared population of interest and the actual sample.
The researcher’s intention was to use sample data and inferential statistics as a basis
for making claims about men’s beliefs. However, data were collected from a sam-
ple of male students attending a single, religion-oriented university, with students
selected from just two kinds of courses (psychology and anthropology). These fea-
tures of the sample made it impossible for the study’s findings to be generalized to
the stated population of interest.

My next warning has to do with the size of the sample. If you do not know much
about the members of the sample or how the researcher obtained the sample, then the
inferential process cannot operate successfully—no matter how large the sample
might be. Remember, therefore, that it is the quality of the sample (rather than its size)
that makes statistical inference work. Proof of this claim can be seen during national
elections when pollsters regularly predict with great accuracy who will win elections
even though the samples used to develop these predictions are relatively small.

My third warning concerns the term random. Randomness in research studies
is usually considered to be a strong asset, but you should not be lulled into think-
ing that an investigation’s results can be trusted simply because the term random
shows up in the method section of the write-up. Consider, for example, the mater-
ial presented in Excerpts 5.23 and 5.24.

EXCERPTS 5.23–5.24 • The Word Random

[T]he aim of the present study was to evaluate the patterns of rapid weight loss in a
large sample of competitive judo athletes. . . . During the [judo] competitions, the
participants were approached randomly and invited to participate in the study.

Source: Artigli, G. G., Gualano, B., Franchini, E., Scagliusa, F. B., Takesian, M., Fuchs, M.,
et al. (2010). Prevalence, magnitude, and methods of rapid weight loss among judo competi-
tors. Medicine and Science in Sports and Exercise, 42(3), 436–442.

Surveys, including the School Counselor Self-Efficacy Scale (Bodenhorn & 
Skaggs, 2005), questions regarding the school counseling program, achievement

(continued )

EXCERPT 5.22 • (continued)

Midwestern, Catholic university who were recruited through an introductory psy-
chology course and given course extra credit for their participation. The mean age
for this sample was 19.1 years (SD � 1.3 years).

Source: Chapleau, K. M., & Oswald, D. L. (2010). Power, sex, and rape myth acceptance:
Testing two models of rape proclivity. Journal of Sex Research, 47(1), 66–78.
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In Excerpt 5.23, we are told that the judo competitors were “approached ran-
domly” and asked if they would like to participate in the researchers’ study. I am
not sure what this means. It is possible, of course, that a subset of all the judo com-
petitors were randomly selected. However, it is my hunch that the word casually, if
substituted for the word randomly, would more accurately describe how the judo
athletes were approached.

In Excerpt 5.24, we see the word randomly used twice in the statistical
sense of the term. A large, random sample of members of the ASCA professional
association was drawn, and then the sample was randomly divided into two
halves. However, this randomness was undermined when nearly half of the
study’s intended participants did not return the survey. The sample size of 860
may seem large; however, there is no way to know if the survey results were
tainted by a response bias. Although the gender split (85 percent female) and eth-
nicity (89 percent European American) among the 860 respondents were re-
ported to be “similar to the demographic characteristics of school counselors
found in most national studies,” the low response rate destroyed the randomness
of the initial random sample.

Regarding another matter, researchers should describe the procedures used to
extract samples from their relevant populations. They should do this because the
question of whether a sample is a random sample can be answered only by consid-
ering the procedure used to select the sample. As indicated earlier in the chapter,
one not-too-sophisticated procedure for getting a random sample is to draw slips of
paper from a hat. Random samples can also be produced by flipping coins or rolling
dice to determine which members of the population end up in the sample.

Most contemporary researchers do not draw their random samples by rolling
dice, flipping coins, or drawing slips of paper from a hat. Instead, they utilize either
a printed table of random numbers or a set of computer-generated random
numbers. To identify which members of the population get into the sample, the re-
searcher first assigns unique ID numbers (e.g., 1, 2, 3) to the members of the pop-
ulation. Then, the researcher turns to a table of random numbers (or a set of
computer-generated random numbers) where the full set of ID numbers appear in a

gap information, and demographics, were sent to a random sample of 1,600
ASCA members. Through random selection of these participants, half of the 
surveys were sent through postal mail and half through e-mail/Internet. . . . The
overall response rate was 54% (860 individuals responded).

Source: Bodenhorn, N., Wolfe, E. W., & Airen, O. E. (2010). School counselor program choice
and self-efficacy: Relationship to achievement gap and equity. Professional School Counsel-
ing, 13(3), 165–174.

EXCERPTS 5.23–5.24 • (continued)
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scrambled order. Finally, the ID numbers that appear at the top of the list (e.g., 27,
4, 9) designate which members of population get into the sample.

In Excerpt 5.25, we see how easy it is for a researcher to indicate that a ran-
dom sample was selected via a table of random numbers or computer-generated
random numbers. These authors deserve credit for clarifying exactly how their random
samples were created. All researchers should follow this good example!

EXCERPT 5.25 • Using a Table of Random Numbers

In Trinidad there are seventy nine (79) health centres, most of which have walk-in
clinics (where patients can present without an appointment for any medical prob-
lem). These clinics were stratified to represent all regional health authorities (ad-
ministrative regions) and to capture rural and urban populations. Clinics [n � 16]
were then selected using a table of random numbers [to match] the proportion of
clinics per administrative region.

Source: Maharaj, R. G., Alexander, C., Bridglal, C. H., Edwards, A., Mohammed, H., Rampaul,
T., et al. (2010). Abuse and mental disorders among women at walk-in clinics in Trinidad: A
cross-sectional study. BMC Family Practice, 11(26), 1–21.

The final warning is really a repetition of a major concern expressed earlier
in this chapter. Simply stated, an empirical investigation that incorporates inferen-
tial statistics is worthless unless there is a detailed description of the population or
the sample. No matter how carefully the researcher describes the measuring instru-
ments and procedures of the study, and regardless of the levels of appropriateness
and sophistication of the statistical techniques used to analyze the data, the results
are meaningless unless we are given a clear indication of the population from which
the sample was drawn (in the case of probability samples) or the sample itself (in the
case of nonprobability samples). Unfortunately, too many researchers get carried
away with their ability to use complex inferential techniques when analyzing their
data. I can almost guarantee that you will encounter technical write-ups in which
the researchers emphasize their analytical skills to the near exclusion of a clear 
explanation of where their data came from or to whom the results apply. When you
come across such studies, give the authors high marks for being able to flex their
“data analysis muscles”—but low marks for neglecting the basic inferential nature
of their investigations.

To see an example of a well-done description of a sample, consider Excerpt 5.26.
Given this relatively complete description of the 136 children who formed this
study’s sample, we have a much better sense of the population to which the statis-
tical inferences can be directed. It would be nice if all researchers described their
samples with equal care.
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EXCERPT 5.26 • Detailed Description of a Sample

We examined the summer employment and community participation experiences of
136 youth with severe disabilities. To be included in this study, students had to (a) be
receiving special education services under a primary or secondary disability category
of cognitive disability, autism, or multiple disabilities; (b) be eligible for the state’s 
alternate assessment; and (c) provide assent and parental consent to participate. . . .
Youth participating in our study ranged in age from 13.9 to 21.8 (M � 18.2; SD � 1.8),
and slightly more than half were male (52.9%). The majority (85.3%) was European
American, 11.8% were African American, and 2.9% reported other races/ethnicities
(i.e., Asian American, American Indian). Twenty-six students (19.1%) were in 9th
grade, 18 (13.2%) were in 10th grade, 36 (26.5%) were in 11th grade, 37 (27.2%) were
in 12th grade, and 19 (14.0%) received services in 18 to 21 programs. More than one
quarter (28.7%) of students were eligible for free/reduced lunch (FRL). Most youth
were reported to be served under the primary disability category of cognitive disabili-
ties (85.3%), followed by autism (10.3%) and orthopedic impairments (4.4%); 61.0%
were reported to have one or more secondary disabilities.

Source: Carter, E. W., Dutchman, N., Ye, S., Trainor, A. A., Swedeen, B., & Owens, L. (2010).
Summer employment and community experiences of transition-age youth with severe disabil-
ities. Exceptional Children, 76(2), 194–212.
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In Chapter 5, we laid the foundation for our consideration of inferential statistics.
We did this by considering the key ingredients of this form of statistical thinking
and analysis: population, sample, parameter, statistic, and inference. In this chap-
ter, we now turn our attention to one of the two main ways in which researchers use
sample statistics to make educated guesses as to the values of population parameters.
These procedures fall under the general heading estimation.

This chapter is divided into three main sections. First, the logic and techniques
of interval estimation are presented. Next, we examine a second, slightly different
way in which estimation works; this approach is called point estimation. Finally,
I offer a few tips to keep in mind as you encounter research articles that rely on 
either of these forms of estimation.

Before beginning my discussion of estimation, I want to point out that the two
major approaches to statistical inference—estimation and hypothesis testing—are
similar in that the researcher makes an educated guess as to the value of the popu-
lation parameter. In that sense, both approaches involve a form of guesswork that
might be construed to involve estimation. Despite this similarity, the term estimation
has come to designate just one of the two ways in which researchers go about 
making their educated guesses about population parameters. The other approach,
hypothesis testing, is discussed in Chapters 7 and 8.

Interval Estimation

To understand how interval estimation works, you must become familiar with
three concepts: sampling errors, standard errors, and confidence intervals (CIs). In
addition, you must realize that a CI can be used with just about any statistic that is
computed on the basis of sample data. To help you acquire these skills, we begin
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with a consideration of what is arguably the most important concept associated with
inferential statistics: sampling error.

Sampling Error

When a sample is extracted from a population, it is conceivable that the value of the
computed statistic will be identical to the unknown value of the population para-
meter. Although such a result is possible, it is far more likely that the statistic will
turn out to be different from the parameter. The term sampling error refers to the
magnitude of this difference.

To see an example of sampling error, flip a coin 20 times, keeping track of the
proportion of times the outcome is heads. Consider your 20 coin flips to represent
a sample of your coin’s life history of flips, with that total life history being the pop-
ulation. I will assume that your coin is unbiased and that your flipping technique
does not make a heads outcome more or less likely than a tails outcome. Given these
two simple assumptions, I can assert that the parameter value is known to be .50.
Now, stop reading, take out a coin, flip it 20 times, and see how many of your flips
produce a heads outcome.

I do not know, of course, how your coin-flipping exercise turned out. When I
flipped my coin (a quarter) 20 times, however, I do know what happened. I ended
up with 13 heads and 7 tails, for a statistic of .65. The difference between the sam-
ple’s statistic and the population’s parameter is the sampling error. In my case,
therefore, the sampling error turned out to be .15.1

If the 20 coin flips produce 10 heads, the sampling error is equal to zero. Such
a result, however, is not likely to occur. Usually, the sample statistic contains sam-
pling error and fails to mirror exactly the population parameter. Most of the time,
of course, the size of the sampling error is small, thus indicating that the statistic is
a reasonably good approximation of the parameter. Occasionally, however, a sam-
ple yields a statistic that is quite discrepant from the population’s parameter, such
as if we get 19 or 20 heads (or tails) when flipping a fair coin 20 times.

It should be noted that the term sampling error does not indicate that the sam-
ple has been extracted improperly from the population or that the sample data have
been improperly summarized. (I ended up with a sampling error of .15 even though I
took a random sample from the population of interest and even though I carefully sum-
marized my data.) When sampling error exists, it is attributable not to any mistake
being made, but rather to the natural behavior of samples. Samples generally do not
turn out to be small mirror images of their corresponding populations, and statistics
usually do not turn out equal to their corresponding parameters. Even with proper sam-
pling techniques and data analysis procedures, sampling error ought to be expected.

In my example dealing with 20 coin flips, we knew what the parameter’s
value was equal to. In most inferential situations, however, the researcher knows
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the numerical value of the sample’s statistic, but not the value of the population’s
parameter. This situation makes it impossible for the researcher to compute the
precise size of the sampling error associated with any sample, but it does not alter
the fact that sampling error should be expected. For example, suppose I gave you
a coin that was known only by me to be slightly biased. Imagine that it would turn
up heads 55 percent of the time over its life history. If I asked you to flip this coin
20 times and then make a guess as to the value of the coin’s parameter value, you
should expect sampling error to occur. Hence, not knowing the parameter value
(and thus not being able to compute the magnitude of any sample’s sampling error)
should not affect your expectation that the statistic and the parameter are at least
slightly unequal.2

Sampling Distributions and Standard Errors

Most researchers extract a single sample from any population about which they
want to make an educated guess. Earlier, for example, I asked you to take a sample
of 20 flips of your coin’s coin-flipping life history. It is possible, however, to
imagine taking more than one sample from any given population. Thus, I can imag-
ine taking multiple samples from the coin I flipped that gave me, in the first sam-
ple, an outcome of .65 (i.e., 65 percent heads).

When I imagine taking multiple samples (each made up of 20 flips) from that
same coin, I visualize the results changing from sample to sample. In other words,
whereas I obtained a statistic of .65 in my first sample, I would not be surprised to
find that the statistic turns out equal to some other value for my second set of 20
flips. If a third sample (of 20 flips) were to be taken, I would not be surprised to dis-
cover that the third sample’s statistic assumes a value different from the first two
samples’ statistics. If I continued (in my imagination) to extract samples (of 20 flips)
from that same coin, I would eventually find that values of the statistic (1) would
begin to repeat, as would be the case if I came across another sample that produced
13 heads; and (2) would form a distribution resembling a bell-shaped curve cen-
tered over the value of .50.

The distribution of sample statistics alluded to in the preceding paragraph
is called a sampling distribution, and the standard deviation of the values that
make up such a distribution is called a standard error (SE). Thus, an SE is noth-
ing more than an index of how variable the sample statistic is when multiple sam-
ples of the same size are drawn from the same population. As you recall from
Chapter 2, variability can be measured in various ways; the SE, however, is 
always conceptualized as being equal to the standard deviation of the sampling

2If a population is perfectly homogenous, the sampling error is equal to 0. If the population is heterogeneous
but an enormously large sample is drawn, here again, the statistic turns out equal to the parameter once that
statistic is rounded to one or two decimal places. Both of these situations, however, are unrealistic. Researchers
typically are involved with heterogeneous populations and base their statistical inferences on small samples
where n < 50.
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distribution of the statistic (once we imagine that multiple samples are extracted
and summarized).3

Figure 6.1 contains the sampling distribution that we would end up with if we
took many, many samples (of 20 flips per sample) from a fair coin’s population of
potential flips, with the statistical focus being the proportion of heads that turn up
within each sample. The standard deviation of this sampling distribution is equal to
about .11. This SE provides a numerical index of how much dispersion exists
among the values on which the standard deviation is computed; in this case, each

3Even though the concepts of standard deviation and SE are closely related, they are conceptually quite dif-
ferent. A standard deviation indicates the variability inside a single set of actual data points; an SE, in contrast,
indicates how variable the sample statistic is from sample to sample.
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of those values corresponds to the proportion of heads associated with one of our
imaginary samples.

The SE indicates the extent to which the statistic fluctuates, from sample to
sample, around the value of the parameter. The SE, therefore, provides a measure
of how much sampling error is likely to occur whenever a sample of a particular
size is extracted from the population in question. To be more specific, the chances
are about 2 out of 3 that the sampling error will be smaller than the size of the SE
(and about 1 in 3 that the sampling error will be larger than the size of the SE). If
the SE is small, therefore, this indicates that we should expect the statistic to 
approximate closely the value of the parameter. However, a large SE indicates that
a larger discrepancy between the statistic and the parameter should be anticipated.

Earlier, I said that researchers normally extract only one sample from any
given population. Based on my earlier statement to that effect (and now my reiter-
ation of that same point), you may be wondering how it is possible to know what
the SE of the sampling distribution is equal to in light of the fact that the researcher
would not actually develop a sampling distribution like that shown in Figure 6.1.
The way researchers get around this problem is to use their sample data to estimate
the SE. I will not discuss the actual mechanics that are involved in doing this; rather,
I simply want you to accept my claim that it can be done.4

In my earlier example about a coin being flipped 20 times, the statistical focus
was a proportion. Accordingly, the SE (of .11) illustrated in Figure 6.1 is the SE of
the proportion. In some actual studies, the researcher’s statistical focus is a propor-
tion, as has been the case in my coin-flipping example. In many studies, however,
the statistical focus is something other than proportion. When reading journal arti-
cles, I find that the overwhelming majority of researchers focus their attention on
means and correlation coefficients. There are, of course, other ways to “attack” a
data set, and I occasionally come across articles in which the median, the variance,
or the degree of skewness represents a study’s statistical focus. Regardless of the
statistical focus selected by the researcher, the SE concept applies so long as the
study involves inferential statistics.

Consider, for example, the short passage contained in Excerpt 6.1. As you
can see, this excerpt comes from a study focused on the possible influence of a
criminal’s age and health status on the length of the jail sentences meted out. As
you can see, the data in Excerpt 6.1 summarize the sentences given to offenders
who were sick and those who were healthy. The mean for each group is provided,
as is each group’s SE. Because the mean is the statistical focus, and because sam-
ple data only allow us to make educated guess as to population characteristics,
the more complete name for each SE number is estimated standard error of the
mean.

4For example, when I use my single sample of 20 coin flips (13 heads, 7 tails) to estimate the SE of the
theoretical sampling distribution, I obtain the value of .1067. This estimated SE of the proportion approxi-
mates the true value, .1118, that corresponds to the full sampling distribution shown in Figure 6.1.
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By providing (in Excerpt 6.1) information as to the estimated SE associated
with each group’s mean sentence, the researchers were alerting their readers to the
fact that their data allowed them to compute sample statistics, not population para-
meters. In other words, each SE in this short passage cautions us not to consider each
mean to be equal to its corresponding �. If a different sample of healthy offenders
(like the ones used in this study) were to be considered, the mean sentence length for
the new group would probably turn out equal to some value other than 62.90.

Excerpt 6.2 contains another example of information being presented as to the
SE. This time, however, the SE is connected to a percentage rather than the mean.
In the study associated with this excerpt, 75 women with stage II cervical cancer
were treated with a combination of chemotherapy and radiation. These women were
then observed for several years regarding survival and recurrence of the disease. By
presenting an SE for the five-year survival rate and for the five-year “progression free
rate,” the researchers warn us that these two percentages (80.6 and 71.3) should be
looked upon as sample statistics, not population parameters.

EXCERPT 6.1 • Estimated Standard Error of the Mean

Offenders in good health were on average given a significantly longer sentence of
62.90 months (SE � 5.49), compared to offenders in poor health who received on
average sentences of 57.92 months (SE � 4.97).

Source: Mueller-Johnson, K. U., & Dhami, M. K. (2010). Effects of offenders’ age and health
on sentencing decisions. Journal of Social Psychology, 150(1), 77–97.

EXCERPT 6.2 • Estimated Standard Error of a Percentage

The 5-year overall survival rate was 80.6% (standard error, 4.9%) and 5-year PFS
[progression free survival] rate was 71.3% (standard error, 5.3%).

Source: Lee, D. W., Kim, Y. T., Kim, J. H., Kim, S., Kim, S. W., Nam, E. J., et al. (2010). Clin-
ical significance of tumor volume and lymph node involvement assessed by MRI in stage IIB
cervical cancer patients treated with concurrent chemoradiation therapy. Journal of Gyneco-
logical Oncology, 21(1), 18–23.

The SE values in Excerpts 6.1 and 6.2 give us a feel for how much variabil-
ity we should expect to see if these studies were to be replicated, with the new sam-
ples in the replication studies being pulled out of the same abstract populations as
were the criminals (in Excerpt 6.1) or the women with cervical cancer (in Excerpt
6.2). Consider, for example, the progression-free rate (PFR) for the 75 women in-
volved in the second of these excerpts. Because the SE for the survival rate was
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5.3 percent, we might expect the new sample’s PFR to be within about 5 percent-
age points of 71.3. If we wanted to be more confident of our prediction, we might
double the SE, round off, and predict that the new sample’s survival rate most likely
would be within 10–11 percentage points of 71.3.

In Excerpt 6.3, we see a case where SE values are presented in a bar graph.
In this interesting study, each bar corresponds to a mean on the Graduate Record

EXCERPT 6.3 • Estimated Standard Error of the Mean in a Bar Graph

This research examined the benefits of interpreting physiological arousal as a
challenge response on [the] actual Graduate Record Examination (GRE) scores. Par-
ticipants who were preparing to take the GRE reported to the laboratory for a practice
GRE study. Participants assigned to a reappraisal condition were told arousal im-
proves performance, whereas control participants were not given this information. . . .
One to three months later, participants returned to the lab and provided their score
reports from their actual GRE.
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FIGURE 1 Practice GRE performance as a function of appraisal condition and
test section. Scores could range from 200 to 800. Error bars represent ± standard
error of the mean.

Source: Jamieson, J. P., Mendes, W. B., Blackstock, E., & Schmade, T. (2010). Turning the
knots in your stomach into bows: Reappraising arousal improves performance on the GRE.
Journal of Experimental Social Psychology, 46(1), 208–212.



Estimation 121

Exam (GRE). The study’s research participants, all of whom were planning to take
the GRE, had a practice session first. Just prior to the practice test, the students in
the experimental group were led to believe that recent research shows test anxiety
to be beneficial (not harmful) to test performance. Those in the control group were
not given this information. After taking the real GRE, students reported how they
did on the Math and Verbal subtests. In Excerpt 6.3, the vertical line that overlaps
the top of each column functions as a graphical indication of the SE of the mean.
Those vertical lines are called error bars.

Confidence Intervals

Researchers who report SEs along with their computed sample statistics deserve to
be commended. This practice helps to underscore the fact that sampling error is very
likely to be associated with any sample mean, with any sample percentage, with any
sample correlation coefficient, and with any other statistical summary of sample
data. By presenting the numerical value of the SE (as in Excerpts 6.1 and 6.2) or by
putting a line segment through the statistic’s position in a graph (as in Excerpt 6.3),
researchers help us to remember that they are only making educated guesses as 
to parameters.

Although SEs definitely help us when we try to understand research results,
a closely related technique, confidence intervals, helps us even more. My four-
fold objective here is to show what a confidence interval looks like, explain how
confidence intervals are built, clarify how to interpret confidence intervals prop-
erly, and point out how confidence intervals carry with them a slight advantage
over SEs.

Confidence Intervals: What They Look Like. A confidence interval (CI) is
simply a finite interval of score values on the dependent variable. Such an interval is
constructed by adding a specific amount to the computed statistic (thereby obtaining
the upper limit of the interval) and by subtracting a specific amount from the
statistic (thereby obtaining the lower limit of the interval). In addition to specifying
the interval’s upper and lower limits, researchers always attach a percentage to any
interval that is constructed. The percentage value selected by the researcher is
invariably a high number, such as 90, 95, or 99 percent.5

We next look at four CIs that have come from research reports. These CIs are
instructive, as each one has a lesson connected to it. If you wish, look first at
Excerpts 6.4 through 6.7 and see if you can determine why these particular CIs have
been included here. Then, return to the following paragraphs to see if you noticed
the special feature of each excerpt.

5The vast majority of researchers set up 95 percent CIs. If you read enough research reports, you may come
across 90 percent and 99 percent CIs; however, you will likely consider them to be exceptions to the rule
because they are used so infrequently.
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In Excerpt 6.4, we see a CI that has been built around a sample mean. Notice
that this excerpt contains the standard deviation for the 46 test scores. This measure
of variability (coupled with the sample size) ought to make us guess that range of 
individual scores probably extended from about 10 to about 92. This range is much
larger than the distance between the end points of the CI. These "ranges" differ because
the SD measures the variability of raw scores whereas the CI provides an estimate of
the variability of the sample mean. Although they both deal with variability, SDs and
CIs are conceptually different and will never be equivalent in size.

Excerpt 6.5 contains two CIs built around percentages. Notice how narrow
each CI is, with the end points positioned quite close to each other. In each case,
the upper and lower values are less than 3 percentage points different from each
other. The small width of these CIs came about because of the large samples sizes used
in the study. There were 3,475 men and 4,462 women. If these sample sizes had
been smaller, the end points would have been further apart. This inverse relation-
ship between sample size and interval width ought to make sense, because the size
of the sample statistics (in this excerpt, a percentage) fluctuates less across differ-
ent samples if those samples are large rather than small.

In Excerpt 6.6, we see a CI that has been built around a correlation coefficient.
There are two things to note here. First, the researchers chose to set up a 99% CI rather
than the more popular 95% kind of CI. Had they created a 95% CI, the end points
would have been closer together. (Had they created a 90% CI, it would have been even
narrower.) Second, notice that the value of Pearson’s r does not lie precisely in the mid-
dle of the CI. Unless the value of r is 0.00, or unless the sample size is gigantic, a CI
built around r will extend further in the negative direction if r is positive, or further in
the positive direction if r is negative. As in Excerpt 6.6, the two ends of the CI can have
the same sign and yet the CI can extend one direction farther than the other direction.

EXCERPTS 6.4–6.5 • Confidence Intervals Around a Mean and a Percentage

ABC scores were obtained from 46 children, the mean score was 51 and 95% CI was
46–56 (SD 18).

Source: Fernell, E., Hedvall, A., Norrelgen, F., Eriksson, M., Höglund-Carlsson, L., Barnevik-
Olsson, M., et al. (2010). Developmental profiles in preschool children with autism spectrum
disorders referred for intervention. Research in Developmental Disabilities, 31(3), 790–799.

Of the 18–30 year olds, 49.8% (95% confidence interval: 48.5%–51.2%) were men
and 50.2% (48.8%–51.5%) were women.

Source: Cavazos-Rehg, P. A., Spitznagel, E. L., Krauss, M. J., Schootman, M., Bucholz, K. K.,
Cottler, L. B., et al. (2010). Understanding adolescent parenthood from a multisystemic per-
spective. Journal of Adolescent Health, 46(6), 525–531.



Estimation 123

Excerpt 6.7 contains the last of our four CI examples. In this excerpt, a CI has
been built around something called an odds ratio (OR), and in this case, the OR is
equal to 2.82. It was this number that prompted the researchers to use the phrase
“almost three times” that appears in the excerpt. In Chapter 6, we consider in detail
the concept of odds ratios. This excerpt is worth looking at now, however, because
it exemplifies the way researchers often present their CIs. Instead of stating the CI
as if it were a range of values extending from a low number to a high number (as
in Excerpts 6.4 and 6.5), the CI in Excerpt 6.7 is summarized via its end points (1.44
and 5.53) separated by a comma.

The CIs in Excerpts 6.4 through 6.7 are the same in the sense that they appear
in the text of their respective research reports. CIs may be presented in two other
ways: tables and figures. I do not include here any such tables or figures, for you will
find it easy to decipher such presentation so long as you understand the material we
have covered about CIs as well as the material to which we now turn.

The Construction of Confidence Intervals. The end points of a CI are not selected
by the researcher magically making two values appear out of thin air. Rather, the
researcher first makes a decision as to the level of confidence that is desired (usually
95 or 99). Then, the end points are computed by means of a joint process that involves
(1) the analysis of sample data so as to obtain the estimated SE of the statistic and 
(2) the multiplication of that estimated SE by a tabled numerical value.6

6For example, to build a 95 percent CI around the mean in Excerpt 6.4 from the ABC scores from the 46 children,
I multiply the estimated SE of 2.65 by 2.01, with the second of these numbers coming from a t-table. The
product, 5.33, is then added to and subtracted from the mean of 51 to establish the ends of the CI.

EXCERPTS 6.6–6.7 • Confidence Intervals Around a Correlation and an
Odds Ratio

A Pearson’s r coefficient of .62 [having] a 99% confidence interval of .495 and .72
was obtained.

Source: Smith, S., & Chonody, J. M. (2010). Peer-driven justice: Development and validation
of the Teen Court Peer Influence Scale. Research on Social Work Practice, 20(3), 283–292.

Patients younger than age 65 had almost three times the odds of engaging in regu-
lar exercise activities as compared to patients 65 years and older (OR � 2.82, 95%
CI: 1.44, 5.53).

Source: Bleich, S. N., Huizinga, M. M., Beach, M. C., & Cooper, L. A. (2010). Patient use of
weight-management activities: A comparison of patient and physician assessments. Patient
Education and Counseling, 79(3), 344–350.
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Although you do not need to know the various formulas used to construct CIs,
you should be cognizant of the fact that a scientific approach is taken to the creation
of any CI. Moreover, you should be aware of the fact that short (i.e., narrow) inter-
vals that have a high level of confidence associated with them are more helpful in
inferential statistics. In making an educated guess as to the unknown value of a pop-
ulation parameter, it is much better to have that guess be precise.

It should be noted that the length of a CI is also affected by the nature of the
statistic computed on the basis of sample data. For example, CIs built around the
mean are shorter than those constructed for the median. The same situation holds
true for Pearson’s product–moment correlation coefficient as compared with Spear-
man’s rho. This may explain, in part, why Ms and rs are seen so frequently in the
published literature.

The Proper Interpretation of Confidence Intervals. CIs are often misinterpreted to
designate the probability that population parameters lie somewhere between the
intervals’ upper and lower limits. For example, many people (including more than a
few researchers) would look at the CI presented in Excerpt 6.4 and conclude that there
is a .95 probability (i.e., a 95 percent chance) that the population mean of ABC scores
lies somewhere between 46 and 56. CIs should not be interpreted in this fashion.

After a sample has been extracted from a population and then measured, the
CI around the sample’s statistic either does or does not “cover” the value of the pa-
rameter. Hence, the probability that the parameter lies between the end points of a
CI is either 0 or 1. Because of this fact, a CI should never be considered to specify
the chances (or probability) that the parameter is “caught” by the interval.

The proper way to interpret a CI is to imagine that (1) many, many samples
of the same size are extracted from the same population and (2) a 95 percent CI is
constructed separately around the statistic computed from each sample’s data set.
Some of these intervals would capture the parameter—that is, the interval’s end
points are such that the parameter lies within the interval. However, some of these
CIs do not capture the parameter. Looked at collectively, 95 percent of these 95 per-
cent CIs would contain the parameter. Accordingly, when you see a 95 percent CI,
you should consider that the chances are 95 out of 100 that the interval you are look-
ing at is one of those that does, in fact, capture the parameter. Likewise, when you
encounter a 99 percent CI, you can say to yourself that the chances are even higher
(99 out of 100) that the interval in front of you is one of the many possible inter-
vals that would have caught the parameter.

The Advantage of Confidence Intervals over Estimated Standard Errors. As
stated previously, a CI is determined by first computing and then using the value of
the estimated SE. Researchers should be commended for providing either one or the
other of these inferential aids to their readers, for it is unfortunately true that many
researchers supply their readers with neither SEs nor CIs for any of the sample
statistics that are reported. Nevertheless, CIs carry with them a slight advantage that
is worth noting.
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When a CI is computed, it is labeled as to its level of confidence. (As exem-
plified by Excerpts 6.4 through 6.6, researchers usually build 95 percent CIs.) In
contrast, SE intervals rarely are labeled as to their level of confidence. Given the
fact that SE intervals usually have a confidence level of about 68 percent, they are
apt to be misinterpreted and thought to be better than they really are.

Consider, for example, the information in Excerpt 6.1 regarding the length of
sentences given to offenders in poor health. You can, if you wish, add 4.97 to 57.92
and subtract 4.97 from 57.92 to create the ends of an interval, with the result ex-
tending from 52.95 to 62.89 months. However, that interval is not a 95 percent CI.
You could approximate a 95 percent CI by doubling the SE number and then mov-
ing above and below the sample mean by that amount to establish your guess as to
the end points of the CI. However, doing this works accurately only when the sam-
ple n is at least 30.

Point Estimation

When engaged in interval estimation, a researcher will (1) select a level of confi-
dence (e.g., 95 percent), (2) analyze the sample data, (3) extract a number out of a
statistical table, and (4) scientifically build an interval that surrounds the sample sta-
tistic. After completing these four steps, the researcher makes an educated guess as
to the unknown value of the population parameter. In making this guess, the re-
searcher ends up saying, “My data-based interval extends from ______ to ______,
and the chances are ______ out of 100 that this interval is one of the many possi-
ble intervals (each based on a different sample) that would, in fact, contain the pa-
rameter between the interval limits.”

A second form of estimation is called point estimation, and here again, an ed-
ucated guess is made, on the basis of sample data, as to the unknown value of the pop-
ulation parameter. With this second kind of estimation, however, the activities and
thinking of the researcher are much simpler. With point estimation, no level of confi-
dence must be selected, no statistical table must be consulted, and no interval must be
created. Instead, the researcher simply computes the statistic on the basis of the sam-
ple data and then posits that the unknown value of the population parameter is the
same as the data-based number. Thus, the researcher who uses this guessing technique
ends up saying, “Because the sample-based statistic turned out equal to ______, my
best guess is that the value of the parameter is also equal to that particular value.”

Point estimation, of course, is likely to produce statements that are incorrect.
Because of the great likelihood of sampling error, the value of the statistic rarely
matches the value of the parameter. For this reason, interval estimation is generally
considered to represent a more logical way of making educated guesses as to para-
meter values than is point estimation.

Despite the fact that point estimation disregards the notion of sampling error,
many researchers can be seen making pinpoint guesses as to parameter values.
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Consider, for example, Excerpt 6.8. In the research report from which this excerpt
was drawn, the researchers looked at the relationship between life satisfaction and
tolerance.

In Excerpt 6.8, two correlation coefficients are presented. Each of these rs is
a point estimate, even though this label does not appear in the excerpt (or in the 
full research report). Despite the fact that these correlations were based on large
samples—approximately 1,000 adults in each of 150 countries who participated in
the Gallop Organization’s World Poll—the rs reported in Excerpt 6.8 are still point 
estimates. If different people had been interviewed, the correlations most likely
would have been at least slightly different. Because the phrase point estimate or
simply the word estimate is nowhere to be seen, I am afraid readers of this research
report might mistakenly consider these correlations to be population parameters
rather than sample statistics.

In Excerpt 6.9, we see an example of researchers pointing out that their
point estimates were just that, point estimates. The final sentence of this excerpt
provides a warning to readers of the research report not to interpret the numbers

EXCERPT 6.8 • Point Estimates Not Labeled as Such

[We examined] the relationships between life satisfaction and two types of openness:
tolerance in relation to gays and lesbians and tolerance in relation to racial and ethnic
minorities. Across all countries, there is a positive correlation between life satisfac-
tion and both types of tolerance (.78, .63, gays and racial minorities, respectively).

Source: Florida, R., Mellander, C., & Rentfrow, P. J. (2010). Socioeconomic Structures and
Happiness. Working Paper Series, Martin Prosperity Institute, Rotman School of Manage-
ment, University of Toronto, REF. 2010–MPIWP-002.

EXCERPT 6.9 • Point Estimates Referred to as Point Estimates

Adult smoking prevalence for African Americans was 19.3% compared with 15.4%
for all Californians. The health care cost of smoking was $626 million for the
African American community. Although African Americans account for 6% of the
California adult population, they account for over 8% of smoking-attributable ex-
penditures and fully 13% of smoking-attributable mortality costs. [However], our es-
timates are point estimates and do not account for the sampling variability in
smoking prevalence, relative risks, or health care expenditure estimates.

Source: Max, W., Sung, H., Tucker, L., & Stark, B. (2010). The disproportionate cost of smok-
ing for African Americans in California. American Journal of Public Health, 100(1), 152–158.
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in the excerpt’s first three sentences as fully accurate indices of smoking preva-
lence, smoking-related health-care expenditures, or smoking-related mortality
rates. Unfortunately, appropriate warnings such as this appear infrequently in 
research reports.

Point estimates are connected with many of the statistical summaries included
in research reports: percentages, means, medians, standard deviations, to name but
a few. Researchers also engage in point estimation in the discussion of the measur-
ing instruments used to collect data. As was indicated in Chapter 4, these discus-
sions often involve the presentation of reliability and validity coefficients.

Give yourself a pat on the back if you recall, from what I said in Chapter 4,
that such coefficients are only estimates. If a different sample of examinees were to
provide the data for the assessment of reliability or validity, the obtained coefficients
most likely would fluctuate. Sampling error accounts for such fluctuation.

Although it is possible to build CIs around reliability and validity coeffi-
cients, researchers rarely do this. Instead, point estimates are typically provided.
This is a common practice, even in cases where the researcher uses inferential
statistical procedures in other parts of the research report. Consider, for exam-
ple, Excerpts 6.10 and 6.11. The reliability coefficient in the first of these 
excerpts and the validity coefficient in second excerpt are point estimates, not
parameters.

EXCERPTS 6.10–6.11 • Point Estimates of Reliability and Validity

Reliability analyses showed that the scale had high reliability in this study (alpha � .93).

Source: Kwo, S. Y. C. L., & Shek, D. T. L. (2010). Personal and family correlates of suicidal
ideation among chinese adolescents in Hong Kong. Social Indicators Research, 95(3),
407–419.

Concurrent validity coefficient between this scale and ENRICH Marital Satisfaction
Questionnaire was 0.83.

Source: Rajabi, G. R. (2010). Factorial structure of marital satisfaction scale in married staff
members of Shahid Chamran University. Iranian Journal of Psychiatry and Clinical Psychol-
ogy, 15(4), 351–358.

Occasionally, you may come across a research report that exemplifies the
good practice of building CIs around reliability and validity coefficients. Consider,
for example, Excerpts 6.12 and 6.13. The researchers who conducted these studies
deserve high praise for recognizing that their reliability and validity coefficients
were sample statistics, not population parameters.
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Although the likelihood of sampling error causes the practice of point esti-
mation to seem quite ill-founded, this form of statistical inference deserves to be re-
spected for two reasons. These two supportive arguments revolve around (1) the
role played by point estimation in interval estimation and (2) the reliance on point
estimation by more advanced scientific disciplines (such as physics). Let’s consider
briefly each of these reasons why it is unwise to look on point estimation with com-
plete disrespect.

When engaged in interval estimation, the researcher builds a CI that surrounds
the sample statistic. Point estimation is relied on in two ways when such intervals
are constructed. First, the pinpoint value of the sample statistic is used as the best
single estimate of the population parameter. The desired interval is formed by
adding a certain amount to the statistic and subtracting a certain amount from the
statistic. Hence, the value of the statistic, as a point estimate of the parameter, serves
as the foundation for each and every CI that is constructed.

Interval estimation draws on point estimation in a second manner. To be more
specific, the amount that is added to (and subtracted from) the statistic in order to
obtain the interval’s upper and lower limits is based on a point estimate of the pop-
ulation’s variability. For example, when a CI is constructed around a sample mean,
the distance between the end points of the interval is contingent on, among other
things, a point estimate of the population standard deviation. Likewise, whenever
a CI is built around a sample proportion, the length of the interval cannot be spec-
ified until the researcher first uses point estimation to guess how variable the pop-
ulation is.

EXCERPTS 6.12–6.13 • Confidence Intervals Built Around Reliability
and Validity Coefficients

Intraclass correlation coefficients (ICCs) (95% confidence interval [CI]) for inter-
rater reliability were .90 (.71–.97), .92 (.77–.97), and .85 (.64 –.95) for time, num-
ber of steps, and smoothness, respectively.

Source: Hess, R. J., Brach, J. S., Piva, S. R., & VanSwearingen, J. M. (2010). Walking skill can
be assessed in older adults: Validity of the Figure-of-8 Walk Test. Physical Therapy, 90(1), 89–99.

To measure concurrent validity [of the CCAM] with the COVS, the Pearson corre-
lation (r) between scores on the CCAM and COVS was calculated. . . . The 
Pearson correlation coefficient between the CCAM total score and the COVS total
score was very high (r � .96, 95% CI � .91�1.00) for the measure as a whole.

Source: Huijbregts, M. P. J., Teare, G. F., McCullough, C., Kay, T. M., Streiner, D., Wong,
S. K. C., et al. (2009). Standardization of the Continuing Care Activity Measure: A multicen-
ter study to assess reliability, validity, and ability to measure change. Physical Therapy, 89(6),
546–555.
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From a totally different perspective, the practice of point estimation deserves
to be respected. Certain well-respected scientists assert that as a discipline advances
and becomes more scientifically rigorous, point estimation is turned to with both
increased frequency and greater justification.

Warnings Concerning Interval and Point Estimation

As we wrap up this chapter, I want to give you four cautionary comments concern-
ing the techniques of estimation. The first three comments concern interval estima-
tion, whereas the fourth is relevant to both kinds of estimation techniques: point and 
interval. You will be a better consumer of the research literature if you keep these
final points in mind.

First, be aware that the second of two numbers separated by a plus-and-minus
sign can represent any of three things. In other words, if you see the notation 
63 	 8, be careful before you guess what the 8 signifies. It might be the standard
deviation, it might be an estimated SE, or it might be half the distance between the
end points of a CI. Researchers almost always clarify the meaning of such state-
ments within a table or figure, or in the text of the research article. Take the time to
look and read before jumping to any conclusions.

A second warning concerns the fact that sample data allow a researcher 
to estimate the SE of the statistic, not to determine that SE in a definitive manner.
Excerpts in this chapter illustrate how researchers sometimes forget to use the
word estimated prior to the phrase standard error. Keep in mind that the researcher
never knows for sure, based on the sample data, how large the SE is; it can only
be estimated.

The third warning concerns, once again, CIs. The sample statistic, of course,
is always located between the upper and lower limits of the CI—but it is not always
be located halfway between the interval’s end points. When CIs are built around a
sample mean, it is true that M turns out to be positioned at the midpoint of the in-
terval. When CIs are constructed for many other statistics, however, one “side” of
the interval is longer than the other side.7 We saw an example of this in Excerpt 6.6,
where a CI was built around a correlation coefficient. Whenever a CI is built around
a proportion (or percentage), the same thing happens unless the value of the statis-
tic is .50 (i.e., 50 percent).

My final warning applies to both interval estimation and point estimation—
and this is by far the most important of my end-of-chapter cautionary comments.
Simply stated, the entire process of estimation requires that the data used to form
the inference come from a random sample. For the techniques of estimation to work
properly, therefore, there must be a legitimate connection between the sample and

7The degree to which such CIs appear to be lopsided is inversely related to sample size. If n is large enough,
the statistic will be positioned in the middle of the interval.
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population such that either (1) the former is actually extracted, randomly, from the
latter (with no refusals to participate, attrition, or response rate problems); or (2) the
population, if hypothetical, is conceptualized so as to match closely the nature of
the sample. Without a strong link between sample and population, neither form of
estimation can be expected to function very well.
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In Chapter 6, we saw how the inferential techniques of estimation can assist re-
searchers when they use sample data to make educated guesses about the unknown val-
ues of population parameters. Now, we turn our attention to a second way in which
researchers engage in inferential thinking. This procedure is called hypothesis testing.

Before we examine the half-dozen elements of hypothesis testing, let me re-
iterate something I said near the beginning of Chapter 5. In order for inferential sta-
tistics to begin, the researcher must first answer four preliminary questions: (1)
What is/are the relevant population(s)? (2) How will a sample be extracted from the
population(s) of interest? (3) What characteristic(s) of the sample people, animals,
or objects will serve as the target of the measurement process? (4) What is the
study’s statistical focus—or stated differently, how will the sample data be sum-
marized so as to obtain a statistic that can be used to make an inferential statement
concerning the unknown parameter? In this chapter, I assume that these four ques-
tions have been both raised and answered by the time the researcher starts to apply
the hypothesis testing procedure.

To help you understand the six-step version of hypothesis testing, I first simply
list the various steps in their proper order (i.e., the order in which a researcher ought
to do things when engaged in this form of statistical inference). After presenting an
ordered list of the six steps, I then discuss the function and logic of each step.

An Ordered List of the Six Steps

Whenever researchers use the six-step version of the hypothesis testing procedure,
they do the following:

1. State the null hypothesis.
2. State the alternative hypothesis.

C H A P T E R 7
Hypothesis Testing
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3. Select a level of significance.
4. Collect and summarize the sample data.
5. Refer to a criterion for evaluating the sample evidence.
6. Make a decision to discard/retain the null hypothesis.

It should be noted that there is no version of hypothesis testing that involves
fewer than six steps. Stated differently, it is outright impossible to eliminate any of
these six ingredients and have enough left to test a statistical hypothesis.

A Detailed Look at Each of the Six Steps

As indicated previously, the list of steps just presented is arranged in an ordered
fashion. In discussing these steps, however, we now look at these six component
parts in a somewhat jumbled order: 1, 6, 2, 4, 5, and then 3. My motivation in doing
this is not related to sadistic tendencies! Rather, I am convinced that the function
and logic of these six steps can be understood far more readily if we purposely chart
an unusual path through the hypothesis testing procedure. Please note, however, that
the six steps are rearranged here for pedagogical reasons only. If I were asked to
apply these six steps in an actual study, I would use the ordered list as my guide,
not the sequence to which we now turn.

Step 1: The Null Hypothesis

When engaged in hypothesis testing, a researcher begins by stating a null hypothesis.
If there is just one population involved in the study, the null hypothesis is a pinpoint
statement as to the unknown quantitative value of the parameter in the population
of interest. To illustrate what this kind of null hypothesis might look like, suppose
that (1) we conduct a study in which our population contains all full-time students
enrolled in a particular university, (2) our variable of interest is intelligence, and (3)
our statistical focus is the mean IQ score. Given this situation, we could set up a
null hypothesis to say that � 100. This statement deals with a population
parameter, it is pinpoint in nature, and we made it.

The symbol for null hypothesis is , and is usually followed by (1) a colon,
(2) the parameter symbol that indicates the researcher’s statistical focus, (3) an
equal sign, and (4) the pinpoint numerical value that the researcher has selected.
Accordingly, we specify the null hypothesis for our imaginary study by stating H0:

� 100.
If our study’s statistical focus involves something other than the mean, we

must change the parameter’s symbol to make consistent with the study’s focus.
For example, if our imaginary study is concerned with the variance among students’
heights, the null hypothesis must contain the symbol rather than the symbol .
Or, if we are concerned with the product–moment correlation between the students’
heights and weights, the symbol must appear in .H0r

ms2

H0

m

H0

m
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With respect to the pinpoint numerical value that appears in the null hypoth-
esis, researchers have the freedom to select any value that they wish to test. Thus,
in our example dealing with the mean IQ of university students, the null hypothe-
sis could be set up to say that , , , or any specific
value of our choosing. Likewise, if our study focuses on the variance, we could set
up , the null hypothesis, to say that 10 or that any other positive
number of our choosing. And in a study having Pearson’s product–moment correla-
tion coefficient as its statistical focus, the null hypothesis could be set up to say that

or that or that or that any specific number be-
tween and 

The only statistical restrictions on the numerical value that appears in are
that it (1) must lie somewhere on the continuum of possible values that correspond
to the parameter and (2) cannot be fixed at the upper or lower limit of that contin-
uum, presuming that the parameter has a lowest or highest possible value. These re-
strictions rule out the following null hypotheses:

because the variance has a lower limit of 0 whereas Pearson’s product–moment cor-
relation coefficient has limits of 	1.00.

Excerpts 7.1 and 7.2 show how researchers sometimes talk about their null
hypotheses. In the first of these excerpts, the statistical focus of the null hypothesis
is the mean, as is made clear by the inclusion of the symbol . As you can see, there
are two s in this null hypothesis, because there are two populations involved in
this study, boys and girls. The symbol of course, corresponds to the mean scorem,

m

m

H0: s
2 = 0  H0: r = -1.00

H0: s
2 = -15  H0: r = +1.30

H0

+1.00.-1.00
r =r = + .92r = - .50r = 0.00

s2 =s2 =H0

m =m = 101m = 118m = 80

EXCERPTS 7.1–7.2 • The Null Hypothesis

the null hypothesis [is] that the population mean of boys is equal
to the population mean of the girls on valuing of reading.

Source: Sturtevant, E. G., & Kim, G. S. (2010). Literacy motivation and school/non-school 
literacies among students enrolled in a middle-school ESOL program. Literacy Research and
Instruction, 49(1), 68–85.

To compare whether there is a significant correlation between age and the anthro-
pometric dimensions of the Malaysian elderly, [we set up] the null-hypothesis (H0:

� 0). . . .

Source: Rosnah, M. Y., Mohd Rizal, H., & Sharifah-Norazizan, S. A. R. (2009). Anthropometry
dimensions of older Malaysians: Comparison of age, gender and ethnicity. Asian Social Science,
5(6), 133–140.

r

H0: m1 -  m2 = 0,
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on some variable of interest. As indicated in the excerpt, the researchers wanted to
compare the two groups in terms of how much they valued reading.

Previously, I indicated that every null hypothesis must contain a pinpoint nu-
merical value. From what is stated in Excerpt 7.1, it is clear that the pinpoint num-
ber in this excerpt’s is zero. This pinpoint number would still be in the null
hypothesis (but slightly hidden from view) if the researchers had said .
If two things are equal, there is no difference between them, and the notion of no
difference is equivalent to saying that a zero difference exists.

Although researchers have the freedom to select any pinpoint number they
wish for , a zero is often selected when the samples from two populations are
being compared. When this is done, the null hypothesis becomes a statement that
there is no difference between the populations. Because of the popularity of this
kind of null hypothesis, people sometimes begin to think that a null hypothesis must
be set up as a “no difference” statement. This is both unfortunate and wrong. When
two populations are compared, the null hypothesis can be set up with any pinpoint
value the researcher wishes to use. (For example, in comparing the mean height of
men and women, we could set up a legitimate null hypothesis that stated

inches.) When the hypothesis testing procedure is used with
a single population, the notion of “no difference,” applied to parameters, simply
does not make sense. How could there be a difference, zero or otherwise, when there
is only one (or only one , or only one , etc.)?

Excerpt 7.2 contains a null hypothesis that involves a correlation. The symbol
in this represents the Pearson product–moment correlation in the study’s pop-

ulation. As you can see, is set equal to zero in this null hypothesis. Theoretically,
the value of in could have been set equal to any pinpoint number, such as �.20,
�.55, or any other value between �1.00 and �1.00. However, it is almost always
the case that researchers set equal to 0.00 in when using the hypothesis test-
ing procedure in a correlational study.

In Excerpts 7.3 and 7.4, we see two additional null hypotheses. In the first of
these excerpts, the null hypothesis stated that two percentages were equal.1 Because
of the wording in this excerpt, you might think that this stipulates that the percent-
age of intangible outputs from the 10 members of the T work group is identical to

H0

H0r

H0r

r

H0r

s2rm

H0: mmen-mwomen = 2

H0

H0: m1 = m2

H0

1In Chapter 17, we consider  in depth statistical tests that focus on percentages.

EXCERPTS 7.3–7.4 • Two Additional Null Hypotheses

This research utilized a set of subjects, 19 in total (ten from T-work group and nine
from the WT-work group). . . . H0: Pwto � Pto, this means the percentage of “intangible”
outputs by WT-work is equal to the percentage of “intangible” outputs by T-work.

Source: Waters, N. M., & Beruvides, M. G. (2009). An empirical study analyzing traditional
work schemes versus work teams. Engineering Management Journal, 21(4), 36–43.
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the percentage of such outputs from the 9 members of the WT work group. This is
an incorrect conceptualization of this study’s , because the two percentages rep-
resented in the null hypothesis refer to the population of people in T work groups
and the population of people in WT work groups. Without exception, null hy-
potheses always are focused on populations (and this is true for studies that focus
on means, correlations, percentages, or anything else).

Excerpt 7.4 shows a null hypothesis that involves four population means. The
s in this null hypothesis correspond to the means of the four populations repre-

sented by the different kinds of families involved in this study. In the stated ,
is connected to families with a laissez-faire style of communication, is connected
to families having a protective style of communication, and so on. The data of the
study came from the parents in each of the four samples who were asked to indicate
how much influence their adolescent children had on their (the parents’) decisions
to purchase various items (e.g., cell phones, fast food, clothing).

Before we leave our discussion of the null hypothesis, it should be noted that 
does not always represent the researcher’s personal belief, or hunch, as to the true state
of affairs in the population(s) of interest. In fact, the vast majority of null hypotheses
are set up by researchers in such a way as to disagree with what they actually believe
to be the case. We return to this point later in the chapter; for now, however, I want to
alert you to the fact that the associated with any given study probably is not an ar-
ticulation of the researcher’s personal belief concerning the involved population(s).

Step 6: The Decision Regarding H0

At the end of the hypothesis testing procedure, the researcher does one of two things
with One option is for the researcher to take the position that the null hypothe-
sis is probably false. In this case, the researcher rejects The other option avail-
able to the researcher is to refrain from asserting that is probably false. In this
case, a fail-to-reject decision is made.

If, at the end of the hypothesis testing procedure, a conclusion is reached that
is probably false, the researcher communicates this decision by saying one ofH0

H0

H0.
H0.

H0

H0

m2

m1H0

m

H0

EXCERPTS 7.3–7.4 • (continued)

More specifically, the article explores the perceived influence of adolescents on the
purchase of various product groups across four family communication types, namely
laissez-faire, protective, pluralistic, and consensual families. The following null hy-
pothesis was formulated for the purposes of the study:

Source: Tustin, D. (2009). Exploring the perceived influence of South African adolescents on
product purchases by family communication type. Communicatio: South African Journal for
Communication Theory & Research, 35(1), 165–183.

H0: m1 = m2 = m3 = m4.
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four things: (1) was rejected, (2) a statistically significant finding was obtained,
(3) a reliable difference was observed, or (4) p is less than a small decimal value
(e.g., p 
 .05). In Excerpts 7.5 through 7.7, we see examples of how researchers
sometimes communicate their decision to disbelieve H0.

H0

EXCERPTS 7.5–7.7 • Rejecting the Null Hypothesis

The authors were able to reject the null hypothesis that the program would have no
effect on knowledge.

Source: Rethlefsen, M. L., Piorun, M., & Prince, D. (2009). Teaching Web 2.0 technologies
using Web 2.0 technologies. Journal of the Medical Library Association, 97(4), 253–259.

ESPN Internet articles included a significantly higher proportion of descriptors about
the positive skill level/accomplishments and family roles/personal relationships than
CBS SportsLine articles.

Source: Kian, E. T. M., Mondello, M., & Vincent, J. (2009). ESPN—The women’s sports net-
work? A content analysis of Internet coverage of March Madness. Journal of Broadcasting &
Electronic Media, 53(3), 477–495.

Participants generated more original analogies of time following exposure to dual
cultures or a fusion culture (vs. control) (t � 2.08, p 
 .05).

Source: Leung, A. K., & Chiu, C. (2010). Multicultural experience, idea receptiveness, and cre-
ativity. Journal of Cross-Cultural Psychology, 41(5–6), 723–741.

Just as there are different ways for a researcher to tell us that is considered
to be false, there are various mechanisms for expressing the other possible decision
concerning the null hypothesis. Instead of saying that a fail-to-reject decision has
been reached, the researcher may tell us (1) was tenable, (2) was accepted,
(3) no reliable differences were observed, (4) no significant difference was found,
(5) the result was not significant (often abbreviated as ns or NS), or (6) p is greater
than a small decimal value (e.g., p � .05). Excerpts 7.8 through 7.10 illustrate these
different ways of communicating a fail-to-reject decision.

H0H0

H0

EXCERPTS 7.8–7.10 • Failing to Reject the Null Hypothesis

Hence, this null hypothesis was accepted.

Source: Vinodh, S., Sundararaj, G., & Devadasan, S. R. (2010). Measuring organisational agility
before and after implementation of TADS. International Journal of Advanced Manufacturing
Technology, 47(5–8), 809–818.
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It is especially important to be able to decipher the language and notation used
by researchers to indicate the decision made concerning , because most re-
searchers neither articulate their null hypotheses nor clearly state that they used the
hypothesis testing procedure. Often, the only way to tell that a researcher has used
this kind of inferential technique is by noting what happened to the null hypothesis.

Step 2: The Alternative Hypothesis

Near the beginning of the hypothesis testing procedure, the researcher must state an
alternative hypothesis. Referred to as (or as ), the alternative hypothesis
takes the same form as the null hypothesis. For example, if the null hypothesis deals
with the possible value of Pearson’s product–moment correlation in a single popu-
lation (e.g., ), then the alternative hypothesis must also deal with the
possible value of Pearson’s correlation in a single population. Or, if the null hy-
pothesis deals with the difference between the means of two populations (perhaps
indicating that ), then the alternative hypothesis must also say something
about the difference between those populations’ means. In general, therefore,
and are identical in that they must (1) deal with the same number of populations,
(2) have the same statistical focus, and (3) involve the same variable(s).

The only difference between the null and alternative hypothesis is that the
possible value of the population parameter included within always differs from
what is specified in . If the null hypothesis is set up to say then the
alternative hypothesis might be set up to say or, if a researcher speci-
fies in Step 1 that we might find that the alternative hypothesis is set
up to say .

Excerpt 7.11 contains an alternative hypothesis, labeled as well as the null
hypothesis with which it was paired. Notice that both and deal with the same
two populations and have the same statistical focus (a percentage). The null

H1H0

H1,
Ha: m1 Z m2

H0: m1 = m2,
Ha: r Z .00,

H0: r = .00,H0

Ha

H0

Ha

m1 = m2

H0: r = .00

H1Ha

H0

EXCERPTS 7.8–7.10 • (continued)

The male participants were evenly split, with 51% choosing the true crime book and
49% choosing the war book, ns.

Source: Vicary, A. M., & Fraley, R. C. (2010). Captured by true crime: Why Are women drawn
to tales of rape, murder, and serial killers? Social Psychological and Personality Science, 1(1),
81–86.

No significant age variance was found between Jewish and Muslim participants
(t(215) � 1.89, p � .05).

Source: Winstok, Z. (2010). The effect of social and situational factors on the intended response
to aggression among adolescents. Journal of Social Psychology, 150(1), 57–76.

(1, N = 259) = 0.04,
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hypothesis states that the two populations—administrators and social workers—are
identical in the proportion of the population choosing a particular outcome. The al-
ternative hypothesis states the two populations are not identical.

As indicated in the previous section, the hypothesis testing procedure termi-
nates (in Step 6) with a decision to either reject or fail to reject the null hypothesis.
In the event that is rejected, represents the state of affairs that the researcher
considers to be probable. In other words, and always represent two opposing
statements as to the possible value of the parameter in the population(s) of interest.
If, in Step 6, is rejected, then belief shifts from to Stated differently, if a
reject decision is made at the end of the hypothesis testing procedure, the researcher
will reject in favor of

Although researchers have flexibility in the way they set up alternative hy-
potheses, they normally will set up either in a directional fashion or in a
nondirectional fashion.2 To clarify the distinction between these options for the
alternative hypothesis, let’s imagine that a researcher conducts a study to compare
men and women in terms of intelligence. Further suppose that the statistical focus
of this hypothetical study is on the mean, with the null hypothesis asserting that

Now, if the alternative hypothesis is set up in a nondirectional
fashion, the researcher simply states If, however, the alterna-
tive hypothesis is stated in a directional fashion, the researcher specifies a direc-
tion in This could be done by asserting or by asserting

The directional/nondirectional nature of is highly important within the
hypothesis testing procedure. The researcher must know whether was set up inHa

Ha

Ha: mmen 6 mwomen.
Ha: mmen 7 mwomenHa.

Ha: mmen Z mwomen.
H0: mmen = mwomen.

Ha

Ha.H0

Ha.H0H0

HaH0

HaH0

2A directional is occasionally referred to as a one-sided Ha; likewise, a nondirectional is sometimes 
referred to as a two-sided Ha.

HaHa

EXCERPT 7.11 • The Alternative Hypothesis

The null and alternative hypotheses are as follows:

and

where p1 is the population proportion of administrators who select a certain outcome,
and p2 is the population proportion of school social workers who also select that out-
come (for example, school social work services lead to increased attendance).

Source: Bye, L., Shepard, M., Patridge, J., & Alvarez, M. (2009). School social work outcomes:
Perspectives of school social worker and school administrators. Children & Schools, 31(2), 97–108.

H1: p1 -  p2 Z 0

H0: p1 -  p2 = 0
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a directional or nondirectional manner in order to decide whether to reject (or to fail
to reject) the null hypothesis. No decision can be made about unless the direc-
tional/nondirectional character of is clarified.

In most empirical studies, the alternative hypothesis is set up in a nondirec-
tional fashion. Thus, if I were to guess what says in studies containing the null
hypotheses presented as shown on the left, I would bet that the researchers had set
up their alternative hypotheses as indicated on the right.

Corresponding
Possible H0 nondirectional Ha

Researchers typically set up in a nondirectional fashion because they do
not know whether the pinpoint number in is too large or too small. By specify-
ing a nondirectional the researcher permits the data to point one way or the other
in the event that is rejected. Hence, in our hypothetical study comparing men
and women in terms of intelligence, a nondirectional alternative hypothesis allows us
to argue that is probably higher than (in the event that we reject the 
because ); or, such an alternative hypothesis allows us to argue that

is probably higher than (if we reject because ).
Occasionally, a researcher believes so strongly (based on theoretical consid-

eration or previous research) that the true state of affairs falls on one side of ’s
pinpoint number that is set up in a directional fashion. So long as the researcher
makes this decision prior to looking at the data, such a decision is fully legitimate.
It is, however, totally inappropriate for the researcher to look at the data first and
then subsequently decide to set up in a directional manner. Although a decision
to reject or fail to reject could still be made after first examining the data and
then articulating a directional , such a sequence of events would sabotage 
the fundamental logic and practice of hypothesis testing. Simply stated, decisions
concerning how to state (and how to state ) must be made without peeking
at any data.

When the alternative hypothesis is set up in a nondirectional fashion, researchers
sometimes use the phrase two-tailed test to describe their specific application of the
hypothesis testing procedure. In contrast, directional lead to what researchers
sometimes refer to as one-tailed tests. Inasmuch as researchers rarely specify the al-
ternative hypothesis in their technical write-ups, the terms one-tailed and two-tailed
help us to know exactly how was set up. For example, consider Excerpts 7.12 and
7.13. Here, we see how researchers sometimes use the term two-tailed or one-tailed to
communicate their decisions to set up in a nondirectional or directional fashion.Ha

Ha

Has

H0Ha

Ha

H0

Ha

Ha

H0

Mmen 7 MwomenH0mwomenmmen

Mwomen 7 Mmen

H0mmenmwomen

H0

Ha,
H0

Ha

Ha: m1-m2 Z 0H0: m1-m2 = 0
Ha: s

2 Z 4H0: s
2 = 4

Ha: r Z + .20H0: r = + .20

Ha: m Z 100H0: m = 100

Ha

Ha

H0
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Step 4: Collection and Analysis of Sample Data

So far, we have covered Steps 1, 2, and 6 of the hypothesis testing procedure. In the
first two steps, the researcher states the null and alternative hypotheses. In Step 6,
the researcher either (1) rejects in favor of or (2) fails to reject We now
turn our attention to the principal “stepping stone” used to move from the begin-
ning points of the hypothesis testing procedure to the final decision.

Inasmuch as the hypothesis testing procedure is, by its very nature, an empir-
ical strategy, it should come as no surprise that the researcher’s ultimate decision to
reject or to retain is based on the collection and analysis of sample data. No crys-
tal ball is used, no Ouija board is relied on, and no eloquent argumentation is per-
mitted. Once and are fixed, only scientific evidence is allowed to affect the
disposition of 

The fundamental logic of the hypothesis testing procedure can now be laid
bare because the connections between the data, and the final decision are as
straightforward as what exists between the speed of a car, a traffic light at a busy
intersection, and a lawful driver’s decision as the car approaches the intersection.
Just as the driver’s decision to stop or to pass through the intersection is made after
observing the color of the traffic light, the researcher’s decision to reject or to re-
tain is made after observing the sample data. To carry this analogy one step fur-
ther, the researcher looks at the data and asks, “Is the empirical evidence
inconsistent with what one would expect if were true?” If the answer to this
question is yes, then the researcher has a green light and rejects However, if the
data turn out to be consistent with then the data set serves as a red light telling
the researcher not to discard 

Because the logic of hypothesis testing is so important, let us briefly consider
a hypothetical example. Suppose a valid intelligence test is given to a random sample

H0.
H0,

H0.
H0

H0

H0,

H0.
HaH0

H0

H0.HaH0

EXCERPTS 7.12–7.13 • Two-Tailed and One-Tailed Tests

All tests of significance were two-tailed.

Source: Miller, K. (2010). Using a computer-based risk assessment tool to identify risk for
chemotherapy-induced febrile neutropenia. Clinical Journal of Oncology Nursing, 14(1),
87–91.

To investigate what variables might be important predictors of company support for
fathers taking leave, [Pearson] correlations were calculated. . . . One-tailed tests of
significance were used.

Source: Haas, L., & Hwang, P. C. (2010). Is fatherhood becoming more visible at work?
Trends in corporate support for fathers taking parental leave in Sweden. Fathering: A Journal
of Theory, Research, & Practice about Men as Fathers, 7(3), 303–321.
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of 100 males and a random sample of 100 females attending the same university. If
the null hypothesis was first set up to say and if the data reveal
that the two sample means (of IQ scores) differ by only two-tenths of a point, the
sample data would be consistent with what we expect to happen when two samples
are selected from populations having identical means. Clearly, the notion of sam-
pling error could fully explain why the two Ms might differ by two-tenths of an IQ
point even if In this situation, there is no empirical justification for
making the data-based claim that males at our hypothetical university have a dif-
ferent IQ, on average, than do their female classmates.

Now, let’s consider what would happen if the difference between the two sam-
ple means turns out to be equal to 20 IQ points. If the empirical evidence turns out this
way, we have a situation where the data are inconsistent with what one would expect
if were true. Although the concept of sampling error strongly suggests that neither
sample mean will turn out exactly equal to its population parameter, the difference of
20 IQ points between and and

are equal. With results such as this, the researcher would reject the arbitrarily
selected null hypothesis.

To drive home the point I am trying to make about the way the sample data
influence the researcher’s decision concerning let’s shift our attention to a real
study that had Pearson’s correlation as its statistical focus. In Excerpt 7.14, the hy-
pothesis testing procedure was used to evaluate three bivariate correlations based
on data that came from 90 men who had surgery after going to an infertility clinic.
Each man was measured in terms of the number of left and right spermatic arteries
as well the number of left and right lymphatic channels. Then, the left-right data
were correlated for each of the two kinds of arteries and for the channels.

H0,

mfemales

Mfemales is quite improbable if, in fact, mmalesMmales

H0

mmale = mfemale.

H0: mmale = mfemale

EXCERPT 7.14 • Rejecting H0 When the Sample Data Are Inconsistent
with H0

An analysis of the relationship between the right and left spermatic cord anatomy 
in the bilateral varicocelectomy cases ( ) revealed a significant correlation 
between the number of right and left internal spermatic arteries (r � 0.42, P 
 .05).
However, we did not identify a significant correlation between the number of right
and left external spermatic arteries ( ) or the number of right and
left lymphatic channels ( ).

Source: Libman, J. L., Segal, R., Baazeem, A., Boman, J., & Zini, A. (2010). Microanatomy
of the left and right spermatic cords at subinguinal microsurgical varicocelectomy: Compara-
tive study of primary and redo repairs. Urology, 75(6), 1324–1327.

r = 0.19, P 7 .05
r = 0.13, P 7 .05

n = 90

In the study associated with Excerpt 7.14, the hypothesis testing procedure
was used separately to evaluate each of the three sample rs. In each case, the null
hypothesis stated The sample data, once analyzed, yielded correlationsH0: r = 0.00.
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of .42, .13, and .19. The first of these rs ended up being quite different from the null
hypothesis number of 0.00. Statistically speaking, the r of .42 was so inconsistent
with that sampling error alone was considered to be an inadequate explanation
for why the observed correlation was so far away from the pinpoint number in the
null hypothesis. Although we expect some discrepancy between 0.00 and the data-
based value of r even if were true, we do not expect this big difference. Ac-
cordingly, the null hypothesis concerning the internal spermatic arteries—that there
was no relationship between the number of left and right arteries—was rejected, as
indicated by the phrase significant correlation and the notation P 
 .05.

The second and third correlations in Excerpt 7.14 turned out to be much closer
to the pinpoint number in The small differences between the null number
and the rs of .13 and .19 could each be explained by sampling error. In other words,
if the correlation in the population were truly equal to 0.00, it would not be sur-
prising to have a sample r (with ) be anywhere between �.20 and �.20. Ac-
cordingly, the null hypotheses concerning external spermatic arteries and the
lymphatic channels were not rejected, as indicated by the notation P � .05.

In Step 4 of the hypothesis testing procedure, the summary of the sample data
always leads to a single numerical value. Being based on the data, this number is
technically referred to as the calculated value (or the test statistic). Occasionally,
the researcher’s task in obtaining the calculated value involves nothing more than
computing a value that corresponds to the study’s statistical focus. This was the case
in Excerpt 7.14, where the statistical focus was Pearson’s correlation coefficient and
where the researcher needed to do nothing more than compute a value for r.

In most applications of the hypothesis testing procedure, the sample data are
summarized in such a way that the statistical focus becomes hidden from view. For
example, consider Excerpts 7.15 and 7.16. In the first of these excerpts, the calculated

n = 90

H0, 0.00.

H0

H0

EXCERPTS 7.15–7.16 • The Calculated Value

[A] t-test found that overall satisfaction levels of male students ( )
were significantly higher than those of female students ( ),

= 13.78, p 
 0.05 (two-tailed).

Source: Kim, H., Lee, S., Goh, B., & Yuan, J. (2010). Assessing College Students’ Satisfac-
tion with University Foodservice. Proceedings of the 15th Annual Graduate Student Research
Conference in Hospitality and Tourism, Washington, DC, 34–46.

There was no difference in girls’ (M � 5 years, 8 months; SD � 1.52) and boys’
(M � 5 years, 10 months; SD � 1.68) ages, F(1, 114) � 0.25, p � 05.

Source: Tenenbaum, T. R., Hill, D. B., Joseph, N., & Roche, E. (2010). “It’s a boy because
he’s painting a picture”: Age differences in children’s conventional and unconventional gen-
der schemas. British Journal of Psychology, 101(1), 137–154.

 t(225)
M = 3.87, SD = 1.00
M = 4.14, SD = 1.10
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value was labeled t and it turned out equal to 13.78. In Excerpt 7.16, the calculated
value was F, and  it was equal to 0.25. In each of these excerpts, the statistical focus
was the mean.

In each of these excerpts, two sample means were compared. In Excerpt 7.15,
the mean of 4.14 was compared against the mean of 3.87. In Excerpt 7.16, the
means were 5 years, 8 months and 5 years, 10 months. Within each of these stud-
ies, the researchers put their sample data into a formula that produced the calculated
value. The important thing to notice in these excerpts is that in neither case does the
calculated value equal the difference between the two means being compared. In
Chapter 10, we consider t-tests and F-tests in more detail, so you should not worry
now if you do not currently comprehend everything that is presented in these ex-
cerpts. They are shown solely to illustrate the typical situation in which the statis-
tical focus of a study is not reflected directly in the calculated value.

Before computers were invented, researchers always had a single goal in mind
when they turned to Step 4 of the hypothesis testing procedure: the computation of
the data-based calculated value. Now that computers are widely available, researchers
still are interested in the magnitude of the calculated value derived from the data
analysis. Contemporary researchers, however, are also interested in a second piece
of information generated by the computer: the data-based p-value.

Whenever researchers use a computer to perform the data analysis, they ei-
ther (1) tell the computer what the null hypothesis is going to be or (2) accept the
computer’s built-in default version of The researcher also specifies whether 
is directional or nondirectional in nature. Once the computer knows what the re-
searcher’s and are, it can easily analyze the sample data and compute the
probability of having a data set that deviates as much or more from as does the
data set being analyzed. The computer informs the researcher as to this probability
by means of a statement that takes the form , with the blank being filled by
a single decimal value somewhere between 0 and 1.

Excerpt 7.17 illustrates nicely how a p-value is like a calculated value in that
either one can be used as a single-number summary of the sample data. As you can see,
three Pearson correlation coefficients are in this excerpt. The researchers associated

p = ––––

H0

HaH0

HaH0.

EXCERPT 7.17 • Using p as the Calculated Value

Correlation analyses and inspection of scatterplots between the PA composite and
speech production variables showed that there was no significant relationship be-
tween PA and distortions ( ), nor between PA and typical sound
changes ( ). However, a significant relationship was found 
between PA and atypical sound changes ( ).

Source: Preston, J., & Louise Edwards, M. (2010). Phonological awareness and types of sound
errors in preschoolers with speech sound disorders. Journal of Speech, Language & Hearing
Research, 53(1), 44–60.

r = - .362, p = .009
r = - .171, p = .273

r = .129, p = .429
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with this passage used a p-value to determine how likely it would be, assuming the
null hypothesis to be true, to end up with a sample correlation as large or larger than
each of their computed rs. Each p functioned as a measure of how 
inconsistent the sample data were compared with what would be expected to hap-
pen if were true.

Be sure to note in Excerpt 7.17 that there is an inverse relationship between
the size of p and the degree to which the sample data deviate from the null hypoth-
esis. The r that is furthest away from 0.00 (the pinpoint number in the null hypoth-
esis) has the smallest p. In contrast, the smallest of the three rs has the largest p.

Step 5: The Criterion for Evaluating the Sample Evidence

After the researcher has summarized the study’s data, the next task involves asking
the question, “Are the sample data inconsistent with what would likely occur if the
null hypothesis were true?” If the answer to this question is “Yes,” then is re-
jected; however, a negative response to this query requires a fail-to-reject decision.
Thus, as soon as the sample data can be tagged as consistent or inconsistent (with

), the decision in Step 6 is easily made. “But how,” you might ask, “does the re-
searcher decide which of these labels should be attached to the sample data?”

If the data from the sample(s) are in perfect agreement with the pinpoint nu-
merical value specified in then it is obvious that the sample data are consistent
with (This would be the case if the sample mean turned out equal to 100 when
testing if the sample correlation coefficient turned out equal to 0.00
when testing etc.) Such a situation, however, is unlikely. There is al-
most always a discrepancy between ’s parameter value and the corresponding
sample statistic.

In light of the fact that the sample statistic (produced by Step 4) is almost cer-
tain to be different from ’s pinpoint number (specified in Step 1), the concern
over whether the sample data are inconsistent with actually boils down to the
question, “Should the observed difference between the sample evidence and the null
hypothesis be considered a big difference or a small difference?” If this difference
(between the data and ) is judged to be large, then the sample data are looked on
as being inconsistent with and, as a consequence, is rejected. If, however, this
difference is judged to be small, the data and are looked on as consistent with
each other and, therefore, is not rejected.

To answer the question about the sample data’s being either consistent or in-
consistent with what one would expect if were true, a researcher can use either
of two simple procedures. Note that both of these procedures involve comparing a
single-number summary of the sample evidence against a criterion number. The sin-
gle-number summary of the data can be either the calculated value or the p-value.
Our job now is to consider what each of these data-based indices is compared
against, and what kind of result allows researchers to consider their samples to rep-
resent a large or a small deviation from H0.

H0

H0

H0

H0H0

H0

H0

H0

H0

 H0: r = 0.00,
H0: m = 100,

H0.
H0,

H0

H0

H0
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One available procedure for evaluating the sample data involves comparing
the calculated value against something called the critical value. The critical value
is nothing more than a number extracted from one of many statistical tables devel-
oped by mathematical statisticians. Applied researchers, of course, do not close
their eyes and point to just any entry in a randomly selected table of critical values.
Instead, they must learn which table of critical values is appropriate for their stud-
ies and also how to locate the single number within the table that constitutes the
correct critical value.

As a reader of research reports, you do not have to learn how to locate the
proper table that contains the critical value for any given statistical test, nor do you
have to locate, within the table, the single number that allows the sample data to be
labeled as being consistent or inconsistent with The researcher does these
things. Occasionally, the critical value is included in the research report, as exem-
plified in Excerpts 7.18 and 7.19.

H0.

EXCERPTS 7.18–7.19 • The Critical Value and the Decision Rule

The observed value of 63.22 is greater than the critical t value of 1.96, and this is
significant at a 0.05 level; hence the rejection of the null hypothesis.

Source: Oluwole, D. A. (2009). Spirituality, gender and age factors in cybergossip among
Nigerian adolescents. CyberPsychology & Behavior, 12(3), 323–326.

[T]he calculated chi square ( ) value of 44.35 was greater than the critical value
of 9.49 at 0.05 level of significance with 4 degrees of freedom. This means that there
is a significance relationship between the marital status of the nurses in Akwa-Ibom
State and their being obese.

Source: Ogunjimi, L. O., Maria M. Ikorok, M. M., & Yusuf, O. O. (2010). Prevalence of obesity
among Nigeria nurses: The Akwa Ibom State experience. International NGO Journal, 5(2),
045–049.

x2x2

Once the critical value is located, the researcher compares the data-based
summary of the sample data against the scientific dividing line that has been ex-
tracted from a statistical table. The simple question being asked at this point is
whether the calculated value is larger or smaller than the critical value. With most
tests (such as t, F, chi-square, and tests of correlation coefficients), the researcher
follows a decision rule that says to reject if the calculated value is at least as
large as the critical value. With a few tests (such as U or W), the decision rule tells
the researcher to reject if the calculated value is smaller than the critical value.
You do not need to worry about which way the decision rule works for any given
test, because this is the responsibility of the individual who performs the data analysis.

H0

H0
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The only things you must know about the comparison of calculated and critical
values are that (1) this comparison allows the researcher to decide easily whether
to reject or fail to reject and (2) some tests use a decision rule that says to reject

if the calculated value is larger than the critical value, whereas other tests involve
a decision rule that says to reject if the calculated value is smaller than the
critical value.

The researchers associated with Excerpts 7.18 and 7.19 helped the readers of
their research reports by specifying not only the critical value but also the nature of
the decision rule that was used when the calculated value was compared against the
critical value. In most research reports, you see neither of these things; instead, you
are given only the calculated value. (On rare occasions, you do not even see the cal-
culated value.) As indicated previously, however, you should not be concerned
about this, because it is the researcher’s responsibility to obtain the critical value
and to know which way the decision rule operates. When reading most research re-
ports, all you can do is trust that the researcher did these two things properly.

The second way a researcher can evaluate the sample evidence is to compare
the data-based p-value against a preset point on the 0-to-1 scale on which the p must
fall. This criterion is called the level of significance, and it functions much as does
the critical value in the first procedure for evaluating sample evidence. Simply
stated, the researcher compares his or her data-based p-value against the criterion
point along the 0-to-1 continuum so as to decide whether the sample evidence ought
to be considered consistent or inconsistent with The decision rule used in this
second procedure is always the same: If the data-based p-value is equal to or smaller
than the criterion, the sample is viewed as being inconsistent with however, if
p is larger than the criterion, the data are looked on as being consistent with 

Excerpt 7.20 exemplifies the use of this second kind of criterion for evaluat-
ing sample evidence. Note that the data-based p-value of 0.006 was substantially
smaller than the criterion number of 0.05. Accordingly, the null hypothesis (that the
populations of men and women have equal levels of trust) was rejected.

H0.
H0;

H0.

H0

H0

H0;

EXCERPT 7.20 • Comparing p to �

A resultant p-value of 0.006 was compared to a significance level of 0.05 indicated
that overall, there is a difference in trust levels for the males and females who partic-
ipated in the study, with males generally having the higher trust in their organizations.

Source: Alston, F., & Tippett, D. (2009). Does a technology-driven organization’s culture influ-
ence the trust employees have in their managers? Engineering Management Journal, 21(2), 1–10.

I discuss the level of significance in more depth in the next section, because
it is a concept that must be dealt with by the researcher no matter which of the two
procedures is used to evaluate the sample data. (With the second procedure, the
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level of significance is the criterion against which the data-based p-value is com-
pared; with the first procedure, the level of significance influences the size of the
critical value against which the calculated value is compared.) Before we leave this
section, however, I must point out that the same decision is reached regarding 
no matter which of the two procedures is used in Step 5 of the hypothesis testing
procedure. For example, suppose a researcher conducts an F-test and rejects be-
cause the calculated value is larger than the critical value. If that researcher were to
compare the data-based p against the level of significance, it would be found that
the former is smaller than the latter, and the same decision about would be made.
Or, suppose a researcher conducts a t-test and fails to reject because the calcu-
lated value is smaller than the critical value. If that researcher were to compare the
data-based p against the level of significance, it would be found that the former is
larger than the latter, and the same fail-to-reject decision would be made.

Step 3: Selecting a Level of Significance

After the data of a study are collected and summarized, the six-step hypothesis test-
ing procedure allows absolutely no subjectivity to influence, or bias, the ultimate de-
cision that is made concerning the null hypothesis. This goal is accomplished by
reliance on a scientific cutoff point to determine whether the sample data are con-
sistent or inconsistent with By referring (in Step 5) to a numerical criterion, it
becomes clear whether sampling error provides, by itself, a sufficient explanation for
the observed difference between the single-number summary of the researcher’s data
(computed in Step 4) and ’s pinpoint numerical value (articulated in Step 1). If the
single-number summary of the data is found to lie on ’s side of the criterion num-
ber (or if the data-based p lands on ’s side of the level of significance), a decision
(in Step 6) is made to reject in favor of (set forth in Step 2); however, if the
calculated value lands on ’s side of the critical value (or if the data-based p lands
on ’s side of the level of significance), a fail-to-reject decision is made.

Either the critical value or the level of significance serves as a scientific cutoff
point that determines what decision will be made concerning the null hypothesis. The
six-step hypothesis testing procedure not only allows the researcher to do something
that affects the magnitude of this criterion—it actually forces the researcher to be-
come involved in determining how rigorous the criterion will be. The researcher
should not, as I have pointed out, do anything like this after the data have been col-
lected and summarized. However, the researcher must do something prior to collect-
ing data that has an impact on how large or small the criterion number will be.

After the null and alternative hypotheses have been set up, but before any data
are collected, the researcher must select a level of significance. This third step of the
hypothesis testing procedure simply asks the researcher to select a positive decimal
value of the researcher’s choosing. Although the researcher has the freedom to se-
lect any value between 0 and 1 for the level of significance, most researchers select
a small number, such as .10, .05, or .01. The most frequently selected number is .05.
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Before explaining how the researcher-selected level of significance influences
the size of the critical value, I must alert you to the fact that not all researchers use the
phrase level of significance to designate the decimal number that must be specified in
Step 3. Instead of indicating, for example, that the level of significance is set equal to
.05, some researchers state that “the alpha level ( ) is set equal to .05,” others assert
that “ ” and still others indicate that “ will be rejected if .” Likewise,
a decision to use the .01 level of significance might be expressed using statements such
as “ ” “ ” or “results will be considered significant if ”

In Excerpts 7.21 through 7.23, we see different ways in which researchers 
report what level of significance was selected within their studies.

p 6 .01.a = .01,a = .01,

p 6 .05H0p = .05,
a

EXCERPTS 7.21–7.23 • The Level of Significance

An alpha level of .05 was used for all statistical tests.

Source: Egan, P. M., & Giuliano, T. A. (2009). Unaccommodating attitudes: Perceptions of
students as a function of academic accommodation use and test performance. North American
Journal of Psychology, 11(3), 487–500.

An � level of .05 was selected for statistical significance.

Source: Fink, A. M., Sullivan, S. L., Zerwic, J. J., & Piano, M. R. (2009). Fatigue with systolic
heart failure. Journal of Cardiovascular Nursing, 24(5), 410–417.

Statistical significance was set at P 
 0.05.

Source: Langhammer, B., & Stanghelle, J. K. (2010). Exercise on a treadmill or walking outdoors?
A randomized controlled trial comparing effectiveness of two walking exercise programmes late
after stroke. Clinical Rehabilitation, 24(1), 46–54.

If the single-number summary of the sample data is a p-value, the pragmatic
value of the level of significance is clear. In this situation, p is compared directly
against to determine whether should be rejected. However, even if the single-
number summary of the sample data is a calculated value, the level of significance
still performs a valuable and pragmatic function. This is because a critical value
cannot be located (in Step 5) unless the level of significance has first been set. As
indicated earlier, there are many tables of critical values. Once the proper table is
located, the researcher still has the task of locating, inside the table, the single num-
ber that will serve as the critical value. The task of locating the critical value is easy,
so long as the level of significance has been specified.3

H0a

3With certain tests, researchers cannot locate the critical value unless they also know how many degrees of free-
dom are connected with the sample data, a concept I discuss in several chapters, beginning with Chapter 10.
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Although the level of significance plays an important pragmatic role within
the six-step hypothesis testing procedure, it is even more important from a different
perspective. When I introduce the concept of the null hypothesis and when I talk
about the reject or fail-to-reject decision that researchers make regarding the null
hypothesis, I am careful to use language that does not suggest that is ever proved
to be true or false by means of hypothesis testing. Regardless of the decision made
about after the p and (or the calculated and critical values) are compared, it is
possible that the wrong decision will be reached. If is rejected in Step 6, it is
conceivable that this action represents a mistake, because may actually be true.
Or, if is not rejected, it is conceivable that this action represents a mistake, be-
cause may actually be an inaccurate statement about the value of the parameter
in the population(s).

In light of the fact that a mistake can conceivably occur regardless of what de-
cision is made at the end of the hypothesis testing procedure, two technical terms
have been coined to distinguish between these potentially wrong decisions. A Type
I error designates the mistake of rejecting when the null hypothesis is actually
true. A Type II error, however, designates the kind of mistake that is made if is
not rejected when the null hypothesis is actually false. The following chart may help
to clarify the meaning of these possible errors.

H0

H0

H0

H0

H0

H0

aH0

H0

Is H0 Really True?

Type I
Error

Reject H0
Correct
Decision

Correct
Decision

Type II
Error

Researcher’s
Decision

Yes No

Fail-to-
Reject H0

Beyond its pragmatic utility in helping the researcher locate the critical
value (or in serving as the criterion against which the data-based p is compared),
the level of significance is important because it establishes the probability of a
Type I error. In other words, the selected alpha level determines the likelihood
that a true null hypothesis will be rejected. If the researcher specifies, in Step 3,
that then the chances of rejecting a true null hypothesis become equal
to 5 out of 100. If, however, the alpha level is set equal to .01 (rather than .05),
then the chances of rejecting a true null hypothesis become equal to 1 out of 100.
The alpha level, therefore, directly determines the probability that a Type I error
will be committed.4

a = .05,

4As discussed in Chapter 8, Chapter 9, and several other chapters, the alpha level defines the probability of a
Type I error only if (1) important assumptions underlying the statistical test are valid and (2) the hypothesis
testing procedure is used to evaluate only one null hypothesis.
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After realizing that the researcher can fully control the likelihood of a Type I
error, you may be wondering why the researcher does not select an alpha level that
would dramatically reduce the possibility that a true will be rejected. To be more
specific, you may be inclined to ask why the alpha level is not set equal to .001
(where the chance of a Type I error becomes equal to 1 out of 1,000), equal to
.00001 (where the chance of Type I error becomes equal to 1 out of 100,000), or
even equal to some smaller decimal value. To answer this legitimate question, we
must consider the way in which a change in the alpha level has an effect on both
Type I error risk and Type II error risk.

If the alpha level is changed, it is as if there is an apothecary scale in which
the two pans hanging from opposite ends of the balance beam contain, respectively,
Type I error risk and Type II error risk. The alpha level of a study could be changed
so as to decrease the likelihood of a Type I error, but this change in alpha simulta-
neously has an opposite effect on the likelihood of a Type II error. Hence, re-
searchers rarely move alpha from the more traditional level of .05 to levels that
would greatly protect against Type I errors (such as .0001) because such a change
in the alpha level serves to make the chances of a Type II error unacceptably high.

In light of the fact that the typical researcher likes to reject to gain em-
pirical support for his or her hunch (that corresponds with the alternative hypoth-
esis), and in light of the fact that a change in the level of significance has an impact
on the likelihood of Type II errors, you now may be wondering why the researcher
does not move alpha in the opposite direction. It is true that a researcher would de-
crease the chance of a Type II error by changing alpha—for example, from .05 to
.40—because such a change makes it more likely that would be rejected. Re-
searchers do not use such high levels of significance simply because the scientific
community generally considers Type I errors to be more dangerous than Type II
errors. In most disciplines, few people pay attention to researchers who reject 
null hypotheses at alpha levels higher than .20, because such levels of significance
are considered to be too lenient (i.e., too likely to yield reject decisions that are
Type I errors).

The most frequently seen level of significance, as illustrated in several of the
excerpts we have just considered, is .05. This alpha level is considered to represent
a happy medium between the two error possibilities associated with any applica-
tion of the six-step hypothesis testing procedure. If, however, a researcher believes
that it is more important to guard against the possibility of a Type I error, a lower
alpha level (such as .01 or .001) is selected. On the other hand, if it is believed that
a Type II error is more dangerous than a Type I error, then a higher alpha level (such
as .10 or .15) is selected. Excerpts 7.24 and 7.25 illustrate how (and why) re-
searchers sometimes set alpha equal to something other than .05. In Excerpt 7.24,
the researchers wanted to guard against making Type II errors, so they set the level
of significance equal to .10 rather than .05. In contrast, the researchers in Excerpt
7.24 wanted to guard against making Type I error, so they changed the level of sig-
nificance from .05 to .01.

H0

H0

H0
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Before concluding our discussion of the level of significance, I must clarify
two points of potential confusion. To accomplish this goal, I want to raise and then
answer two questions: (1) “Does the alpha level somehow determine the likelihood
of a Type II error?” and (2) “If is rejected, does the alpha level indicate the prob-
ability that is true?”

The first point of potential confusion concerns the relationship between alpha
and Type II error risk. Because alpha does, in fact, determine the likelihood that the
researcher will end up rejecting a true and because it is true that a change in
alpha affects the chance of a Type I error and the chance of a Type II error (with
one increasing, the other decreasing), you may be tempted to expect the level of sig-
nificance to dictate Type II error risk. Unfortunately, this is not the case. The alpha
level specified in Step 3 does influence Type II error risk, but so do other features
of a study such as sample size, population variability, and the reliability of the mea-
suring instrument used to collect data.

The second point of potential confusion about the alpha level again concerns
the decision reached at the end of the hypothesis testing procedure. If a study’s 
is rejected in Step 6, it is not proper to look back to see what alpha level was spec-
ified in Step 3 and then interpret that alpha level as indicating the probability that

is true. For example, if a researcher ends up rejecting after having set the
level of significance equal to .05, you cannot legitimately conclude that the
chances of being true are less than 5 out of 100. The alpha level in any study
indicates only what the chances are that the forthcoming decision will be a Type I
error. If alpha is set equal to .05, then the chances are 5 out of 100 that will beH0

H0

H0H0

H0

H0,

H0

H0

EXCERPTS 7.24–7.25 • Reasons for Using Alpha Levels Other Than .05

Significance was evaluated using � � 0.10. . . . We used a larger than customary
level of significance to reduce the likelihood of a Type II error (i.e., not detecting
real differences), which we felt could pose more risk to murrelet management than
the occurrence of a Type I error.

Source: Waterhouse, F. L., Burger, A. E., Lank, D. B., Ott, P. K., Krebs, E. A., & Parker, N.
(2009). Using the low-level aerial survey method to identify Marbled Murrelet nesting habi-
tat. BC Journal of Ecosystems and Management, 10(1), 80–96.

For the cross-sectional analysis, analyses of variance (ANOVAs) were used to examine
group differences in continuous variables using a conservative threshold of p 
 0.01
to control for Type I error.

Source: Drake, A. S., Weinstock-Guttman, B., Morrow, S. A., Hojnacki, D., Munschauer, F.
E., & Benedict, R. H. B. (2010). Psychometrics and normative data for the Multiple Sclerosis
Functional Composite: Replacing the PASAT with the Symbol Digit Modalities Test. Multiple
Sclerosis, 16(2), 228–237.
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rejected if H0 is actually true. Statisticians sometimes try to clarify this distinction
by pointing out that the level of significance specifies “the probability of a reject
decision, given a true ” and not “the probability of being true, given a reject
decision.”

Results That Are Highly Significant or Near Misses

As indicated earlier, the level of significance plays a highly important role in hy-
pothesis testing. In a very real sense, it functions as a dividing line. Statistical sig-
nificance is positioned on one side of that line, the lack of statistical significance on
the other. That dividing line is clearly visible if the researcher decides to reject or
fail to reject by comparing the data-based p against the level of significance. Yet
even when the procedure for deciding ’s fate involves comparing the data-based
calculated value against a tabled critical value, the level of significance is still in-
volved, because influences the size of the critical value.

Because the level of significance plays such an important role—both pragmat-
ically and conceptually—in hypothesis testing, it often is included when the decision
about is declared. With the level of significance set at .05 (the most popular -
level), a decision to reject is often summarized by the notation whereas
a decision not to reject is summarized by the notation Several of these
notational summaries were presented earlier in this chapter.

Many researchers do not like to summarize their results by reporting simply
that the null hypothesis either was or was not rejected. Instead, they want their read-
ers to know how much of a discrepancy existed between the data-based p and the
level of significance (or between the data-based calculated value and the critical
value). In doing this, the researcher’s goal is to provide evidence as to how strongly
the data challenge In other words, these researchers want you to know if they
beat the level of significance by a wide margin (presuming that was rejected) or
if they just missed beating (presuming that was retained).

Consider Excerpts 7.26 and 7.27. Notice the phrase highly significant that
appears in Excerpt 7.27.

H0a

H0

H0.

p 7 .05.H0

p 6 .05,H0

aH0

a

H0

H0

H0H0

EXCERPTS 7.26–7.27 • Rejecting the Null Hypothesis with Room to Spare

The time that the paper disc was in the mouth/stomach of the fish significantly
differed for the four conditions (Friedman ANOVA,

.

Source: Wood, J. B., Maynard, A. E., Lawlor, A. G., Sawyer, E. K., Simmons, D. M., & Pennoyer,
K. E., et al. (2010). Caribbean reef squid, Sepioteuthis sepioidea, use ink as a defense against
predatory French grunts, Haemulon flavolineatum. Journal of Experimental Marine Biology
and Ecology, 388(1–2), 20–27.

n = 39 fish, p 6 0.000012
x2[0.05, 3] = 67.955,
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Although p-values like those shown in Excerpts 7.26 and 7.27 are not seen
very often in research reports, I can assure you that you will frequently encounter
p-less-than statements where the numerical value is smaller than .05. You will reg-
ularly see you will come across quite often, and you will see

every now and then. Such statements do not indicate that the researcher
initially set the level of significance equal to .01, .001, or .0001. Most likely, p-
statements such as these come from studies in which was set equal to .05. (This
was the case in the studies from which Excerpts 7.26 and 7.27 were taken.) There
is a simple reason why p-less-than statements often contain a number other than
the level of significance.

Many researchers use an approach to hypothesis testing that involves report-
ing the most impressive p-statement that honestly describes their data. They first
check to see if they have statistical significance at the .05 level. If they do, then they
know they at least can say They next check to see if the sample data would
have been significant at the .01 level, had this been the selected alpha level. If the
answer is yes, they then check again, this time to see if the data are significant at
the .001 level. This process continues until either (1) the data cannot beat a more
rigorous level of significance or (2) the researcher does not want to check further to
see if p might beat an even more impressive It is clear that this approach to hy-
pothesis testing was used in Excerpts 7.26 and 7.27.

Most researchers test more than one null hypothesis in the same study. In the
research reports prepared by these investigators, you may see certain results sum-
marized via the statement other results summarized via the statement

and still other results summarized via the statement (Recently,
I read a research report in which four different p-statements—

and —were connected to the results presented in a single table.)
In any one of these studies, it is highly unlikely that the researcher decided at the
outset to use different alpha levels with the different null hypotheses being tested.
Rather, it is far more probable that all s were initially tested with set equal to
.05, with the researcher then revising (as indicated in the previous paragraph) so
that more impressive p-statements could be presented.

Now, let’s shift gears and consider what happens if the data-based p is larger
than the initially specified level of significance. If p is much larger than the sit-
uation is clear: the null hypothesis cannot be rejected. At times, however, p turns

a,

a

aH0

p 6 .001p 6 .005,
p 6 .01,p 6 .05,

p 6 .001.p 6 .01,
p 6 .05,

a.

p 6 .05.

a

p 6 .0001
p 6 .001p 6 .01,

EXCERPTS 7.26–7.27 • (continued)

The correlation was strongly positive (r � 0.95) and highly significant (p 

0.00000001).

Source: Sripatil, A. P., & Olson, C. R. (2010). Global image dissimilarity in macaque inferotem-
poral cortex predicts human visual search efficiency. Journal of Neuroscience, 30(4), 1258–1269.
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out to be just slightly larger than For example, p might turn out equal to .07 when
is set at .05. Many researchers consider this to be a near miss, and they commu-

nicate this observation via certain commonly seen phrases. When p fails to beat 
by a small amount, researchers often say that they achieved marginal significance,
that their findings approached significance, that there was a trend toward signifi-
cance, or that the results indicate borderline significance. We see an example of this
in Excerpt 7.28.

Other researchers deal with near misses in a different way. Believing that a
miss is still a miss, they use an approach to hypothesis testing that has two clear
rules: (1) choose the level of significance at the beginning of the study and then
never change it, and (2) consider any result, summarized by p, to lie on one side
or the other side of with it making no difference whatsoever whether p is a
smidgen or a mile away from According to this school of thought, the only
thing that matters is whether p is larger or smaller than the level of significance.
This approach was used in Excerpt 7.29. The null hypothesis was not rejected
even though the data-based p-level was extremely close to being under the .05 level
of significance.

a.
a,

a

a

a.

A Few Cautions

Now that you have considered the six-step hypothesis testing procedure from the
standpoint of its various elements and its underlying rationale, you may be tempted
to think that it will be easy to decipher and critique any research report in your field
that has employed this particular approach to inferential statistics. I hope, of course,

EXCERPTS 7.28–7.29 • Dealing with “Near Misses”

When analyzed for all the veterans together, improvement approached significance
pre- to posttreatment, and appeared to be maintained at
follow-up.

Source: Ray, R. D., & Webster, R. (2010). Group Interpersonal Psychotherapy for Veterans
with Posttraumatic Stress Disorder: A Pilot Study. International Journal of Group Psychother-
apy, 60(1), 131–140.

Overall, arthroscopic evaluations were not statistically different between PRGF and
control groups ( ).

Source: Sánchez, M., Anitua, E., Azofra, J., Prado, R., Muruzabal, F., & Andia, I. (2010). Lig-
amentization of tendon grafts treated with an endogenous preparation rich in growth factors:
Gross morphology and histology. Arthroscopy: The Journal of Arthroscopic & Related Surgery,
26(4), 470–480.

P = .051

F11, 82 = 5.26, p = .051,
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that this chapter has helped you become more confident about making sense out of
statements such as these: “A two-tailed test was used,” “A rigorous alpha level was
employed to protect against the possibility of a Type I error,” and “The results were
significant ( ).” Before I conclude this chapter, however, it is important that
I alert you to a few places where misinterpretations can easily be made by con-
sumers of research reports (and by researchers themselves).

Alpha

The word alpha (or its symbol ) refers to two different concepts. Within the hy-
pothesis testing procedure, alpha designates the level of significance selected by the
researcher. In discussions of measuring instruments, alpha means something en-
tirely different. In this latter context, alpha refers to the estimated internal consis-
tency of data from the questionnaire, inventory, or test being discussed. Note that
alpha must be a small decimal number in hypothesis testing in order to accomplish
the task of protecting against Type I errors. In contrast, alpha must be a large dec-
imal number in order to document high reliability.

The Importance of H0

Earlier in this chapter, I presented excerpts from various journal articles wherein the
null hypothesis was clearly specified. Unfortunately, most researchers do not take
the time or space to indicate publicly the precise nature of . Evidently, they pre-
sume that their readers will understand what their null hypothesis was in light of
the number of samples involved in the study, the nature of the measurements col-
lected, and the kind of statistical test used to analyze the data.

Right now, you may feel that you will never be able to discern unless it is
specifically articulated. However, after becoming familiar with the various statisti-
cal tests used to analyze data, you will find that you can make accurate guesses as
to the unstated null hypotheses you encounter. Many of the chapters in this book,
beginning with Chapter 9, will help you acquire this skill.

This skill is important to have because the final decision of the hypothesis test-
ing procedure always has reference to the point of departure. Researchers never end
up by rejecting (or failing to reject) in the abstract; instead, they always terminate
the hypothesis testing procedure by rejecting (or failing to reject) a specific Ac-
cordingly, no decision to reject should be viewed as important unless we consider
what specifically has been rejected.

On occasion, the hypothesis testing procedure is used to evaluate a null hy-
pothesis that could have been rejected, or not rejected, from the very beginning,
strictly on the basis of common sense. Although it is statistically possible to test
such an no real discovery is made by rejecting a null hypothesis that was known
to be false from the outset, or by reaching a fail-to-reject decision when such an out-
come was guaranteed from the start. To illustrate, consider Excerpt 7.30.

H0,

H0.

H0

H0

a

p 6 .01
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The material in Excerpt 7.30 is, perhaps, a truly classic case of the hypothesis
testing procedure resulting in a decision about the null hypothesis that was fully guar-
anteed to be produced because of the way the two comparison groups were formed.
In this excerpt, the nonsignificant result was no surprise whatsoever. Be on the look-
out for other cases where either a null hypothesis did not need to be tested because
the result was known a priori, or for cases where a trivial or silly null hypothesis was
tested, even if no one knew whether the null hypothesis would be rejected or retained.

I cannot exaggerate the importance of the null hypothesis to the potential mean-
ingfulness of results that come from someone using the hypothesis testing procedure.
Remember that a reject or fail-to-reject decision, by itself, is not indicative of a use-
ful finding. A reject decision could be easily brought about simply by setting up, in
Step 1, an outrageous a fail-to-reject decision could be just as easily brought about
by comparing two or more things that are known to be the same. Consequently, you
should always be interested in not only the ultimate decision reached at the end of the
hypothesis testing procedure but also the target of that decision—

The Ambiguity of the Word Hypothesis

In discussing the outcomes of their data analyses, researchers sometimes assert that
their results support the hypothesis (or that the results do not support the hypothesis).
However, which hypothesis is being referred to?

As you now know, the hypothesis testing procedure involves two formal hy-
potheses, and In addition, the person conducting the study may have a hunch
(i.e., prediction) as to how things will turn out. Many researchers refer to such hunches
as research hypotheses. Thus, in a single study, there can be three kinds of hypothe-
ses!5 Usually, the full context of the research report help make clear which of these

Ha.H0

H0.

H0;

EXCERPT 7.30 • Testing an Unimportant H0

Students were rank ordered and then matched on their scores on the Mathematical
Problem Solving subtest of the Stanford Achievement Test–9 (SAT-9 MPS). Next,
each member of a matched student pair was randomly assigned to either the inter-
vention or comparison condition.

A one-way analysis of variance (ANOVA) indicated no statistically significant dif-
ferences between the groups [regarding scores] on the SAT-9 MPS, F(1, 58) � 0.00, ns.

Source: Griffin, C. C., & Jitendra, A. K. (2009). Word problem-solving instruction in inclusive
third-grade mathematics classrooms. Journal of Educational Research, 102(3), 187–202.

5The researcher’s hunch differs from both and if the alternative hypothesis is set up to be nondirectional
whereas the researcher’s prediction is directional. This situation is not uncommon. Many researchers have been
taught to conduct two-tailed tests—even though they have a directional hunch—in order to allow the data to
suggest that reality, perhaps, is on the flip side of their hunch. 

HaH0
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three hypotheses stands behind any statement about the hypothesis. At times, however,
you must read very carefully to accurately understand what the researcher found.

To illustrate why I offer this caution, consider the short sentence in Excerpt 7.31
that comes from a study dealing with instant messaging among teenagers. As you
can see, two hypotheses are referred to in this sentence, with one having been re-
jected whereas the other was accepted. Are these null hypotheses, alternative hy-
potheses, or investigators’ research hypotheses?

EXCERPT 7.31 • The Ambiguity of the Word Hypothesis

H2a was rejected, while H2b was accepted.

Source: Hanyun H., & Leung, L. (2009). Instant messaging addiction among teenagers in China:
Shyness, alienation, and academic performance decrement. CyberPsychology & Behavior,
12(6), 675–679.

On first glance, the two hypotheses in Excerpt 7.31 might seem like null hy-
potheses (because null hypotheses get rejected or accepted). However, the sentence in
this excerpt actually is referring to research hypotheses. (H2a predicted that teenagers
scoring high in shyness would tend to be heavy users of instant messaging; H2b pre-
dicted that this same group would tend to rely on this form of communication.) Al-
most always, the materials contained in a research report clarify what kind(s) of
hypotheses are being referred to. If you are not sure what the word hypothesis means,
search around in the article until you find out. If you do not do this, you might think
that the study showed one thing when it actually showed just the reverse.

When p Is Reported to Be Equal to or Less Than Zero

Whenever sample data are analyzed by a computer for the purpose of evaluating a
null hypothesis, a p-value is produced. This p is a probability, and it can end up
being any number between 0 and 1. As you now know, a small value of p causes 
to be rejected. The researcher takes that action because a small p signifies that a true

population situation would not likely produce a randomly selected data set that,
when summarized, is at least as far away from ’s pinpoint number as is the re-
searcher’s actual data set. In most of the excerpts of this chapter, p turned out to be
very low. In one case, p was equal to .051; in another, p was turned out equal to
.006. We even saw one instance where p was shown to be less than .00000001.

Occasionally, you may encounter cases where the reported p-value is equal to
or less than zero. Such ps are misleading, for they do not mean that an imaginary
population defined by had no chance whatsoever (or less than no chance) to pro-
duce sample data like that obtained by the researcher. Rather, such p-statements are
created when exceedingly small computer-generated p-values (e.g., )p = .00003

H0

H0

H0

H0
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are rounded off to a smaller number of decimal places. It is important to know this
to avoid falling into the trap of thinking that is proved to be wrong in those cases
where p is reported to be zero or less than zero.

The Meaning of Significant

If the null hypothesis is rejected, the researcher may assert that the results are
significant. Because the word significant means something different when used in
casual everyday discussions than when it is used in conjunction with the hypothe-
sis testing procedure, it is crucial that you recognize the statistical meaning of this
frequently seen term. Simply stated, a statistically significant finding may not be
very significant at all.

In our everyday language, the term significant means big, important, or note-
worthy. In the context of hypothesis testing, however, the term significant has a to-
tally different meaning. Within this inferential context, a significant finding is simply
one that is not likely to have occurred if is true. So long as the sample data are in-
consistent with what one would expect from a true null situation, the statistical claim
can be made that the results are significant. Accordingly, a researcher’s statement to
the effect that the results are significant simply means that the null hypothesis being
tested has been rejected. It does not necessarily mean that the results are important or
that the absolute difference between the sample data and was found to be large.

Whether a statistically significant result constitutes an important result is in-
fluenced by (1) the quality of the research question that provides the impetus for the
empirical investigation and (2) the quality of the research design that guides the col-
lection of data. I have come across journal articles that summarized carefully con-
ducted empirical investigations leading to statistically significant results, yet the
studies seemed to be quite insignificant. Clearly, to yield important findings, a study
must be dealing with an important issue.

Yet what if statistically significant results are produced by a study that focuses
on an important question? Does this situation mean that the research findings are
important and noteworthy? The answer, unfortunately, is no. In Chapter 8, we dis-
cuss how it is possible for a study to yield statistically significant results even
though there is a tiny difference between the data and the null hypothesis. For ex-
ample, in a recent study reported in the Journal of Applied Psychology, the re-
searcher tested within the context of a study dealing with correlation.
After collecting and analyzing the sample data, this null hypothesis was rejected,
with the report indicating that the result was “significant at the .001 level.” The sam-
ple value that produced this finding was �.03!

Even if the issue being investigated is crucial, I cannot consider a correlation
of to be very different in any meaningful way from the null value of 0. (With

the proportion of explained variance is equal to .0009.) As you will soon
learn, a large sample can sometimes cause a trivial difference to end up being sta-
tistically significant—and that is precisely what happened in the correlational study

r = - .03,
- .03

H0: r = 0

H0

H0

H0
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to which I am referring. In that investigation, there were 21,646 individuals in the
sample. Because of the gigantic sample, a tiny correlation turned out to be statisti-
cally significant. Although significant in a statistical sense, the r of was clearly
insignificant in terms of its importance.

You must be on guard as you come across research reports because many re-
searchers, perhaps unconsciously, seem to exaggerate the importance of their find-
ings, especially if they can say that their results are significant. Sometimes, but not
often, you will come across a researcher who downplays a significant result that has
been obtained. You can see an example of this in Excerpt 7.32. Give researchers
such as these a heap of bonus points when you evaluate their work!

- .03

EXCERPT 7.32 • Acknowledging That a Significant Finding Was 
Not Impressive

All comparisons were significant at the p 
 .0001 level. However, Kendall’s W for
the total sample (n � 46) was .11. Kendall’s W for the highly trained group (n � 17)
was .14. Kendall’s W for the less trained group (n � 30) was .13. These low values
for the Kendall’s W statistic indicate low levels of agreement despite the significant
result. The null hypothesis for W is that concordance of ranks is not significantly dif-
ferent from 0 (i.e., random). Although the concordance of ranks was significantly
different from 0, the level of agreement was not high.

Source: Miller, E. M. (2009). The effect of training in gifted education on elementary class-
room teachers’ theory-based reasoning about the concept of giftedness. Journal for the Edu-
cation of the Gifted, 33(1), 65–105.
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Alternative hypothesis
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Fail-to-reject
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The Best Items in the Companion Website

1. An email message sent from the author to his students entitled “Learning
about Hypothesis Testing Is NOT Easy!”

2. An interactive online quiz (with immediate feedback provided) covering
Chapter 7.

3. Ten misconceptions about the content of Chapter 7.
4. Chapter 7’s best passage (selected by the author).
5. An interactive online resource called “Type I Errors.”

To access the chapter outline, practice tests, weblinks, and flashcards, visit the com-
panion website at http://www.ReadingStats.com.

Review Questions and Answers begin on page 531.

http://www.ReadingStats.com


In Chapter 7, we considered the basic six-step version of hypothesis testing. Al-
though many researchers use that version of hypothesis testing, there is a definite
trend toward using a seven step or nine-step procedure when testing null 
hypotheses. In this chapter, we consider the extra step(s) associated with these ap-
proaches to hypothesis testing. In addition, this chapter includes two related topics: the
connection between hypothesis testing and confidence intervals, and the problem of an
inflated Type I error rate brought about by multiple tests conducted simultaneously.

The Seven-Step Version of Hypothesis 
Testing: Estimating Effect Size

As you may recall from Chapter 7, the elements of the simplest version of hypoth-
esis testing are as follows:

1. State the null hypothesis ( ).
2. State the alternative hypothesis ( ).
3. Select a level of significance ( ).
4. Collect and analyze the sample data.
5. Refer to a criterion for evaluating the sample evidence.
6. Reject or fail to reject 

To these six steps, a growing number of researchers add a seventh step. Instead of
ending the hypothesis testing procedure with a statement about these re-
searchers return to their sample data and perform an additional task. The purpose
of the seventh step is to go beyond the decision made about in order to say some-
thing about the degree to which the sample data turned out to be incompatible with
the null hypothesis.

H0

H0,

H0.

a

Ha

H0

C H A P T E R 8
Effect Size, Power,
CIs, and Bonferroni
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Reason for the Seventh Step

Before discussing what researchers do in Step 7 of this (slightly expanded) version of
hypothesis testing, I want to explain why competent researchers take the time to do this.
Simply stated, they do this because a result that is deemed to be statistically significant
can be, at the same time, completely devoid of any practical significance whatsoever.
This is because there is a direct relationship between the size of the sample(s) and the
probability of rejecting a false null hypothesis. If the pinpoint number in is wrong,
large samples increase the likelihood that the result will be statistically significant—
even if the sample data deviate from by a small amount. In such situations, a deci-
sion to reject in favor of does not mean very much in a practical sense.

In Excerpts 8.1 and 8.2, this critically important distinction between statistical
significance and practical significance is discussed.1 In Excerpt 8.1, notice that the
researchers argue that “beyond statistical significance,” their finding appeared to be
“of considerable practical significance as well.” In Excerpt 8.2, the researchers first
note that they had a giant sample size; then, they warn their readers not to automat-
ically equate statistical significance with practical significance. It would be nice if
all research reports contained statements like the ones in these two excerpts (or
like the statement we saw earlier in the final excerpt of Chapter 7). Unfortunately,
many researchers seem concerned with just one thing: statistical significance. This

HaH0

H0

H0

1The term clinical significance, used frequently within medical research, means the same thing as practical
significance.

EXCERPTS 8.1–8.2 • Statistical Significance versus Practical Significance

Beyond statistical significance, these associations appeared to be of considerable
practical significance as well. Consider, for example, that youth with high levels of
academic self-efficacy (i.e., one standard deviation above the mean) were 2.46 times
as likely to endorse learning-oriented goals compared with youth with low levels of
academic self-efficacy (i.e., one standard deviation below the mean).

Source: Baird, G. L., Scott, W. D., Dearing, E., & Hamill, S. K. (2009). Cognitive self-regulation
in youth with and without learning disabilities: Academic self-efficacy, theories of intelligence,
learning vs. performance goal preferences, and effort attributions. Journal of Social & Clinical
Psychology, 28(7), 881–908.

We note that due to the size of the MYDAUS survey [N � 80,428], the power to de-
tect differences is extremely high and the reader should be careful to not equate sta-
tistical significance with practical significance.

Source: O’Brien, L. M., Polacsek, M., MacDonald, P. B., Ellis, J., Berry, S., & Martin, M.
(2010). Impact of a school health coordinator intervention on health-related school policies
and student behavior. Journal of School Health, 80(4), 176–185.
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is dangerous because it is quite possible for a study’s results to be significant in a sta-
tistical sense without being important (i.e., significant) in a practical fashion.

We next look briefly at a procedure researchers use in an effort to measure the
practical significance of their results. Doing this constitutes the seventh step of hy-
pothesis testing. It involves computing an estimate of what’s called effect size.

Estimating the Effect Size

Researchers who are sensitive to the distinction between statistical significance and
practical significance often add a seventh step to the basic version of hypothesis test-
ing by estimating the study’s effect size. Once obtained, an effect size estimate can
then be compared against a “yardstick” for assessing practical significance. Whereas
the null hypothesis might be rejected in a study comparing two ways of treating a dis-
ease, an effect size estimate allows us to see whether the differential impact of the two
treatments should be thought of as small or medium or large. Or, in a study involving
the correlation of two variables that declares r to be significantly different from zero,
an estimate of effect size allows the researcher to talk about the pure strength of the
measured relationship, beyond saying simply that it is statistically significant.

When applying the concept of effect size to address the concept of practical sig-
nificance, a researcher does two things. First, the researcher compares a simple sum-
mary the sample data to (and perhaps standardizes the result of this comparison).
In doing this, the previously computed p-value is not considered at all; instead, atten-
tion is focused on the degree to which the sample data deviate from what is said in the
null hypothesis. For example, if a study deals with correlation and if the null hypoth-
esis says the researcher looks to see how much the sample value of r
deviates from 0.00. Or, in the two-group study in which the null hypothesis says 

the researcher examines the sample data to see how different are
compared against the difference of zero contained in the null hypothesis.

Second, the researcher evaluates the size of the observed difference between
the summary of the sample data and whatever was stated in This second part of
an effect size analysis involves judging the size of the observed difference and de-
claring it to be tiny, small, medium, large, or gigantic. Most researchers use just the
middle three of these labels. In Excerpt 8.3, we see an example where this was done

H0.

M1 and M2m1 = m2,
H0:

r = 0.00,H0:

H0

EXCERPT 8.3 • Labeling the Effect Size

A correlation between QB ratings and mean attractiveness ratings was conducted to
determine whether athletic performance could in fact be assessed by simple examina-
tion of the QBs’ faces. . . . Results demonstrated that attractiveness and QB ratings
were positively correlated, r � .31, p 
 .05, exhibiting a small-to-medium effect size.

Source: Williams, K. M., Park, J. H., & Wieling, M. J. (2010). The face reveals athletic flair:
Better National Football League quarterbacks are better looking. Personality and Individual
Differences, 48(2), 112–116.
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in a study dealing with NFL quarterbacks. Note the excerpt’s final words: “a small-
to-medium effect size.”

To decide whether an observed discrepancy between the sample data and the
null hypothesis should be described as small, medium, or large, many researchers
refer to effect size criteria that have been recommended by statistical authorities.
(Beginning in Chapter 9, these specific criteria, or standards, are considered when
we examine different statistical procedures for testing null hypotheses.) For exam-
ple, the researchers associated with Excerpt 8.3 may have used the phrase small-to-
medium effect size by invoking the popular standards for evaluating the size of a
sample-based correlation coefficient.

Instead of referring to the popular criteria for judging the magnitude of a
study’s estimated effect size, a researcher has the full right to make an evaluative
judgment by considering what kinds of outcomes are thought to be small, medium,
or large by practitioners or other researchers. In fact, certain statistical authorities
recommend avoiding the popular criteria. Impressed by the argument that “one size
does not fit all,” I salute those researchers who use their knowledge of theory, pre-
vious research, and applied utility when trying to decide whether the practical sig-
nificance of their finding is small, medium, or large.

In Excerpts 8.4 and 8.5, we see two studies that involved means rather than
correlations. Although these excerpts are different in several ways, they are similar
in that the researchers of each study first computed an estimated effect size and then
made an evaluative judgment as to its magnitude. The final five words of each ex-
cerpt indicate the researchers’ decision as to whether the estimated effect size should
be considered small or medium or large. (This first of these excerpt shows nicely the
value of adding this seventh step to the hypothesis testing procedure, as the statisti-
cally significant result was evaluated as having only small practical significance.)

EXCERPTS 8.4–8.5 • Two Popular Estimates of Effect Size: d and 
Partial h2

The control group improved significantly in the Hostility measure (t � 2.24; df �
15; P � 0.02), while the effect size was small (d � 0.21).

Source: Thaut, M. H., Gardiner, J. C., Holmberg, D., Horwitz, J., Kent, L., Andrews, G., et al.
(2009). Neurologic music therapy improves executive function and emotional adjustment in trau-
matic brain injury rehabilitation. Annals of the New York Academy of Sciences, 1169(1), 406–416.

The main effect of attention was
highly significant and represented a large effect size.

Source: Kushalnagar, P., Hannay, H. J., & Hernandez, A. E. (2010). Bilingualism and attention:
A study of balanced and unbalanced bilingual deaf users of American Sign Language and Eng-
lish. Journal of Deaf Studies and Deaf Education, 15(3), 263–273.

[F(2, 45) = 55.248, p 6 .001; partial h2 = .71]
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In Excerpt 8.4, the effect was estimated by means of something called d,
whereas the effect size in Excerpt 8.5 was estimated by something called partial
(The notation is called eta squared.) These two indices turned out equal to .21
and .71, respectively, and each can be thought of as a measure of estimated effect
size that has been standardized. Standardized indices such as these are needed by
those researchers who opt to use the popular, more general criteria for deciding
whether a result is small, medium, or large. Beginning in Chapter 9, we consider
these and other standardized indices of effect size, and we see the criteria that
brought forth the words small and large in Excerpts 8.4 and 8.5, respectively.

The Nine-Step Version of Hypothesis Testing: Power Analyses

Although many researchers utilize the six-step and seven-step versions of hypoth-
esis testing, there is a definite trend toward using a nine-step approach. Six of the
steps of this more elaborate version of hypothesis testing are identical to the six
basic elements considered in Chapter 7, whereas the other three steps are related to
the concepts of sample size, power, and a minimally important effect size. Listed in
the order in which the researcher deals with them, the various elements of the nine-
step version of hypothesis testing are as follows:

1. State the null hypothesis,
2. State the alternative hypothesis,
3. Specify the desired level of significance, �.

(new) 4. Specify the minimally important effect size.
(new) 5. Specify the desired level of power.
(new) 6. Determine the proper size of the sample(s).

7. Collect and analyze the sample data.
8. Refer to a criterion for assessing the sample evidence.
9. Make a decision to discard/retain 

The steps in the first third and final third of this nine-step version of hypoth-
esis testing are identical to the six steps we discussed in Chapter 7. We focus here
only on Steps 4, 5, and 6. Before we look at these three steps, it is important that
you recognize two differences between the seven-step and nine-step versions of hy-
pothesis testing. One difference concerns the timing that things are done relative to
the basic six steps of hypothesis testing; the other concerns two very different no-
tions of the term effect size.

First, there is the issue of timing. In the seven-step approach considered ear-
lier in this chapter, the researcher executes the six basic steps and then adds a sev-
enth step. That seventh step involves returning to the sample data after the
decision has been made to reject/retain In contrast, the nine-step version of
hypothesis testing requires that the researcher do the extra three steps before any
data are collected.

H0.

H0.

Ha.
H0.

h2
h2.



166 Chapter 8

Second, there is the meaning of effect size. In the seven-step version of hy-
pothesis testing, the effect size is something that is estimated from the sample data.
As discussed in the next section, the effect size in the nine-step version of hypoth-
esis testing takes the form of an opinion, not a data-based fact.

With this preface to the nine-step version of hypothesis testing now behind us,
let us turn our attention to Steps 4, 5, and 6.

Step 4: Specification of the Effect Size

As mentioned in the previous section, the term effect size has two meanings. We
saw one of these earlier in this chapter when we considered the option researchers
have for adding a seventh step to the basic bare-bones kind of hypothesis testing.
Now, we must consider a different notion of effect size. In our present discussion,
the effect size refers to an a priori specification of what constitutes the smallest
study finding that the researcher considers to be worth talking about. Perhaps a picture
will help you understand this new notion of effect size. You need a pen or pencil;
this is going to be a picture that you draw.

Draw a line segment about 12 inches long. Mark the far left end of your line
with this four-word sentence: “ is totally true.” At the far right end of your line,
write these six words: “ is false by a mile.” Now, put a big dot somewhere on this
line such that it divides the line into two parts. The portion of the line located to the
left of the dot represents situations where the null hypothesis is false but false to
only a trivial degree. It might help if you put the label “Trivial” on that side of the
line. The portion of the line to the right of the dot represents situations where the
null hypothesis is false by an amount that deserves to be thought of as “Big” or
“Noteworthy.” You might want to put the label “Important” on this segment of your
line. As you may have guessed, the dot on this line represents the kind of effect size
we now are considering.

To illustrate more specifically what this kind of effect size is and how it
gets selected, suppose a researcher uses the hypothesis testing procedure in a
study where there is one population, where the data are IQ scores, where the sta-
tistical focus is on the mean, and where the null and alternative hypotheses are

and respectively. In this hypothetical study, the contin-
uum of possible false null cases, as specified by extends from a value that is just
slightly greater than 100 (e.g., 100.1) to whatever the maximum earnable IQ score
is (e.g., 250). The researcher might decide to set 110 as the effect size. By so doing,
the researcher would be declaring that (1) the true is judged to be only trivially
different from 100 if it lies anywhere between 100 and 110, whereas (2) the differ-
ence between the true and 100 is considered to be important so long as the for-
mer is at least 10 points greater than ’s pinpoint value of 100.

Researchers specify an effect size in one of two ways. On the one hand, the
researcher can specify a raw effect size. On the other hand, he or she can specify
a standardized effect size. Specifying a raw effect size is the better strategy, but it
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is often more difficult (or impossible) to do this. Standardized effect sizes are easy
to specify, but they are not as good despite the fact that the word standardized gives
the impression of scientific superiority.

The process of specifying a raw effect size is illustrated in the hypothetical
IQ study we recently considered. In that example, the raw effect size is equal to an IQ
of 110. Because the null hypothesis in that study was set equal to 100, the researcher
could alternatively say that the effect size is equal to 10 IQ points (i.e., the differ-
ence between 110 and 100). Regardless of how the researcher might report what he
or she has done, this process leads to a raw effect size because the researcher be-
gins by specifying the line of demarcation between trivial and nontrivial outcomes
directly on the score continuum of the study’s dependent variable.

Many researchers who use the nine-step version of hypothesis testing choose
to specify standardized effect sizes (rather than raw effect sizes). When using stan-
dardized effect sizes, researchers refer to established criteria just like the ones used
in the seven-step version of hypothesis testing. For most statistical procedures, the
standardized effect size criteria are numerical values that indicate what is consid-
ered to be a small effect, a medium effect, and a large effect. In choosing one of
these standardized effect sizes, the researcher thinks about his or her study and then
poses this three-part question:

In the study I am going to conduct, do I want my statistical test to be sensitive to (and
thus be able to detect) only a large effect, if that’s what’s truly “out there” in the real
world? Or, do I want my study to have the added sensitivity that would allow it to detect
either a large effect or a medium-size effect? Or, is it important for my study to have the
high-level sensitivity that would allow it to detect not just large and medium effects, but
small effects as well?

The criteria for small, medium, and large standardized effect sizes vary de-
pending on the kind of statistical test the researcher is using. For example, if the re-
searcher is going to compare two group means via a t-test, the criteria are .2, .5, and .8
for small, medium, and large effect sizes, respectively, but if the researcher is going to
compute a correlation coefficient, the standardized effect sizes that define small,
medium, and large rs are .1, .3, and .5, respectively. When we consider different test
procedures in Chapters 9 through 18, I point out what the standardized effect size cri-
teria are for each test procedure. At this point, all you must know is that (1) the nine-
step version of hypothesis testing requires an a priori effect size specification, and (2)
researchers have the option of specifying a raw effect size or a standardized effect size.

Excerpts 8.6, 8.7, and 8.8 illustrate the two kinds of effect sizes we have been
considering. In Excerpts 8.6 and 8.7, the researchers used a standardized effect size
by selecting .3 and .8, respectively. In Excerpt 8.8, we see a case where a raw ef-
fect size (equal to a 10% difference) was used. Despite the differences among these
three excerpts, the common denominator is that in each instance the researchers
specified the effect size. They did not compute it (or estimate it) from their data,
they set it. Moreover, they set the effect size before the data were collected.
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Step 5: Specification of the Desired Level of Power

The researcher’s next task within the nine-step hypothesis testing procedure is to
specify the level of power that is desired for rejecting if is off by an amount
equal to the previously established effect size. Power is a probability value and can
range from 0 to 1.0. Only high values are considered, however, because the com-
plement of power is the probability of a Type II error.

The researcher does not know, of course, exactly how far off-target the null
hypothesis is (or even if it is wrong at all). The specified effect size is simply 
the researcher’s judgment as to what would or would not constitute a meaning-
ful deviation from the null case. Note, however, that if the null hypothesis is
wrong by an amount that is greater than the specified effect size, then the actual
probability of rejecting is larger than the specified power level. Thus, the
power level selected in Step 5 represents the lowest acceptable power for any of
the potentially true conditions that are considered to be meaningfully differ-
ent from 

To see illustrations of how researchers report desired levels level of power,
review Excerpts 8.9 through 8.11. In the first of these excerpts, note that the re-
searchers use the phase “a minimal clinically important difference of 5%.” In say-
ing that, the researchers specify their effect size. Then, they indicate that they want
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EXCERPTS 8.6–8.8 • Selecting an Effect Size

The effect size was set at 0.30 for medium size.

Source: Kato, G., Tamiya, N., Kashiwagi, M., Sato, M., & Takahashi, H. (2009). Relationship
between home care service use and changes in the care needs level of Japanese elderly. BMC
Geriatrics, 9(1), 1–9.

A power analysis was performed before the study [and] the effect size was set to
0.8. . . .

Source: Braun A., Jepsen S., Deimling D., & Ratka-Krüger, P. (2010). Subjective intensity of
pain during supportive periodontal treatment using a sonic scaler or an Er:YAG laser. Journal
of Clinical Periodontology, 37(4), 340–345.

We evaluated outcomes [following] surgery with the a priori clinically significant
effect size set at 10% differences for all outcome measures.

Source: Cook, J. L., Luther, J. K., Beetem, J., Karnes, J., & Cook, C. R. (2010). Clinical com-
parison of a novel extracapsular stabilization procedure and tibial plateau leveling osteotomy
for treatment of cranial cruciate ligament deficiency in dogs. Veterinary Surgery, 39(3),
315–323.
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In Excerpt 8.11, note that the power was set at .90, whereas it was set at .80
in Excerpts 8.9 and 8.10. On first glance, you might be inclined to think, “The
higher the power, the better the study.” However, there are two reasons why most
researchers select a power of .80 and why you will probably never see a specified
power greater than .90 in any applied study. First, extremely high power levels place
unreasonable demands on researchers when they move to Step 6 and compute the
sample size required to provide the desired power. Second, specified power level
such as .95 or .99 increase the probability that trivial deviations from bring about
a “reject” decision in the hypothesis testing procedure.

H0

EXCERPTS 8.9–8.11 • Selecting a Desired Level of Power

The test was two-tailed and the power was set at 80% to detect a minimal clinically
important difference of 5% between the two groups (i.e., 10 vs. 15%). A difference
of less than 5% would not be of clinical or substantive significance.

Source: Sword, W., Watt, S., Krueger, P., Thabane, L., Landy, C. K., Farine, D., et al. (2009).
The Ontario Mother and Infant Study (TOMIS) III: A multi-site cohort study of the impact of
delivery method on health, service use, and costs of care in the first postpartum year.
Pregnancy and Childbirth, 9(16), 1–12.

In this study, the power was set at .80, with � .05.

Source: Huijbregts, M. P. J., Teare, G. F., McCullough, C., Kay, T. M., Streiner, D., Wong,
S. K. C., et al. (2009). Standardization of the Continuing Care Activity Measure: A multicen-
ter study to assess reliability, validity, and ability to measure change. Physical Therapy, 89(6),
546–555.

The 2-sided was set at .05, and power was set at 0.90.

Source: Davidson, K. W., Rieckmann, N., Clemow, L., Schwartz, J. E., Shimbo, D., Medina,
V., et al. (2010). Enhanced depression care for patients with acute coronary syndrome and per-
sistent depressive symptoms: Coronary Psychosocial Evaluation Studies randomized con-
trolled trial. Archives of Internal Medicine, 170(7), 600–608.

a

a

to have an 80 percent chance of detecting such a difference. That was the statistical
power they wanted to have. In Excerpts 8.10 and 8.11, the researchers simply specify
the power they desired: .80 and .90, respectively. In these two excerpts, the chosen
level of significance appears in the same sentence with the chosen level of power.
These two concepts— and power—were put together in the same sentence be-
cause both are tied to potential inferential errors that might occur. Alpha specified
the probability of making a Type I error; power specified the probability of not mak-
ing a Type II error. These two probabilities are sometimes referred to as the Type I
error risk and the Type II error risk, respectively.

a
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Step 6: Determination of the Needed Sample Size

After stating and after selecting a level of significance, and after specifying the
effect size and the desired power, the researcher then uses a formula, a specially pre-
pared table, or a computer program to determine the size of the sample(s) needed in
the study. No judgment or decision-making comes into play at this sample size de-
termination stage in the nine-step version of hypothesis testing, since the researcher
simply calculates or looks up the answer to a very pragmatic question: How large
should the sample be? At this point (and also in Steps 7 through 9), the researcher
functions like a robot who performs a task, referred to as a power analysis.

Excerpts 8.12 and 8.13 illustrate the kinds of things researchers say when they
talk about having computed their sample sizes in a power analysis. In the first of
the excerpts, the power analysis told the researchers that they needed a sample size
of 41. Note that the “ingredients” for this needed sample size include (among other
things) a priori decisions regarding the level of significance ( � .05), the effect
size (.3), and power (.80). Note also that the effect size in this power analysis is of
the standardized variety, with the researchers stating that a “medium” effect is con-
sidered big enough to be worth detecting.

a
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EXCERPTS 8.12–8.13 • Determining the Needed Sample Size

A priori power analysis indicated that to achieve a power of .80 with p 
 .05 and a
medium effect size of .30 and three predictors, a sample size of 41 would be required.

Source: Dahlbeck, D. T., & Lightsey, O. R. (2008). Generalized self-efficacy, coping, and self-
esteem as predictors of psychological adjustment among children with disabilities or chronic
illnesses. Children’s Health Care, 37(4), 293–315.

The purpose of this study was to determine if giving 50 mg of meclizine the night be-
fore and on the day of surgery would effectively reduce postoperative nausea and vom-
iting (PONV) for the entire 24 hours after surgery in patients identified as being at high
risk for PONV. . . . Before initiation of this study, a power analysis was [conducted]
using an of 0.05 and a of 0.20 and revealed a need for approximately 40 subjects
per group to achieve significance. Factoring in an attrition rate of 10%, this increased
the necessary sample size to 44 subjects per group or 88 subjects for the total sample.

Source: Bopp, E. J., Estrada, J. L., Kilday, J. M., Spradling, J. C., Daniel, C., & Pellegrini,
J. E. (2010). Biphasic dosing regimen of meclizine for prevention of postoperative nausea and
vomiting in a high-risk population. AANA Journal, 78(1), 55–62.

ba

In Excerpt 8.13, we see a power analysis from a medical study focused on pre-
venting postsurgical nausea and vomiting. This excerpt is worth examining because
of the symbol that appears in the second sentence. Instead of saying that theyb
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wanted their study to have a power of .80, these researchers indicated that they
wanted the probability of making a Type II error, or beta error, to be low, with that
probability being .20. Because the sum of this kind of probability and the proba-
bility of correctly rejecting a false null hypothesis (i.e., power) must equal to 1.00,
the statement that � .20 is identical to the statement that power � .80.

As we finish our discussion of the nine-step version of hypothesis testing, I
want to underscore the primary advantage of this approach to evaluating any null
hypothesis. The eventual results of the statistical test become easier to interpret if
the researcher has successfully wrestled with the issue of what ought to be viewed
as a meaningful deviation from and if the sample size has been computed so as
to create the desired level of power. In contrast, the six-step version of hypothesis
testing can lead to a highly ambiguous finding.

If no consideration is given to the concepts of effect size and power, the re-
searcher may end up very much in the dark as to whether (1) a fail-to-reject decision
is attributable to a trivial (or zero) deviation from or is attributable to the test’s in-
sensitivity to detect important non-null cases due to a small sample size; or (2) a reject
decision is attributable to being false by a nontrivial amount or is attributable to an
unimportant non-null case being labeled significant simply because the sample size
was so large. In Excerpts 8.14 and 8.15, we see examples of how murky results can be
produced when the six-step approach to hypothesis testing is used. In Excerpt 8.14, the
researchers tell us, in essence, that the statistically insignificant results may have been
caused by insufficient power. In Excerpt 8.15, we see a research team that obtained sta-
tistically significant results but admits, in essence, that their findings may have been
caused by an overly large sample size making the statistical tests too sensitive.

H0
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EXCERPTS 8.14–8.15 • Problems Caused by Small and Large Sample Sizes

The major limitation of the present study is the relatively small number of partici-
pants included for statistical analysis. A relatively small number of participants reduces
power; thus, statistical outcomes are susceptible to Type II error.

Source: Fabiano-Smith, L., & Goldstein, B. A. (2010). Phonological acquisition in bilingual
Spanish–English speaking children. Journal of Speech, Language & Hearing Research, 53(1),
160–178.

The SF-36 vitality subscale was the only variable among the 18 variables related to
emotional wellbeing that made an independent contribution in distinguishing between
the two groups in the stepwise logistic regression. However, the effect for the SF-36
vitality subscale was very small (odds ratio of 0.99) and although it was statistically
significant in this large sample the effect is not of practical significance.

Source: Rowlands, I., & Lee, C. (2009). Correlates of miscarriage among young women in the
Australian Longitudinal Study on Women’s Health. Journal of Reproductive & Infant Psy-
chology, 27(1), 40–53.

[N = 9,081],
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The advantage of the nine-step approach to hypothesis testing is not that the
researcher is able to know whether the decision reached about is right or wrong.
Regardless of the approach used, a reject decision might be correct or it might con-
stitute a Type I error, and similarly a fail-to-reject decision might be correct or it
might be a Type II error. The advantage of having effect size and power built into
the hypothesis testing procedure is twofold: On the one hand, researchers know and
control, on an a priori basis, the probability of making a Type II error, and on the
other hand, they set up the study so that no critic can allege that a significant result,
if found, was brought about by an overly sensitive test (or that a nonsignificant re-
sult, if found, was produced by an overly insensitive test).2

To summarize, the three extra components of the nine-step version of hypoth-
esis testing deal with three concepts: a specified effect size, a chosen power level,
and a power analysis that determines the needed sample size. The researchers who
take the time to integrate these concepts into their studies deserve credit for being
more careful and thoughtful in their empirical investigations. Be wary of the claims
made by researchers who give no evidence of having considered these concepts.

Hypothesis Testing Using Confidence Intervals

Researchers can, if they wish, engage in hypothesis testing by means of using one
or more confidence intervals, rather than by comparing a calculated value against a
critical value or by comparing a p-level against . Although this approach to hy-
pothesis testing is not used as often as the approaches discussed in Chapter 7 and the
earlier portion of this chapter, it is important for you to understand what is going on
when a researcher uses confidence intervals within the context of hypothesis testing.

Whenever confidence intervals are used in this manner, everything about the
hypothesis testing procedure remains the same except the way the sample data are
analyzed and evaluated. To be more specific, this alternative approach to hypothe-
sis testing involves the specification of and alpha, and the final step involves
a reject or fail-to-reject decision regarding The concepts of Type I and Type II
errors are still relevant, as are the opportunities to specify effect size and power and
to compute the proper sample size if the nine-step version of hypothesis testing is
being used.

As indicated in Chapter 7, calculated and critical values usually are numeri-
cal values that are metric-free. Such calculated and critical values have no mean-
ingful connection to the measurement scale associated with the data. Although it is
advantageous for the researcher to use metric-free calculated and critical values,
such values provide little insight as to why ultimately is rejected or not rejected.
The advantage of confidence intervals is that they help to provide that insight.

H0
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2In saying this, I assume that the hypothetical critic agrees with the researcher’s decisions about �,
and the effect size.
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The way confidence intervals are used within hypothesis testing is easy to ex-
plain. If there is just a single sample involved in the study, the researcher takes the
sample data and builds a confidence interval around the sample statistic. Instead of
computing a calculated value, the researcher computes an interval, with the previ-
ously specified alpha level dictating the level of confidence associated with the in-
terval (an of .05 calls for a 95 percent interval, an of .01 calls for a 99 percent
interval, etc.). Instead of then turning to a critical value, the researcher turns to the
null hypothesis and compares the confidence interval against the pinpoint number
contained in The decision rule for the final step is straightforward: If the null
number is outside the confidence interval, can be rejected; otherwise, must
be retained.

Excerpt 8.16 illustrates the confidence interval approach to hypothesis testing.
This excerpt comes from a study that looked at different regions of the country and
examined the relationships between the number of fitness facilities, on the one hand,
and six different measures of physical activity, on the other. In each case, the cor-
relational null hypothesis said where was the correlation in the popu-
lation. Four of these null hypotheses were rejected, as indicated by the very small
p-values connected to the sample rs that appear in the excerpt.

rr = 0H0:
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EXCERPT 8.16 • A Confidence Interval Approach to Hypothesis Testing

Pearson correlations were performed between fitness facility density (number of 
facilities/100,000 people) and six summary measures of physical activity preval-
ence. . . . Direct correlations between fitness facility density and the percent of those
physically active (r � 0.27, 95% CI 0.11, 0.42, p � 0.0012), those meeting moderate-
intensity activity guidelines, (r � 0.23, 95% CI 0.07, 0.38, p � 0.006), and those
meeting vigorous-intensity activity guidelines (r � 0.30, 95% CI 0.14, 0.44,
p � 0.003) were found. An inverse correlation was found between fitness facility
density and the percent of people physically inactive (r � �0.45, 95% CI �0.57,
�0.31, p 
 0.0001).

Source: Meissner, F. D. L. (2010). Physical activity levels and access to places to be physically
active. Unpublished Master’s thesis, University of Texas School of Public Health, Houston.

In Excerpt 8.16, notice that the 95 percent confidence interval for the first cor-
relation (r � 0.27) extended from 0.11 to 0.42. Because the null number of 0 was
not contained inside this interval, was rejected. Although last of the four corre-
lations (r –0.45) was negative, the same approach was taken to decide whether
this r was statistically significant. The 95 percent confidence interval (extending
from �0.57 to �0.31) did not contain the null number of 0, so this sample corre-
lation between physical facility density and the percentage of physically inactive
people caused to be rejected.H0

=
H0
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A confidence interval can also be used to determine whether two samples dif-
fer sufficiently to allow the researchers to reject a null hypothesis that says the cor-
responding populations have the same parameter value. Excerpt 8.17 illustrates how
this is done. In the study associated with this excerpt, the mean birth weight of
16,464 babies born to fertile women was compared to the birth weight of 2,009 ba-
bies born to subfertile women. The null hypothesis was of the “no difference” vari-
ety: The mean difference in weight between these two groups
was only 13 grams (compared to an average birth weight of about 3,550 grams). Be-
cause the 95 percent confidence interval built around this mean difference was found
to overlap the null number of 0, the researchers stated that there was no statistically
significant difference between the mean birth weights of the two groups of babies.

mfertile - msubfertile = 0.

3The difference between confidence intervals and standard error intervals was first covered in Chapter 6.

EXCERPT 8.17 • Using a Confidence Interval to Compare Two Groups

Our prospective cohort study [examined] pregnancies in subfertile women (who con-
ceived spontaneously after 12� months’ waiting time to pregnancy) in comparison
with the pregnancies of fertile women (who conceived spontaneously after less than
12 months’ waiting time to pregnancy). . . . There was no statistically significant dif-
ference in the mean birth weight among infants of fertile and subfertile women
(mean difference: 13 g; 95% CI, –9 to 36 g).

Source: Wisborg, K., Ingerslev, H. J., & Henriksen, T. B. (2010). In vitro fertilization and
preterm delivery, low birth weight, and admission to the neonatal intensive care unit: A
prospective follow-up study. Fertility and Sterility, 94(6), 2102–2106.

Before completing our discussion of the confidence-interval approach to hy-
pothesis testing, I must alert you (once again) to the difference between a confidence
interval and a standard error interval.3 Many researchers who compute calculated
and critical values within one of the more traditional approaches to hypothesis test-
ing summarize their sample data in terms of values of the statistic plus or minus the
standard error of the statistic. Intervals formed by adding and subtracting the stan-
dard error to the sample statistic do not produce alpha-driven confidence intervals.
Instead, the result is a 68 percent interval. (Alpha-driven confidence intervals are
typically 95 percent intervals.)

Adjusting for an Inflated Type I Error Rate

In Chapter 7, I indicated that researchers have direct control over the probability
that they will make a Type I error when making a judgment about (Recall that
Type I errors occur when true null hypotheses are rejected.) This control is exerted

H0.
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when the researcher selects the level of significance. As long as the underlying as-
sumptions of the researcher’s statistical test are tenable, the alpha level selected in
Step 3 of the hypothesis testing procedure instantly and accurately establishes the
probability that a true will be rejected.

The fact that dictates Type I error risk holds true only for situations where
researchers use the hypothesis testing procedure just once within any given study.
In many studies, however, more than one is tested. In Excerpt 8.18, we see an
illustration of this common practice of applying the hypothesis testing procedure
multiple times within the same study. As you can see, correlation coefficients ap-
pear in this excerpt. Because all possible bivariate correlations were computed
among the four variables mentioned (victimization, shyness/withdrawal, aggres-
sion, and agreeableness), there actually were six correlations. Only three of these
are presented, the ones that turned out to be statistically significant with p 
 .05.
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EXCERPT 8.18 • Hypothesis Testing Used More than Once

Correlations examined associations between eighth-grade clustering variables (p 
 .05).
Victimization and aggression were [significantly] correlated (r � .14), and shyness/
withdrawal was [significantly] linked to both victimization (r � .37) and aggression
(r � �.16). There were no statistically significant associations between agreeable-
ness and any of the peer nomination variables.

Source: Laursen, B., Hafen, C. A., Rubin, K. H., Booth-LaForce, C., & Rose-Krasnor, L. (2010).
The distinctive difficulties of disagreeable youth. Merrill-Palmer Quarterly, 56(1), 80–103.

When the hypothesis testing procedure is applied multiple times within the
same study, the alpha level used within each of these separate tests specifies the
Type I error risk that would exist if that particular test were the only one being con-
ducted. However, with multiple tests being conducted in a study, the actual proba-
bility of making a Type I error somewhere within the set of tests exceeds the alpha
level used within any given test. The term inflated Type I error risk is used to refer
to this situation in which the alpha level used within each of two or more separate
tests understates the likelihood that at least one of the tests will cause the researcher
to reject a true 

A simple example may help to illustrate the problem of an inflated Type I error
rate. Suppose you are given a fair die and told to roll it on the table. Before you toss
the die, also suppose that the person running this little game tells you that you will
win $10 if your rolled die turns out to be anything but a six. If you get a six, how-
ever, you must pay $50. With an unloaded die, this is a fair bet, because your
chances of winning are 5/6, whereas the chance of losing is 1/6.

However, what if you were handed a pair of fair dice and asked to roll both
members of the pair simultaneously, with the rule being that you would win $10 if

H0.
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you can avoid throwing an evil six, but lose $50 if your roll of the dice causes ei-
ther one or two “boxcars” to show up. This is not a fair bet for you, because the
chances of avoiding a six are a result that is lower than the 
value needed to make the wager an even bet in light of the stakes ($10 versus $50).
If you were handed five pairs of dice and were asked to roll them simultaneously,
with the same payoff arrangement in operation (i.e., win $10 if you avoid a six, oth-
erwise lose $50), you would be at a terrific disadvantage. With 10 of the six-sided
cubes being rolled, the probability of your winning the bet by avoiding a six any-
where in the full set of results is equal to approximately .16. You would have a 16
percent chance of winning $10 versus an 84 percent chance of losing $50. That
would be a very good arrangement for your opponent!

As should be obvious, the chances of having a six show up at least once in-
crease as the number of dice being thrown increases. With multiple dice involved
in our hypothetical game, there are two ways to adjust things to make the wager
equally fair to both parties. One adjustment involves changing the stakes. For ex-
ample, with two dice being rolled, the wager could be altered so you would win $11
if you avoid a six or lose $25 if you do not. The second adjustment involves tam-
pering with the two little cubes so as to produce a pair of loaded dice. With this
strategy, each die is weighted such that its chances of ending up as something other
than a six are equal to a tad more than This allows two dice to be used, in a
fair manner, with the original stakes in operation ($10 versus $50).

When researchers use the hypothesis testing procedure multiple times, an ad-
justment must be made somewhere in the process to account for the fact that at least
one Type I error somewhere in the set of results increases rapidly as the number of
tests increases. Although there are different ways to effect such an adjustment, the
most popular method is to change the level of significance used in conjunction with
the statistical assessment of each If the researcher wants to have a certain level
of protection against a Type I error anywhere within his or her full set of results, then
he or she would make the alpha level more rigorous within each of the individual
tests. By so doing, it is as if the researcher is setting up a fair wager in that the
claimed alpha level truly matches the study’s likelihood of yielding a Type I error.

The most frequently used procedure for adjusting the alpha level is called the
Bonferroni technique, and it is quite simple for the researcher to apply or for con-
sumers of research to understand. When there is a desire on the part of the re-
searcher to hold the Type I error in the full study equal to a selected value, the alpha
levels for the various tests being conducted must be chosen such that the sum of
the individual alpha levels is equivalent to the full-study alpha criterion. This is
usually accomplished by simply dividing the desired Type I error risk for the full
study by the number of times the hypothesis testing procedure is going to be used.
Excerpts 8.19 and 8.20 illustrate nicely how the Bonferroni technique works. In
the first of these excerpts, 10 different tests were conducted, so the researchers 
divided .05 by 10; in Excerpt 8.20, the adjusted alpha level became .002, because
22 tests were conducted.

H0.

10/11.

5/65/6 * 5/6 = 25/36,
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In Excerpt 8.20, notice the term experimentwise Type I error rate, which
refers to the probability that one or more of the multiple tests being conducted will
end up rejecting a true null hypothesis. Thus, the numerical value of .05 that ap-
pears in Excerpts 8.19 and 8.20 can be thought of, and referred to as, the desired
experimentwise Type I error rate. Most researchers—like the ones who gave us
Excerpt 8.19—do not use this term, but instead say simply that they have applied
the Bonferroni adjustment.

Because the Bonferroni technique leads to a more rigorous alpha level for
each of the separate tests being conducted, each of those tests becomes more de-
manding. In other words, Bonferroni-adjusted alpha levels (as compared with an
unadjusted level of significance) create a situation wherein the sample data must be
even more inconsistent with null expectations before the researcher is permitted to
reject If the researcher makes a decision about by comparing the data-based
p-value against the adjusted alpha, that alpha criterion is smaller and therefore
harder to beat. Or, if each test’s calculated value is compared against a critical value,
the researcher finds that the Bonferroni technique has again created a more strin-
gent criterion. Thus, it does not make any difference which of these two paths the
researcher takes in moving from the sample data to the ultimate decision about the
null hypothesis; either way, more protection against Type I errors is brought about
by making it harder for the researcher to reject 

Excerpt 8.21 illustrates how the Bonferroni technique brings about a more de-
manding assessment of each study’s set of statistical comparisons. Initially, the two
groups of physicians were compared on each of the 66 survey items, with alpha set
at .05. When the Bonferroni adjustment was made, the new alpha level became
much more demanding, with the result being that half of the initial significant dif-
ferences vanished. Take another look at Excerpt 8.18 to see a similar example. In

H0.

H0H0.

EXCERPTS 8.19–8.20 • The Bonferroni Adjustment Procedure

We used a Bonferroni adjusted significance criterion of .005 (.05/10) to correct for
multiple tests.

Source: Prime, J. L., Carter, N. M., & Welbourne, T. M. (2009). Women “take care,” men “take
charge”: Managers’ stereotypic perceptions of women and men leaders. Psychologist-Manager
Journal, 12(1), 25–49.

[A] total of 22 separate ANOVAs were performed. In order to hold the experiment-
wise Type I error rate to less than 5%, the p values were adjusted for multiple com-
parisons (.05/22 � p 
 .002).

Source: Tasko, S. M., & Greilick, K. (2010). Acoustic and articulatory features of diphthong pro-
duction: A speech clarity study. Journal of Speech, Language & Hearing Research, 53(1), 84–99.
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that excerpt, Bonferroni was not used. If alpha had been adjusted (from .05 to
.0083) because a total of six correlations were computed, the rs of –.16 and .14
would not have been significant.

It may seem odd that researchers who want to reject their null hypothesis choose
to apply the Bonferroni technique and thereby make it more difficult to accomplish
their goal. However, researchers who use the Bonferroni technique are not doing
something stupid, self-defeating, or inconsistent with their own objectives. Although
the Bonferroni technique does, in fact, create a more demanding situation for the re-
searcher, it does not function to pull something legitimate out of reach. Instead, this
technique serves the purpose of helping the researcher pull in the reins so he or she is
less likely to reach out and grab something that, in reality, is nothing at all. The Bon-
ferroni technique, of course, does not completely eliminate the chance that a Type I
error will be made, but it does eliminate the problem of an inflated Type I error risk.

Although the Bonferroni procedure is the most frequently used technique for
dealing with the inflated Type I error problem, other procedures have been devel-
oped to accomplish the same general procedure. One of these is formally called the
Sidák modification of Dunn’s procedure. Excerpt 8.22 shows how the Dunn–Sidák
modification works. In this excerpt, 0.01695 is the adjusted level of significance

EXCERPT 8.21 • Why Bonferroni Makes It Harder to Reject H0

[C]omparisons were conducted to detect statistical differences between the AAFP
and AAFP NRN respondents on the 66 preselected survey items. . . . Overall, in 12%
(8 of 66) of items across the 3 surveys, there was a significant difference between
AAFP NRN and AAFP physicians. After correcting statistically for multiple com-
parisons using the Bonferroni technique, only 4 (6%) of these differences remained
(P 
 .001).

Source: Galliher, J. M., Bonham, A. J., Dickinson, L. M., Staton, E. W., & Pace, W. D. (2009).
Representativeness of PBRN physician practice patterns and related beliefs: The case of the
AAFP National Research Network. Annals of Family Medicine, 7(6), 547–554.

EXCERPT 8.22 • The Dunn–Sidák Adjustment Procedure

To take into account the greater probability of a type I error due to multiple com-
parisons, the level of significance for these Student’s t tests was pre-set by 0.01695

c � number of comparisons � 3; Dunn–Sidák correction).

Source: Mooij-van Malsen, J. G., van Lith, H. A., Oppelaar, H., Olivier, B., & Kas, M. J. H.
(2009). Evidence for epigenetic interactions for loci on mouse chromosome 1 regulating open
field activity. Behavior Genetics, 39(2), 176–182.

(a = 1-[1-0.05]1>c);
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for the researchers’ situation of wanting to conduct three tests. The information 
inside the parentheses is the adjustment formula, with representing the modified
alpha level, with 0.05 representing the desired study-wide Type I error risk, and
with c representing the number of tests being conducted. To show yourself that the
Dunn–Sidák and Bonferroni procedures are exceedingly similar, divide .05 by 3 and
then compare the result to the modified alpha level in Excerpt 8.22.

A Few Cautions

As we come to the close of our two-chapter treatment of hypothesis testing, I want
to offer a few more cautions that should assist you as you attempt to make sense
out of technical summaries of empirical investigations. These tips (or warnings!)
are different from the ones provided at the end of Chapter 7, so you may profit
from a review of what I said there. In any event, here are four more things to keep
in mind when you come across statistical inferences based on the hypothesis test-
ing procedure.

Two Meanings of the Term Effect Size

When the seven-step version of hypothesis testing is used, the researcher computes
an effect size. We saw three examples of this being done in Excerpts 8.3 through
8.5. The important thing to note is that the effect size involved in Step 7 of this ver-
sion of hypothesis testing procedure is based on the sample data. This kind of ef-
fect size is computed using the evidence gathered in the researcher’s study.

When the nine-step version of hypothesis testing is employed, a different kind
of effect size comes into play. Within this strategy, researchers specify (rather than
compute) the effect size, and this is done prior to the collection and examination of
any data. When researchers specify the effect size in Step 4 of the nine-step version
of hypothesis testing, they are not making a predictive statement as to the magni-
tude of the effect that will be found once the data are analyzed. Rather, they are in-
dicating the minimum size of an effect that they consider to have practical
significance. Most researchers hope that the magnitude of the true effect size ex-
ceeds the effect size specified prior to the collection of any data.

It is unfortunate that the same term—effect size—is used by researchers to
refer to two different things. However, a careful consideration of context ought to
clarify which kind of effect size is being discussed. If reference is made to the effect
size within the research report’s method section (and specifically when the sample
size is being discussed), then it is likely that the nine-step version of hypothesis test-
ing was used, with the effect size being a judgment call as to the dividing line be-
tween trivial and important findings. If, however, reference is made to the effect size
during a presentation of the obtained results, this effect size is probably a data-based
measure of how false the null hypothesis seems to be.

a



180 Chapter 8

Small, Medium, and Large Effect Sizes

Regardless of whether a researcher’s effect size is computed (in a post hoc sense)
from the sample data or specified in the planning stages of the study (to help de-
termine the needed sample size), it is not uncommon for the researcher to refer to
the effect size as being small, medium, or large. As I indicated earlier in this chap-
ter, criteria have been developed that help to define these standardized effect sizes.
For example, the popular effect size standards for correlations indicate that .1, .3,
and .5 represent small, medium, and large effect sizes, respectively.

Unfortunately, the criteria for small, medium, and large effect sizes vary de-
pending on the study’s statistical focus and the kind of effect size that is computed
or specified. For example, if the effect size d is used in conjunction with a study that
compares two sample means, the criteria for standardized effect sizes say .2 is
small, .5 is medium, and .8 is large. Clearly, these criteria are different from the ones
cited in the previous paragraph for a correlation coefficient.

In an effort to help you keep things straight when it comes to the criteria for
standardized effect sizes, I have inserted a small chart into several of the following
chapters. Each of these charts shows the names for the effect size measures associ-
ated with the statistical tests discussed in a given chapter, and then the criteria for
small, medium, and large are presented. The information in these charts may prove
useful to you, because it is not unusual to see a research report that contains a com-
puted effect size (such as d) with absolutely no discussion about its meaning.

The Simplistic Nature of the Six-Step 
Version of Hypothesis Testing

Many researchers test null hypotheses with the six-step version of the hypothesis
testing procedure. This is unfortunate, because the important distinction between sta-
tistical and practical significance is not addressed in any way whatsoever by this sim-
plistic approach to testing null hypotheses. Consequently, the outcome is ambiguous
no matter what decision is reached about A reject decision may have been caused
by a big difference between the single-number summary of the sample evidence and
the pinpoint number in however, that same decision may have come about by a
small difference being magnified by a giant sample size. Likewise, a fail-to-reject
decision might be the result of a small difference between the sample evidence and
the null hypothesis; however, the researcher’s decision not to reject may have
been the result of a big difference camouflaged by a small sample size.

To see examples of these two undesirable scenarios described in the previous
paragraph, take another look at Excerpts 8.14 and 8.15. Before doing that, however,
please formulate an answer to each of the two questions I’d like to ask you. In
Excerpt 8.14, the researchers conceded that a limiting feature of their study reduced
power and may have brought about Type II errors. Can you guess what that limita-
tion was? In Excerpt 8.15, the researchers declared that one of their statistically

H0

H0;

H0.
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significant findings “is not of practical significance.” What feature of this study was
primarily responsible for the caution that the statistically significant results were not
very noteworthy? OK. Now see if your answers are correct.

It is relatively easy for a researcher to conduct a study using the basic six-step
version of hypothesis testing. It is harder to use the nine-step version. Nevertheless,
there is a giant payoff (for the researcher and for those who read or hear the research
report) if the researcher (1) decides, in the planning stage of the study, what kind of
results will represent trivial deviations from the null hypothesis versus results that
are important, and (2) uses this informed opinion within the context of an a priori
power analysis to determine how large the samples should be. When you come
across a research report indicating that these two things were done, give that study’s
researcher(s) some big, big bonus points!

Despite its limitations, the basis six-step version of hypothesis testing is
widely used. Whenever you encounter a researcher who has used this more sim-
plistic version of hypothesis testing, you must be the one who applies the important
seventh step. This is not an impossible task; it is something you can do!

If a correlation coefficient is reported to be statistically significant, look at the
size of the r and ask yourself what kind of relationship (weak, moderate, or strong)
was revealed by the researcher’s data. Better yet, square the r and then convert the re-
sulting coefficient of determination into a percentage; then make your own judgment
as to whether a small or large amount of variability in one variable is being explained
by variability in the other variable. If the study focuses on means rather than correla-
tions, look carefully at the computed means. Ask yourself whether the observed dif-
ference between two means represents a finding that has practical significance.

I cannot overemphasize my warning that you can be (and will be) misled by
many research claims if you look only at p-statements when trying to assess
whether results are important. Many researchers use the simple six-step version of
hypothesis testing, and the only thing revealed by this procedure is a yes or no an-
swer to the question, “Do the sample data deviate from more than we would ex-
pect by chance?” Even if a result is statistically significant with it may
be the case that the finding is completely devoid of any practical significance!

Inflated Type I Error Rates

My final caution is simply a reiteration of something I said earlier in this chapter.
This has to do with the heightened chance of a Type I error when multiple tests are
conducted simultaneously. This is a serious problem in scientific research, and this
caution deserves to be reiterated.

Suppose a researcher measures each of several people on seven variables. Also
suppose that the true correlation between each pair of these variables is exactly 0.00
in the population associated with the researcher’s sample. Finally, suppose our re-
searcher computes a value for r for each pair of variables, tests each r to see if it is
significantly different from 0.00, and then puts the results into a correlation matrix.

p 6 .0001,
H0
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If the .05 level of significance is used in conjunction with the evaluation of each r,
the chances are about 66 percent that at least one of the rs will turn out to be sig-
nificant. In other words, even though the alpha level is set equal to .05 for each sep-
arate test conducted, the collective Type I error risk has ballooned to about .66
because 21 separate tests are conducted.

My caution here is simple. Be wary of any researcher’s conclusions if a big
deal is made out of an unreplicated single finding of significance when the hypoth-
esis testing procedure is used simultaneously to evaluate many null hypotheses. In
contrast, give researchers extra credit when they apply the Bonferroni or Dunn-
Sidák technique to hold down their study-wide Type I error risk.

Beta error
Bonferroni technique
Dunn–Sidák modification
Effect size
Experimentwise Type I 

error rate
Inflated Type I error risk
Large standardized 

effect size
Medium standardized 

effect size

Review Terms

Power analysis
Practical significance
Raw effect size
Sample size determination
Small standardized effect size
Standardized effect size
Statistical significance
Type I error risk
Type II error risk
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In Chapter 3, we considered several descriptive techniques used by researchers to
summarize the degree of relationship that exists between two sets of scores. In this
chapter, we examine how researchers deal with their correlation coefficients infer-
entially. Stated differently, the techniques to be considered here are the ones used
when researchers have access only to sample data, but wish to make educated
guesses as to the nature of the population(s) associated with the sample(s). As you
will see shortly, the techniques used most frequently to do this involve hypothesis
testing. Occasionally, however, inferential guesses are made through the use of con-
fidence intervals.

We begin this chapter with a consideration of the statistical tests applied to
various bivariate correlation coefficients, along with an examination of the typical
ways researchers communicate with the results of their analyses. I also point out
how the Bonferroni technique is used in conjunction with tests on correlation coef-
ficients, how researchers compare two (or more) correlation coefficients to see if
they are significantly different, and how statistical tests can be applied to reliability
and validity coefficients. Finally, I provide a few tips designed to help you become
a more discerning consumer of research claims that emanate from studies wherein
inferential statistics are applied to correlation coefficients.

Statistical Tests Involving a Single Correlation Coefficient

Later in this chapter, we consider the situation in which data are analyzed to see if
a significant difference exists between two or more correlation coefficients. Before
doing that, however, we consider the simpler situation where the researcher has a
single sample and a single correlation coefficient. Although simple in nature because

C H A P T E R 9
Statistical Inferences 
Concerning Bivariate 
Correlation Coefficients
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only one sample is involved, the inferential techniques focused on in the first part
of this chapter are used far more frequently than the ones that involve comparisons
between/among correlation coefficients.

The Inferential Purpose

Figure 9.1 has been constructed to help clarify what researchers are trying to do
when they apply an inferential test to a correlation coefficient. I have set up this pic-
ture to make it consistent with a hypothetical study involving Pearson’s product–
moment correlation. However, by changing the symbols that are included, we could
make our picture relevant to a study wherein any other bivariate correlation coeffi-
cient is tested.

As Figure 9.1 shows, a correlation coefficient is computed on the basis of data
collected from a sample. Although the sample-based value of the correlation coef-
ficient is easy to obtain, the researcher’s primary interest lies in the corresponding
value of the correlation in the population from which the sample has been drawn.
However, the researcher cannot compute the value of the correlation coefficient in
the population because only the objects (or persons) in the sample can be measured.
Accordingly, an inference (i.e., educated guess) about the parameter value of the
correlation is made on the basis of the known value of the statistic.

The nature of the inference that extends from the sample to the population
could take one of two forms depending on whether the researcher wishes to use
the techniques of estimation or to set up and evaluate a null hypothesis. Near the

Population
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FIGURE 9.1 The Inferential Purpose of a Test on a Correlation Coefficient
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end of the chapter, we examine the way confidence intervals are sometimes used
to make inferences about correlation coefficients. We first turn our attention to 
the way researchers set up, evaluate, and report what happens to correlational null
hypotheses.

The Null Hypothesis

When researchers are concerned about the relationship between two variables in a
single population but can collect data only from a sample taken from that popula-
tion, they are likely to attack their inferential question by means of hypothesis test-
ing. In doing this, a null hypothesis serves as the hub around which the other
involved statistical elements revolve.

In dealing with a single correlation, the null hypothesis is a pinpoint statement
as to a possible value of the correlation in the population. Although researchers have
the freedom to choose any value between and for inclusion in the
correlational null hypothesis is almost always set up to say that there is, in the rel-
evant population, a zero correlation between the two variables of interest. Stated
symbolically, this null hypothesis takes the form 

In Excerpts 9.1 and 9.2, we see cases where researchers stated or alluded to
the correlational null hypothesis. In the first of these excerpts, the null and alterna-
tive hypotheses are clearly articulated. These statements of and appeared in
the research report prior to any results being presented. The passage in Excerpt 9.2,
taken from a different article, was located in a discussion of the study’s results. In
this excerpt, note the words “significantly different from zero.”

HaH0

H0: r = 0.

H0,+1.00-1.00

EXCERPTS 9.1-9.2 • The Null Hypothesis for Testing Correlations

The purpose of this study is to examine differences in the relationships to GNP of
the business cycles of various industrial sectors in Turkey. . . . The statistical signif-
icance of the correlation coefficients was evaluated by testing the null hypothesis that
the unknown population correlation, , is equal to zero, against the two
sided alternative using the sample correlation coefficient r, obtained from
our sample of industrial output.

Source: Bayar, G. (2009). Business cycles and foreign trade in the Turkish economy. Middle
Eastern Finance and Economics, 3, 39–48.

The results indicated that the strength of association between the two variables was
relatively high (r � .702), and that the correlation coefficient was significantly different
from zero ( ).

Source: Wan, J., & Eastmond, N. (2008). A study on the use of cooperative learning strategies
in a computer literacy course. College & University Media Review, 14, 21–63.

P 6 0.001

HA: r Z 0,
Ho: r = 0r
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Because the correlational null hypothesis is usually set up to say that a zero
correlation exists in the population, most researchers do not state (or allude to) the

being tested. Instead, they take for granted that recipients of their research re-
ports will know that the inferential conclusions refer to a null hypothesis of no re-
lationship. Consider, for example, Excerpts 9.3 and 9.4. In each case, the sample r
presented in the report was compared against the null value of zero—even though
the tested never appeared in the technical write-ups.H0

H0

EXCERPTS 9.3–9.4 • Tests on r with No Reference to the Null Value of Zero

The degree to which spirituality was used to cope was weakly related with the num-
ber of years respondents reported going to TASO ( ).

Source: Hodge, D. R., & Roby, J. L. (2010). Sub-Saharan African women living with
HIV/AIDS: An exploration of general and spiritual coping strategies. Social Work, 55(1),
27–37.

Job alternatives were not significantly correlated with strategy fit (r � .13, ns),
organizational commitment (r � .06, ns), or intention to stay (r � �.05, ns).

Source: Da Silva, N., Hutcheson, J., & Wahl, G. D. (2010). Organizational strategy and 
employee outcomes: A person–organization fit perspective. Journal of Psychology, 144(2),
145–161.

r = .177, p = .037

In light of the fact that very few researchers either state the null hypothesis
when applying a test to a sample correlation coefficient or refer to pinpoint
number when discussing their results, you frequently will be forced into the posi-
tion of having to guess what a researcher’s was. In these situations, a safe bet is
that was a statement of no relationship in the population. If researchers set up a
null hypothesis that specifies a population correlation different from zero, I am con-
fident that they will specify pinpoint number.

Deciding If r Is Statistically Significant

In conducting a statistical test on a single correlation coefficient, the value of r usu-
ally functions as the data-based calculated value. As you will soon see, statistical
tests on means, variances, or percentages involve calculated values that are different
from the means, variances, or percentages computed from the sample(s). However,
with correlations, the sample-based correlation coefficient is, in its raw form, the cal-
culated value.

When the sample value of r is considered to be the calculated value, there are
two ways to determine whether it is statistically significant. If the data have been

H0’s

H0

H0

H0’s
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analyzed on a computer or Internet website, then the data-based value of p can be
compared against the level of significance. If p is equal to or smaller than the null
hypothesis will be rejected. In Excerpt 9.5, you can see this decision-making 
approach in operation.

Excerpt 9.6 illustrates the second method for determining whether a sample
r is statistically significant. If the data have not been analyzed such that a data-
based p is available, the researcher can compare the sample value of r against a
tabled critical value. If the former equals or exceeds the latter, will be rejected.
On occasion (but not often), you may come across a research report that includes
the tabled critical value. An example of such a situation is presented in Excerpt 9.6.
The single sentence in this excerpt was positioned beneath a correlation matrix
that contained 91 correlation coefficients. To tell which of the correlation coeffi-
cients were significant (and at what level), the researchers as well as the readers
of their research report had to compare each r against critical values shown in
Excerpt 9.6.

H0

a,

EXCERPTS 9.5–9.6 • Two Ways to Decide if r Is Statistically Significant

The openness and honesty dimension correlated highest with culture having a cor-
relation coefficient of 0.76. This dimension is believed to be of most importance in
the trust-building process. . . . The resultant p-value of 
0.001 was compared to a
significance level of 0.05, indicating that there is a correlation between the trust di-
mensions and culture.

Source: Alston, F., & Tippett, D. (2009). Does a technology-driven organization’s culture 
influence the trust employees have in their managers? Engineering Management Journal,
21(2), 3–10.

For correlations greater than .20, p 
 .05; for correlations greater than .28, p 
 .01;
and for correlations greater than .35, p 
 .001.

Source: Griffin, M. A., Parker, S. K., & Mason, C. M. (2010). Leader vision and the develop-
ment of adaptive and proactive performance: A longitudinal study. Journal of Applied Psy-
chology, 95(1), 174–182.

One-Tailed and Two-Tailed Tests on r

Most researchers conduct their tests on r in a two-tailed fashion because they would
like to know, as best they can, whether there is a positive or negative correlation in
the population of interest. Sometimes, however, researchers use a one-tailed test to
evaluate a sample r. In Excerpts 9.7 and 9.8, we see examples of these two options
for testing any r.
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Unlike Excerpts 9.7 and 9.8, the typical research report dealing with tested
correlations does not indicate whether r was evaluated in a one-tailed or two-tailed
fashion. That is the case with most of the excerpts in this chapter, because there usu-
ally is not even a hint as to whether the alternative hypothesis was nondirectional
(with ) or directional (with stating either or ).
Why is this the case?

Because the vast majority of researchers conduct their tests on r in a two-tailed
fashion, researchers presume that you understand this even if they do not say so di-
rectly. Therefore, you should guess that any test on r was conducted in a two-tailed
manner unless the researcher says otherwise. When researchers perform a one-tailed
test on r, they will be sure to point this out (as was the case in Excerpt 9.8).

Tests on Specific Kinds of Correlation

Until this point, we have been discussing tests of correlation coefficients in the
generic sense. However, there is no such thing as a generic correlation. When cor-
relating two sets of data, a specific correlational procedure must be used, with the
choice usually being influenced by the nature of variables or the level of measure-
ment of the researcher’s instruments. As you may recall from Chapter 3, there are
many different kinds of bivariate correlations: Pearson’s, Spearman’s, biserial, point
biserial, phi, tetrachoric, and so on.

With any of the various correlation procedures, a researcher can apply the hy-
pothesis testing procedure. When researchers report having tested r without speci-
fying the type of correlation that was computed, you should presume that r
represents Pearson’s product–moment correlation. Thus, it is a good guess that the
correlations presented or referred to in Excerpts 9.1 through 9.8 were all Pearson rs.

r 6 0.00r 7 0.00Har Z 0.00Ha:

EXCERPTS 9.7–9.8 • Two-Tailed and One-Tailed Tests on r

The correlation was found to be .256 (p 
 .001, two-tailed) for the first sample, and
.279 (p 
 .001, two-tailed) for the second sample.

Source: Schermer, J. A., & Verno, P. A. (2010). The correlation between general intelligence
(g), a general factor of personality (GFP), and social desirability. Personality and Individual
Differences, 48(2), 187–189.

There was an expected negative correlation for ACS and STAI-t (r � �.358; 
p � .031; one-tailed).

Source: Putman, P., van Peer, J., Maimari, I., & van der Werff, S. (2010). EEG theta/beta ratio
in relation to fear-modulated response-inhibition, attentional control, and affective traits.
Biological Psychology, 83(2), 73–78
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EXCERPTS 9.9–9.11 • Tests on Specific Kinds of Correlation

The correlation between alcohol consumption and religiosity for the entire sample
was rs � �.33 (p 
 .001).

Source: Wells, G. M. (2010). The effect of religiosity and campus alcohol culture on collegiate
alcohol consumption. Journal of American College Health, 58(4), 295–304.

Using this critical value [.07] for comparison, it is apparent that the point-biserial
correlation for Q27 (r � .06) is not significant.

Source: Nadelson, L. S., & Southerland, S. A. (2010). Development and preliminary evalua-
tion of the measure of understanding of macroevolution: Introducing the MUM. Journal of 
Experimental Education, 78(2), 151–190.

Finally, Phi correlation was used to determine if articles discussed the MMR and
thimerosal examples together. A negative correlation (rΦ � �.234, p 
 .001) suggested
that when one topic appeared in an article, the other did not.

Source: Clarke, C. E. (2010). A case of conflicting norms? Mobilizing and accountability 
information in newspaper coverage of the autism–vaccine controversy. Public Understanding
of Science, in press.

Tests on Many Correlation Coefficients 
(Each of Which Is Treated Separately)

In most of the excerpts presented so far in this chapter, inferential interest is focused
on a single correlation coefficient. Although some researchers set up only one cor-
relational null hypothesis (because each of their studies involves only one correla-
tion coefficient), most researchers have two or more correlations that are
inferentially tested in the same study. Our objective now is to consider the various
ways in which such researchers present their results, to clarify the fact that a sepa-
rate is associated with each correlation coefficient that is computed, and to con-
sider the way in which the Bonferroni adjustment technique can help the researcher
avoid the problem of an inflated Type I error risk.

Tests on the Entries of a Correlation Matrix

As we saw in Chapter 3, a correlation matrix is an efficient way to present the
results of a correlational study in which there are three or more variables with a

H0

In Excerpts 9.9 through 9.11, we now see illustrations of other kinds of bivariate
correlation coefficients being subjected to inferential testing.
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correlation coefficient computed between each possible pair of variables.1 Typi-
cally, each of the entries within the correlation matrix will be subjected to an infer-
ential test. In Excerpt 9.12, we see an illustration of this situation.

1Whenever a correlation coefficient is computed, it is really not the variables per se that are being correlated.
Rather, it is the measurements of one variable that are correlated with the measurements of the other variable.
This distinction is not a trivial one, because it is possible for a low correlation coefficient to grossly underes-
timate a strong relationship that truly exists between the two variables of interest. Poor measuring instruments
could create this anomaly.

EXCERPT 9.12 • Tests of Each r in a Correlation Matrix

TABLE 4 Correlation matrix showing Pearson correlations between locus
of control on social life for all coping strategies

1 2 3 4 5 6

1. Locus of control social life 1 
2. Problem solving as coping �.04 1
3. Social support as coping �.02 .57* 1
4. Cognitive restructuring as coping .03 .62* .50* 1
5. Wishful thinking as coping �.19* .25* .28* .14* 1
6. Self-criticism as coping �.10* .31* .27* .17* .59* 1

*Correlation is significant at the .001 level (2-tailed).

Source: Ljoså, C. H., & Lau, B. (2009). Shiftwork in the Norwegian petroleum industry: Over-
coming difficulties with family and social life—a cross sectional study. Journal of Occupa-
tional Medicine and Toxicology, 4(22), 1–10.

The correlation matrix in Excerpt 9.12 contains 15 bivariate correlations that
were computed among the study’s six variables. Each of the resulting rs was sub-
jected to a separate statistical test, and in each case the null hypothesis was a no-
relationship statement about the population associated with the single sample of
1,697 Norwegian petroleum workers used in the investigation. As you can see, 12
of the 15 correlations turned out to be significant, with 

Tests on Several Correlation Coefficients 
Reported in the Text

Research write-ups often present the results of tests on many correlation coeffi-
cients in the text of the article rather than in a table. Excerpt 9.13 illustrates this ap-
proach to summarizing the results of inferential tests on multiple correlations.

p 6 .001.
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In the study associated with Excerpt 9.13, each of the individuals in two
groups—White and Black undergraduates attending residential colleges—was mea-
sured on several variables, three of which were social distance, prejudice, and level
of comfort when eating in the dining hall at a table with members of other races.
Excerpt 9.13 shows the obtained correlations, for each racial group, between “com-
fortability” and each of the other two variables. These significant correlations, the
authors stated, suggest that more positive “outgroup” attitudes are associated with
higher levels of comfort in being with members of other races.

The Bonferroni Adjustment Technique

In Chapter 8, I explained why researchers sometimes use the Bonferroni technique
to adjust their level of significance. As you may recall, the purpose of doing this is to
hold down the chances of a Type I error when multiple tests are conducted. I also hope
that you remember the simple mechanics of the Bonferroni technique: Simply divide
the desired study-wide Type I error risk by the number of tests being conducted.

In Excerpt 9.14, we see an example in which the Bonferroni technique was
used in conjunction with correlation coefficients. This excerpt provides a nice re-
view as to why the Bonferroni technique is used and how it works. In this case, the
Bonferroni procedure reduced the level of significance from .05 to .005. This may

EXCERPT 9.13 • Tests on Several rs with Results in the Text

Correlations between social distance scores and level of comfortability yielded results
of r � 0.34 (p � 0.036) for white participants, and r � 0.49 (p � 0.001) for black
African participants. Correlations between affective prejudice scores and level of
comfortability yielded results of r � �0.54 (p 
 0.001) for white participants, and
r � �0.44 (p � 0.005) for black African participants.

Source: Schrieff, L. E., Tredoux, C. G., Finchilescu, G., & Dixon, J. A. (2010). Understanding
the seating patterns in a residence-dining hall: A longitudinal study of intergroup contact.
South African Journal of Psychology, 40(1), 5–17.

EXCERPT 9.14 • Use of the Bonferroni Correction with Tests on Several
Correlation Coefficients

Using the Bonferroni approach to control for type I error across the 10 correlations,
a p value of less than .005 (.05/10 � .005) was specified for significance.

Source: Chew, W., Osseck, J., Raygor, D., Eldridge-Houser, J., & Cox, C. (2010). Develop-
mental assets: Profile of youth in a juvenile justice facility. Journal of School Health, 80(2),
66–72.
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strike you as an overly severe change in the alpha level. However, if a researcher
uses the hypothesis testing procedure several times (as was the case in Excerpt
9.14), the actual Type I error risk become greatly inflated if the level of significance
is not made more rigorous. The researchers associated with this excerpt would re-
ceive bonus points in our evaluation of their study because they recognized that they
must “pay a price” for testing multiple correlations.

When you come across the report of a study that presents the results of infer-
ential tests applied to several correlation coefficients, try to remember that the con-
clusions drawn can be radically different depending on whether some form of
Bonferroni adjustment technique is used. For example, Excerpt 9.6 came from a study
in which bivariate correlation coefficients were computed among 14 variables and
presented in a large correlation matrix. Of these 91 rs, 48 were reported to be statis-
tically significant. If the Bonferroni adjustment procedure had been used (because
separate tests were conducted on so many correlations), the null hypothesis associ-
ated with 25 of these 48 correlations would have been retained rather than rejected.

Tests of Reliability and Validity Coefficients

As indicated in Chapter 4, many of the techniques for estimating reliability and 
validity rely totally or partially on one or more correlation coefficients. After com-
puting these indices of data quality, researchers sometimes apply a statistical test to
determine whether or not their reliability and validity coefficients are significant.
Excerpts 9.15 and 9.16 illustrate such tests.

EXCERPTS 9.15–9.16 • Tests of Reliability and Validity Coefficients

Test–retest reliability was conducted by re-administering one session of the NVLA
within 1 week of the first administration for 16 students. Test–retest correlation coeffi-
cient for the total test score of the NVLA was statistically significant ( p 
 .001) at .970.

Source: Baker, J. N., Spooner, F., Shlgrim-Delzell, L., Flowers, C., & Browder, D. M. (2010).
A measure of emergent literacy for students with severe developmental disabilities. Psychology
in the Schools, 47(5), 501–513.

The predictive validation study of the GMAT was conducted . . . via Pearson cor-
relation analysis procedure using a one-tailed test of significance. . . . The correla-
tion between the GMAT score and the final MBA GPA was .60 (p 
.01). . . . Results
from the present study suggest that the GMAT is a strong predictor of academic per-
formance in Central Europe and the Middle East.

Source: Koys, D. (2010). GMAT versus alternatives: Predictive validity evidence from Central
Europe and the Middle East. Journal of Education for Business, 85(3), 180–185.
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When you come across a research report in which reliability and validity co-
efficients are tested for significance, be careful to focus your attention on the size
of the coefficient (which should be large), not the reported p-level (no matter how
small it may be). In Excerpt 9.15, for example, it is nice to know that the reported
test–retest reliability coefficient turned out to be significantly different from zero
(with ); however, what is far more important is the impressive size of the
stability coefficient: .97. Consider now both the p and the r in Excerpt 9.16. The
p looks fairly good (because it is less than .01), but the validity coefficient of .60 is
not so impressive (despite the author’s claim that the GMAT was shown to be a
“strong predictor”). In this study, the GMAT explained only 36 percent of the vari-
ability among the MBA students’ GPAs.

Statistically Comparing Two Correlation Coefficients

At times, researchers have two correlation coefficients that they wish to compare.
The purpose of such a comparison is to determine whether a significant difference
exists between the two rs, with the null hypothesis being a statement of no differ-
ence between the two correlations in the population(s) associated with the study.
For such tests, a no-difference is fully appropriate.

Figure 9.2 is designed to help you distinguish between two similar but differ-
ent situations where a pair of correlation coefficients is compared. In Figure 9.2(a),
we see that a sample is drawn from each of two populations, with a bivariate corre-
lation coefficient computed, in each sample, between the same pair of variables. In
this picture, these variables are labeled X and Y; the two variables might be height
and weight, running speed and swimming speed, or any other pair of variables. The
null hypothesis is that correlation between X and Y has the same value in each of the
two populations. Notice that the single inference here is based on both groups of
sample data and is directed toward the set of populations associated with the study.

In Figure 9.2(b), we see that a single sample is drawn from one population, but
two correlation coefficients are computed on the basis of the sample data. One corre-
lation addresses the relationship between variables X and Y, whereas the other correla-
tion is concerned with the relationship between variables X and Z. The null hypothesis
in this kind of study is that the parameter value of the correlation between X and Y is
equal to the parameter value of the correlation between X and Z. Based on the sam-
ple’s pair of correlation coefficients, a single inference is directed toward the unknown
values of the pair of correlations in the one population associated with the study.

Excerpts 9.17 and 9.18 illustrate the two situations depicted in Figure 9.2. 
In the first of these excerpts, the correlation between two variables (endorsement 
of multiculturalism and ethnic identity) from one group of high school students 
(n � 186) in the Netherlands was compared with the correlation between these same
two variables from a different group of students (n � 140) attending the same schools.
In Excerpt 9.18, we again see that two correlation coefficients were statistically

H0

p 6 .001
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2The term Fisher’s r-to-z transformation is often used to describe the test that’s conducted to see if two cor-
relations are significantly different from each other.

compared. Here, however, the situation was different. In this case, the individuals in
a single group—104 women who had been sexually coerced—were measured on
three variables: internal attributions (i.e., blaming oneself), external attributions
(blaming someone else), and guilt. Correlations were computed between guilt and
each of the attribution variables, and then these two rs were statistically compared.

In Excerpts 9.17 and 9.18, the two correlations were compared by means of a
statistical test called a z-test.2 Sometimes, a t-test is used to make the correlational
comparison. The only thing you need to know about these statistical tests is that in
each case, the null hypothesis being evaluated is that the population values associ-
ated with the two sample correlations are identical. Stated symbolically,
Note that this null hypothesis says that the difference between the correlations is
zero, not that the correlations themselves are zero. Thus, two large rs that would each
be significantly different from zero if considered individually could end up causing

to be retained when compared against each other. Although this did not happen
in the two excerpts we have just considered, this outcome does occur.

The Use of Confidence Intervals around Correlation Coefficients

When researchers subject a data-based correlation coefficient to an inferential sta-
tistical procedure, they probably do so via hypothesis testing. All of the excerpts
presented so far in this chapter have been taken from studies in which this testing

H0

H0: r1 = r2.

EXCERPTS 9.17–9.18 • Statistical Comparison of Two
Correlation Coefficients

There was a significant positive association between the endorsement of multicul-
turalism and ethnic identification for the ethnic minority group (r � .26, p 
 .01),
and a negative association for the Dutch participants (r � �.22, p 
 .01). The dif-
ference between these two correlations is significant, z � 4.25, p 
 .001.

Source: Verkuyten, M. (2009). Self-esteem and multiculturalism: An examination among
ethnic minority and majority groups in the Netherlands. Journal of Research in Personality,
43(3), 419–427.

Fisher’s Z-test indicated that, as predicted, the correlation between Internal Attributions
and Guilt [r � .52] was significantly greater than the correlation between Guilt and
External Attributions [r � .21], Z � 2.56, p � .011.

Source: Glenn, S. A., & Byers, E. S. (2009). The roles of situational factors, attributions, and
guilt in the well-being of women who have experienced sexual coercion. Canadian Journal of
Human Sexuality, 18(4), 201–219.
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strategy was used. It is possible, however, for a researcher to deal inferentially with
a correlation coefficient simply by placing a confidence interval around the sample
value of r. Oddly, few researchers do this.

As was indicated previously, confidence intervals can be used within the con-
text of hypothesis testing. In applying inferential tests to correlation coefficients, most
researchers do not place confidence intervals around their sample values of r, but a
few do. We see an illustration of this use of confidence intervals in Excerpt 9.19.

EXCERPT 9.19 • Use of a Confidence Interval to Test r

Pearson’s correlation analysis (with 95% confidence intervals) was used [but] no sig-
nificant correlation was found between treatment duration and BMI SDS (r � 0.027,
95% CI �0.29 to 0.34; p � 0.867). . . .

Source: Rauchenzauner, M., Griesmacher, A., Tatarczyk, T., Haberlandt, E., Strasak, A., Zim-
merhackl, L., et al. (2010). Chronic antiepileptic monotherapy, bone metabolism, and body
composition in non-institutionalized children. Developmental Medicine & Child Neurology,
52(3), 283–288.

In Excerpt 9.19, notice that the confidence interval extends from -0.29 to 0.34.
Thus, the CI overlaps 0.00. Because of this, the researcher failed to reject the null hy-
pothesis, as indicated by the phrase no significant correlation. The null hypothesis
under investigation was never mentioned in the research report, but it took the form

as is usually the case when a single correlation coefficient is tested.

Cautions

I feel obligated to end this chapter by suggesting a few cautions that you should
keep in mind when trying to decipher (and critique) research reports based on cor-
relation coefficients. As you will see, my comments here constitute a reiteration of
some of the points presented at the end of Chapter 3 as well as some of the points
offered at the conclusions of Chapters 7 and 8.

Relationship Strength, Effect Size, and Power

Many researchers seem to get carried away with the p-levels associated with their
correlation coefficients and thus seem to forget that the estimated strength of a re-
lationship is best assessed by squaring the sample value of r. Discovering that a cor-
relation coefficient is significant may not really be very important—even if the
results indicate or —unless the value of is reasonably high. The
result may be significant in a statistical sense (thus indicating that the sample data
are not likely to have come from a population characterized by ), but it may be
quite insignificant in a practical sense.

H0

r2p 6 .001p 6 .01

H0: r = 0.00,
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Consider Excerpt 9.20. The researchers are correct in saying that their two
variables were “significantly and negatively correlated.” (With a sample as large as
theirs, N � 1,164, a two-tailed test of their r yields a p-value of .0166.) Neverthe-
less, I cannot help but think that an r of �.07 carries with it very little practical sig-
nificance. Yet, one-third of the research report’s abstract discussed the relationship
between perceived teacher discrimination and student academic achievement with-
out showing the size of the sample correlation.

EXCERPT 9.20 • A Significant r with Questionable Usefulness

The correlation results revealed that teacher discrimination is significantly and neg-
atively correlated with academic achievement for total sample (r � �.07, p  .05).

Source: Thomas, O. N., Caldwell, C. H., Faison, N., & Jackson, J. S. (2009). Promoting aca-
demic achievement: The role of racial identity in buffering perceptions of teacher discrimina-
tion on academic achievement among African American and Caribbean black adolescents.
Journal of Educational Psychology, 101(2), 420–431.

EXCERPT 9.21 • Expressed Concern for the Strength of Statistically
Significant Correlations

Pearson correlation analyses showed generally low correlations among variables 
included in this study. Although some correlation coefficients were statistically sig-
nificant, none was greater than .24.

Source: Molfese, V. J., Rudasill, K. M., Beswick, J. L., Jacobi-Vessels, J. L., Ferguson, M. C.,
& White, J. M. (2010). Infant temperament, maternal personality, and parenting stress as con-
tributors to infant developmental outcomes. Merrill-Palmer Quarterly, 56(1), 49–79.

To see an example in which the important distinction between statistical sig-
nificance and practical significance was kept in mind, take a look at Excerpt 9.21.
In this excerpt, notice that the researchers seem to focus their attention on the size
of their rs rather than on their ability to say that those rs were statistically signifi-
cant. Perhaps they did this out of an awareness that an r of .24 describes a rela-
tionship in which less than that 6 percent of the variability in one variable is
associated with variability in the other variable.

In Chapter 8, I pointed out how researchers can apply a seven-step version of
hypothesis testing by discussing the concept of effect size. This can be done, of
course, with correlation coefficients. In fact, we saw a case in Excerpt 8.3, where
the correlation between the ratings of quarterback attractiveness and playing abil-
ity was judged to be “small-to-medium.”
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In Excerpt 9.22, we see a case in which a group of researchers compared their
obtained correlation coefficient against some common effect size criteria. (These
criteria have been duplicated and put into Table 9.1, because these criteria apply to
any of the correlational procedures we have considered.) Because the researcher’s
sample value of r (-.506) was larger than the criterion value of .50, the researchers
felt justified in saying that their computed correlation was “of a large effect size.”
The small p-value had nothing to do with the researchers’ decision to attach this 
effect size label to their computed r.

EXCERPT 9.22 • Using Effect Size Criteria with Correlations

The PB index correlated negatively with sexual inhibition due to fear of performance
consequences [r � �.506, p 
 .001]. The correlation coefficient was of a large effect
size.

Source: Winters, J., Christoff, K., & Gorzalka, B. B. (2010). Conscious regulation of sexual
arousal in men. Journal of Sex Research, 46(4), 330–343.

TABLE 9.1 Effect Size Criteria for Correlations

Small Medium Large

r � .1 r � .3 r � .5

Note: These standards for judging relationship strength are
quite general and should be changed to fit the unique goals
of any given research investigation.

As indicated by the note under Table 9.1, researchers should not blindly use
the common effect size criteria for evaluating correlation coefficients. Depending
on the specific context of a given study, it might be appropriate to think of a rela-
tionship as being strong when a correlation coefficient turns out to be .30 or .40 or
to think of a correlation as weak even if it turns out to be .60 or .70. For example,
if Pearson’s r is being used to estimate test–retest reliability, a correlation coeffi-
cient of .50 would not be looked on as strong evidence of desirable stability over
time. Also, in some fields of study where two variables have appeared independent,
a new investigation (perhaps using better measuring instruments) yielding a corre-
lation of .20 might well cause researchers to think that the new study’s correlation
is quite high. Although the effect size criteria for correlations are convenient and
easy to use, give credit to those researchers who explain why these criteria either do
or do not fit their particular studies.

Although researchers can demonstrate a concern for relationship strength by
discussing effect size or by computing r2, they can do an even better job if they use
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the nine-step version of hypothesis testing. As I hope you remember from Chapter
8, this involves setting up the study so that it has the desired power and the proper
sample size. When a researcher’s study is focused on one or more correlation coef-
ficients, it is quite easy to add these extra tasks to the basic six-step version of hy-
pothesis testing.

In Excerpt 9.23, we see an example of an a priori power analysis being con-
ducted for a study dealing with Pearson’s correlation. As indicated in this excerpt,
the researchers’ a priori power analysis indicated that they would need a sample size
of 50 individuals in order to have the desired minimum power of .80 to detect a
meaningful correlation at the .05 level of significance. In this study, the dividing
line between trivial and meaningful rs was specified by the researchers when they
selected, for the power analysis, an effect size of r = .40.

When you come across a study that uses the seven-step approach to hypothe-
sis testing, give the researcher some bonus points. When you come across a study
in which the appropriate sample size was determined prior to the collection of any
data, give the researcher even more bonus points for taking the time to set up the
study with sensitivity to both Type I and Type II errors. And when you come across
a study in which there is no mention whatsoever of effect size (of either type), award
yourself some bonus points for detecting a study that could have been conducted
better than it was.

Linearity, Homoscedasticity, and Normality

Tests on Pearson’s r are conducted more frequently than tests on any other kind of
correlation coefficient. Whenever tests on Pearson’s r are conducted, three impor-
tant assumptions about the population must hold true in order for the test to func-
tion as it was designed. One of these important prerequisite conditions is referred
to as the linearity assumption. The second is referred to as the equal variance as-
sumption (or, alternatively, as the assumption of homoscedasticity). The third is the
normality assumption.

The assumption of linearity states that the relationship in the population be-
tween the two variables of interest must be such that the bivariate means fall on a

EXCERPT 9.23 • An A Priori Power Analysis

Fifty experienced hearing aid users (27 men and 23 women) between 46 and 89 years
of age (M � 75.36, SD � 9.33) were recruited to participate in this study based on an
a priori power analysis of a Pearson correlation (r � .4) using p � .05 and power � .8.

Source: Desjardins, J. L., & Doherty, K. A. (2009). Do experienced hearing aid users know
how to use their hearing aids correctly? American Journal of Audiology, 18(1), 69–76.
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straight line. The assumption of homoscedasticity states that (1) the variance of the
Y variable around is the same regardless of the value of X being considered and
(2) the variance of the X variable around is constant regardless of the value of Y
being considered. The assumption of normality requires the population to have
what is called bivariate normality. If a population is characterized by a curvilinear
relationship between X and Y, by heteroscedasticity, or by non-normality, the infer-
ential test on Pearson’s r may provide misleading information when sample data are
used to make an inferential guess regarding the direction and strength of the rela-
tionship in the population.

The easiest way for a researcher to check on these three assumptions is to look
at a scatter diagram of the sample data. If the data in the sample appear to conform
to the linearity, equal variance, and normality assumptions, then the researcher has
good reason to suspect that the population is not characterized by curvilinearity, het-
eroscedasticity, or non-normality. In that situation, the test on r can then be per-
formed. If a plot of the data suggests, however, that any of the assumptions is
untenable, then the regular test on r should be bypassed in favor of one designed
for different kinds of data sets.

As a reader of the research literature, my preference is to be able to look at
scatter diagrams so I can judge for myself whether researchers’ data appear to meet
the assumptions that underlie tests on r. Because of space limitations, however, such
visual displays of the data are rarely included in research reports. If scatter diagrams
cannot be shown, then it is my feeling that researchers should communicate in
words what they saw when they looked at their scatter diagrams.

Consider Excerpt 9.24. In the study associated with this excerpt, the re-
searchers wanted to use Pearson’s correlation to measure the relationship between
two variables. Before computing r, however, the researchers checked their data to
see if the linearity, equal variance, and normality assumptions were tenable. These
investigators deserve high praise for paying attention to their statistical tool’s as-
sumptions. (They also deserve praise for reporting a coefficient of determination
rather than the unsquared r.)

mx

my

EXCERPT 9.24 • Expressed Concern for Assumptions

Because estimation of blood loss has repeatedly been found to be inaccurate in pre-
vious studies, the relationship between estimated blood loss and measured blood loss
was investigated using Pearson product-moment correlation coefficient. Preliminary
analyses were performed to ensure no violation of the assumptions of normality, lin-
earity, and homoscedasticity. There was a strong positive correlation between the
two variables [ ].

Source: Schorn, M. N. (2009). The effect of guided imagery on the third stage of labor: A pilot
study. Journal of Alternative & Complementary Medicine, 15(8), 863–870.

r2 = 0.54, n = 28, p 6 0.001
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I believe that too many researchers move too quickly from collecting their
data to testing their rs to drawing conclusions based on the results of their tests. Few
take the time to look at a scatter diagram as a safety maneuver to avoid misinter-
pretations caused by violation of assumptions. I applaud the small number of re-
searchers who take the time to perform this extra step.

Causality

When we initially looked at correlation from a descriptive standpoint in Chapter 3,
I pointed out that a correlation coefficient usually should not be interpreted to mean
that one variable has a causal impact on the other variable. Now that we have con-
sidered correlation from an inferential standpoint, I want to embellish that earlier
point by saying that a correlation coefficient, even if found to be significant at an
impressive alpha level, normally should not be viewed as addressing any cause-and-
effect question.

In Excerpt 9.25, we see a situation in which a team of researchers warns their
readers that correlation does not usually indicate causality. Take a close look at the
final sentence of this excerpt. Not only do the researchers alert readers to the danger
of drawing causal thoughts from a correlation, they also indicate why this can be
problematic. As they point out, the causal force that brings about a relationship be-
tween two variables might not be one of those variables influencing the other vari-
able; instead, there might be a third variable that has a causal impact on the first two.

EXCERPT 9.25 • Correlation and Causality

As hypothesized, the improvement in two crucial language functions, naming [ �
0.7; p 
 0.00001] and comprehension [ 
 0.39; p � 0.007], were associated with
patients’ baseline nonverbal visuo-spatial working memory. However, it should be
emphasized that correlation between two variables does not necessarily indicate a 
direct causal relationship, as both variables might be correlated to a third variable or
a group of variables.

Source: Seniów, J., Litwin, M., & Lesniak, M. (2009). The relationship between non-linguistic
cognitive deficits and language recovery in patients with aphasia. Journal of the Neurological
Sciences, 283(2–3), 91–94.

r

r

Attenuation

The inferential procedures covered in this chapter assume that the two variables
being correlated are each measured without error. In other words, these procedures
are designed for the case where each variable is measured with an instrument that
has perfect reliability. Although this assumption may have full justification in a the-
oretical sense, it certainly does not match the reality of the world in which we live.
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To the best of my knowledge, no researcher has ever measured two continuous vari-
ables and ended up with data that were perfectly reliable.

When two variables are measured such that the data have less than perfect re-
liability, the measured relationship in the sample data systematically underestimates
the strength of the relationship in the population. In other words, the computed cor-
relation coefficient is a biased estimate of the parameter if either or both of the vari-
ables are measured without error-free instruments. The term attenuation has been
coined to describe this situation, where, using the product–moment correlation as
an example, measurement error causes r to systematically underestimate 

Once you come to understand the meaning (and likely occurrence) of attenu-
ation, you should be able to see why statistical tests that yield fail-to-reject deci-
sions are problematic in terms of interpretation. If, for example, a researcher
computes Pearson’s r and ends up not rejecting this outcome may
have come about because there is a very weak (or possibly no) relationship between
the two variables in the population. However, the decision not to reject may have
been caused by attenuation masking a strong relationship in the population.

In Chapter 4, we spent a great deal of time considering various techniques
used by researchers to estimate the reliability of their measuring instruments. That
discussion now becomes relevant to our consideration of inferential reports on cor-
relation coefficients. If a researcher’s data possess only trivial amounts of mea-
surement error, then attenuation becomes only a small concern. However, reports
of only moderate reliability coupled with correlational results that turn out non-
significant leave us in a quandary as to knowing anything about the relationship in
the population.

If researchers have information concerning the reliabilities associated with the
measuring instruments used to collect data on the two variables being correlated,
they can use a formula that adjusts the correlation coefficient to account for the sus-
pected amount of unreliability. When applied, this correction for attenuation for-
mula always yields an adjusted r that is higher than the uncorrected, raw r. In
Excerpt 9.26, we see an example where a group of researchers conducted a corre-
lational study and used the correction for attenuation formula.

H0

r = 0.00,H0:

r.

EXCERPT 9.26 • Correlation Coefficients and Attenuation

Since the measures in this study had different levels of internal consistency, the cor-
relations were corrected for attenuation due to unreliability. The FOCI Symptom
Checklist correlated strongly and positively with the OCI-R ( ) and the
STAI-A ( ), and moderately with STAI-D ( ) and the BDI-
II ( ).

Source: Aldea, M. A., Rahman, O., & Storch, E. A. (2009). The psychometric properties of
the Florida Obsessive Compulsive Inventory: Examination in a non-clinical sample. Individual
Differences Research, 7(4), 228–238.

rc = .48, p 6  .01
rc = .41, p 6  .01rc = .66

rc = .84



Attenuation, of course, is not the only thing to consider when trying to make
sense out of a correlation-based research report. Several of these other relevant con-
siderations have been addressed within our general discussion of cautions. Two
points are worth reiterating, each now connected to the concept of reliability. First,
it is possible that a correlation coefficient will turn out to be statistically significant
even though is true and even though highly reliable instruments are used to col-
lect the sample data; do not forget that Type I errors do occur. Second, it is possi-
ble that a correlation coefficient will turn out to be nonsignificant even when is
false and even when highly reliable data have been collected; do not forget about
the notion of Type II errors and power.

H0

H0
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In Chapter 9, we saw how inferential statistical techniques can be used with cor-
relation coefficients. Now, we turn our attention to the procedures used to make in-
ferences with means. A variety of techniques are used by applied researchers to deal
with their sample means, and we consider many of these inferential procedures here
and in several of the following chapters. Multiple chapters are needed to deal with
this broad topic because the inferential procedures used by researchers vary according
to (1) how many groups of scores are involved, (2) whether underlying assumptions
seem tenable, (3) how many independent variables come into play, (4) whether data
on concomitant variables are used to increase power, and (5) whether people are
measured under more than one condition of the investigation.

In this introductory chapter on inferences concerning means, we restrict our
focus to the cases in which the researcher has computed either just one sample mean
or two sample means. I illustrate how statistical tests are used in studies where inter-
est lies in one or two means and the way interval estimation is sometimes used in such
studies. Near the end of this chapter, we consider the assumptions that underlie the
inferential procedures covered in this chapter, and we also examine the concept of
overlapping distributions. With this overview now under your belt, let us turn to the
simplest inferential situation involving means: the case where there is a single mean.

Inferences Concerning a Single Mean

If researchers have collected data from a single sample and wish to focus on M in
an inferential manner, one (or both) of two statistical strategies are implemented.
On the one hand, a confidence interval can be built around the sample mean. On the
other hand, a null hypothesis can be set up and then evaluated by means of the 
hypothesis testing procedure.

C H A P T E R 10
Inferences Concerning 
One or Two Means

204



The Inferential Purpose

Figure 10.1 has been constructed to help clarify what researchers are trying to do
when they use the mean of a sample as the basis for building a confidence interval
or for assessing a null hypothesis. As this figure shows, M is computed on the basis
of data collected from the sample. Although the sample-based value of the mean is
easy to obtain, primary interest lies in the corresponding value of the population
mean.1 However, the researcher cannot compute the value of because only the ob-
jects in the sample can be measured. Accordingly, an inference (i.e., educated
guess) about the unknown value of the population parameter, is made on the basis
of the known value of the sample statistic, M.

In summarizing their empirical investigations, many researchers discuss
their findings in such a way that the exclusive focus seems to be on the sample
data. The thick arrow in Figure 10.1 should help you remember that the differ-
ent inferential techniques to which we now turn our attention are designed to
allow a researcher to say something about the population involved in the study,
not the sample. If concern rested with the sample, no inferential techniques
would be necessary.

m,

m

m,
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1If the researcher’s data come from a probability sample, then M represents the mean of the study’s tangible
population. On the other hand, if the data come from a convenience or purposive sample (or some other form
of nonprobability sample), then M represents the mean of the study’s abstract population.

Population

Sample

In
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= ?

M = 18.2

μ

FIGURE 10.1 The Inferential Purpose When One Sample’s Mean Is Computed
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Interval Estimation

Of the two basic ways of applying inferential statistics to a sample mean, the confidence
interval procedure is simpler. All the researcher does to implement this inferential
strategy is (1) make a decision as to the level of confidence that will be associated
with the interval to be built and (2) build the interval around M by using a formula
that incorporates information from the sample (e.g., M, SD, and n) as well as a nu-
merical value extracted from a statistical table. Of course, computer programs can
quickly do the second of these tasks. The result is an interval that extends equally
far above and below the sample value of M.

In Excerpt 10.1, we see a case in which a 95 percent confidence interval (CI)
was placed around a sample mean. In a sense, this CI gives us a feel for how trust-
worthy the sample mean is. If this study were to be replicated, with another sample
taken from the same population, we would expect sampling error to cause the mean
age of people in the replicated study to be different from the mean age of this
study’s sample. But how much variation should we expect? The CI gives us a range
within which we might expect to find that next sample mean.2

2Although it is technically wrong to think that a confidence interval indicates a “replication range,” this notion
is both simple to understand and not likely to be too inaccurate.

EXCERPT 10.1 • Confidence Interval around a Single Sample Mean

The scores obtained with the selected sample covered the whole possible metric
space, and scores of both 0 and 21 points were recorded. Mean score was 8.75 points,
with a standard deviation of 6.44 points. The 95% confidence interval for the mean
ranged from 7.88 to 9.62.

Source: García-Campayo, J., Zamorano, E., Ruiz, M. A., Pardo, A., Pérez-Páramo, M., López-
Gómez, V., et al. (2010). Cultural adaptation into Spanish of the Generalized Anxiety Disorder-7
(GAD-7) Scale as a screening tool. Health and Quality of Life Outcomes, 8, 1–11.

When looking at a confidence interval, many people make a big mistake in in-
terpreting what it means. This mistake is thinking that a 95 percent CI indicates the
range for the middle 95 percent of the scores used to generate the CI. By looking
at Excerpt 10.1, you can see why this is an incorrect interpretation of this or any CI.
Whereas the CI around the sample mean extends from 7.88 to 9.62, the standard
deviation was equal to 6.44. If the middle 95 percent of the scores fell inside the
CI, then the standard deviation would have been much smaller. Simply stated, a 95
percent CI does not indicate the range of scores for all but the highest and lowest
21⁄2 percent of the scores. Instead, it gives us a feel for the likely difference between
the sample mean and the population mean.
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As you may recall from Chapter 8, it is technically wrong to interpret this (or
other) CI by saying or thinking that there is a 95 percent chance that the population
mean lies somewhere between the end points of the CI. Instead, you must imagine (1)
that many samples are drawn randomly from the same population, (2) that a separate
CI is built for each sample, and (3) that each CI is examined to see if it has captured
the population mean. With these three things in mind, the correct way to interpret a
95 percent CI is to say or think that it is one of many (actually 95 percent) CIs that
would, in fact, overlap rather than one of the few (actually 5 percent) that would not.

Researchers typically present more than just one CI in their research reports.
If there is just one group in the study, the individuals in that group might be mea-
sured on several variables, with a CI built around the group mean on each variable.
If there are two or more groups in the investigation, a separate CI can be built for
each group around its mean on each variable for which data have been collected. In
Excerpt 10.2, we see an example of the first of these situations.

m

EXCERPT 10.2 • Confidence Intervals around Two Means from 
the Same Sample

The outcome was assessed [via] the modified Harris Hip Score (MHHS) and the
Non-Arthritic Hip Score (NAHS). Overall, at the last follow-up (mean 22 months,
12 to 72), the mean MHHS had improved by 15.3 points (95% confidence interval
(CI), 8.9 to 21.7) and the mean NAHS by 15 points (95% CI, 9.4 to 20.5).

Source: Haviv, B., Singh, P. J., Takla, A., & O’Donnell, J. (2010). Arthroscopic femoral osteo-
chondroplasty for cam lesions with isolated acetabular chondral damage. Journal of Bone and
Joint Surgery, 92-B(5), 629–633.

There are two things to note about Excerpt 10.2. First, each CI is of the 
95 percent variety. Such CIs are used far more often by researchers than 90 percent
or 99 percent CIs. Second, the group’s sample mean on each variable is located near
the middle of each CI. If the means and interval end points had not been rounded
off, you would have seen that each mean was positioned exactly at the midpoint of
each CI. This happens whenever a CI is built around a sample mean because the in-
terval’s end points are computed by adding a certain amount to the mean and sub-
tracting that same amount from the mean.

Because the number of patients involved in the study associated with Excerpt
10.2 was the same for each of the two CIs, you cannot see here the connection be-
tween interval width and sample size. However, there is a connection. If other things
are held constant, larger sample sizes produce CIs that are narrower, whereas CIs
based on smaller ns are wider. This relationship between n and CI width ought to
seem reasonable to you. Simply stated, estimates based on more data are likely to
be more precise than estimates based on small amounts of data.
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Tests Concerning a Null Hypothesis

When researchers have a single sample (and thus a single population) and have in-
ferential interest in the mean, they can approach the data by means of the hypothe-
sis testing procedure. When this strategy is used, a null hypothesis must be articulated.
In this kind of research situation, the null hypothesis takes the form

where a stands for a pinpoint numerical value selected by the researcher.
After specifying researchers proceed to apply the various steps of the in-

ferential testing strategy they have decided to follow. Regardless of whether the six-
step, seven-step, or nine-step approach to hypothesis testing is used, researchers
assess the discrepancy between the sample mean and ’s pinpoint value. If the dif-
ference between M and ’s -value is large enough, is rejected and viewed as
not likely to be true because of the small value of p associated with the sample data.

There are several available test procedures that can be used to analyze the data
of a one-sample study wherein the statistical focus is the mean. The two most pop-
ular of these test procedures are the t-test and the z-test. These two ways of testing
the discrepancy between M and ’s -value are identical in logic and have the
same decision rule when comparing the calculated value against the critical value.3

The only difference between the two tests is that the z-test yields a calculated value
slightly larger than it ought to be (and a p-value slightly smaller than it ought to be).
However, the amount of the bias is trivial when the sample size is at least 30.

Excerpts 10.3 and 10.4 illustrate how researchers will often present their re-
sults when they have a single sample and conduct a z-test or a t-test to evaluate a
null hypothesis of the form In the first of these excerpts, the pinpoint
number from the null hypothesis is not shown. However, it was equal to the mean

H0: m = a.

mH0

H0mH0

H0

H0,

H0 : m = a

3This decision rule says to reject if (1) the calculated value is as large as or larger than the critical value
or (2) the data-based p is equal to or smaller than the selected level of significance.

H0

EXCERPTS 10.3–10.4 • Use of z or t to Test the Mean of a Single Sample

The one sample z-test was used to test the statistical significance of [mean] differences
between the autistic children and the Japanese standard values. The standard values
were obtained from the infant physical growth survey conducted by The Japanese Min-
istry of Health, Labour and Welfare [in order] to establish a standard of Japanese in-
fant growth. . . . [Results indicated that] the head circumference at birth 
showed no significant difference from the standard value as determined by the Japanese
Government study of 14,115 children 

Source: Fukumoto, A., Hashimoto, T., Ito, H., Nishimura, M., Tsuda, Y., Miyazaki, M., et al.
(2008). Growth of head circumference in autistic infants during the first year of life. Journal
of Autism & Developmental Disorders, 38(3), 411–418.

3z = 0.90, p = 0.3664.

3M = 33.274

(continued)
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score on the norms. In Excerpt 10.4, the null hypothesis took the form 
with that level of drinking chosen because there was agreement in the literature that
consuming five drinks at one sitting qualifies one to be called a “heavy drinker.”

In the middle of Excerpt 10.4, notice that a number is positioned inside a set
of parentheses located between the letter t and the calculated value of 6.35. This
number, which in this particular excerpt is 179, is technically referred to as the
degrees of freedom (which is often abbreviated df ) for the t-test that was per-
formed.4 If you add 1 to the df number of a one-sample t-test, you get a number that
equals the size of the sample. Thus, you can tell that 180 individuals provided scores
that produced the mean of 6.35.

Inferences Concerning Two Means

If researchers want to compare two samples in terms of the mean scores using in-
ferential statistics, they can utilize a confidence interval approach to the data or an
approach that involves setting up and testing a null hypothesis. We consider the way
in which estimation can be used with two means after we examine the way in which
two means can be compared through a tested Before we do either of these
things, however, I must draw a distinction between two 2-group situations: those
that involve independent samples and those that involve correlated samples.

Independent versus Correlated Samples

Whether two samples are considered to be independent or correlated is tied to the
issue of the nature of the groups before data are collected on the study’s dependent
variable. If the two groups have been assembled in such a way that a logical relation-
ship exists between each member of the first sample and one and only one member
of the second sample, then the two samples are correlated samples. However, if no
such relationship exists, the two samples are independent samples.

H0.

H0: m = 5.00,

4There is no df value in Excerpt 10.3 because z-tests do not utilize the df concept.

Overall, the mean estimate of the number of drinks considered indicative of heavy
drinking for “Kevin” was 6.09 A one-sample t test . . . revealed a sig-
nificant difference, with participants’ quantitative estimate
of heavy drinking higher than the current definition of “binge” or “heavy episodic
drinking” in the literature [5 drinks].

Source: Segrist, D. J., & Pettibone, J. C. (2009). Where’s the bar? Perceptions of heavy and
problem drinking among college students. Journal of Alcohol & Drug Education, 53(1), 35–53.

t(179) = 6.35, p = .001
(SD = 2.38).

EXCERPTS 10.3–10.4 • (continued)
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Correlated samples come into existence in one of three ways. If a single group
of people is measured twice (e.g., to provide pretest and posttest data), then a rela-
tionship exists in the data because each of the pretest scores goes with one and only
one of the posttest scores, because both come from measuring the same research par-
ticipant. A second situation that produces correlated samples is matching. Here, each
person in the second group is recruited for the study because he or she is a good match
for a particular individual in the first group. The matching could be done in terms of
height, IQ, running speed, or any of a multitude of possible matching variables. The
matching variable, however, is never the same as the dependent variable to be mea-
sured and then used to compare the two samples. The third situation that produces cor-
related samples occurs when biological twins are split up, with one member of each
pair going into the first sample and the other member going into the second group.
Here, the obvious connection that ties together the two samples is genetic similarity.

When people, animals, or things are measured twice or when twin pairs are split
up, it is fairly easy to sense which scores are paired together and why such pairing ex-
ists. When a study involves matching, however, things are slightly more complicated,
because at least two data-based variables are involved. The data on one or more of these
variables are used to create pairs of people such that the two members of any pair are
as similar as possible on matching variables. Once the matched pairs are formed, then
new data are examined on the dependent variable of interest to see if the two groups
of individuals differ on the dependent variable. For example, a researcher might cre-
ate matched pairs of students who have low academic self-concept, randomly split up
the pairs to form an experimental group (which receives tutoring) and a control group
(which does not), and then compare the two groups in terms of how they perform at
the end of the term on a final course examination. In this hypothetical study, the match-
ing variable is academic self-concept (with these scores discarded after being used to
form matched pairs); the scores of primary interest—that is, the scores corresponding
to the dependent variable—come from the final course examination.

If the two groups of scores being compared do not represent one of these three
situations (pre/post, matched pairs, or twins), then they are considered to be inde-
pendent samples. Such samples can come about in any number of ways. People
might be assigned to one of two groups using the method of simple randomization,
or possibly they end up in one or the other of two groups because they possess a
characteristic that coincides with the thing that distinguishes the two groups. This
second situation is exemplified by the multitude of studies that compare males
against females, students who graduate against those who do not graduate, people
who die of a heart attack versus those who do not, and so on. Or, maybe one of the
two groups is formed by those who volunteer to undergo some form of treatment,
whereas the other group is made up of folks who choose not to volunteer. A final
example (of the ones to be mentioned) is created if the researchers simply desig-
nate one of two intact groups to be their first sample, which receives something that
might help them, whereas the second intact group is provided with nothing at all or
maybe a placebo.
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In Excerpts 10.5 and 10.6, we see descriptions of data sets that represent in-
dependent and correlated samples. It is easy to tell that the data in the first of these
studies should be thought of as independent samples because the sample sizes are
different. (Whenever is different from it is impossible to have each score in
one of the data sets paired logically with one of the scores in the second data set.)
The two groups referred to in Excerpt 10.6 were correlated because the 20 individ-
uals in the first group were individually matched with 20 individuals in the second
group. It is not surprising that the two groups had nearly identical means on chrono-
logical age, as CA was the variable used to create the 20 matched pairs!

n2,n1

EXCERPTS 10.5–10.6 • Independent and Correlated Samples

Nine-hundred federal service dentists and 600 civilian dentists were [compared regard-
ing] their knowledge, attitudes, and behaviors concerning MID (minimal intervention
dentistry).

Source: Gaskin, E. B., Levy, S., Guzman-Armstrong, S., Dawson, D., & Chalmers, J. (2010).
Knowledge, attitudes, and behaviors of Federal Service and civilian dentists concerning min-
imal intervention dentistry. Military Medicine, 175(2), 115–121.

Twenty-six participants with autism were recruited [but] to comply with the inclusion
criteria [that had been established], the final sample comprised 20 individuals between
6 years 4 months and 18 years 4 months (mean 13 years 4 months). Participants with
autism were individually matched to typically developing individuals of comparable
CA [chronological age]. The CA-matched group ranged from 6 years 2 months to
18 years 8 months (mean 13 years 3 months). . . .

Source: Riby, D., & Hancock, P. J. B. (2009). Looking at movies and cartoons: Eye-tracking
evidence from Williams syndrome and autism. Journal of Intellectual Disability Research,
53(2), 169–181.

Although this was not done in either of the two excerpts we have just consid-
ered, researchers sometimes indicate explicitly that their data came from indepen-
dent samples or from correlated samples. When they do so, you will have no trouble
knowing what kind of samples was used. However, they may use terms other than
independent samples and correlated samples. Correlated samples are sometimes re-
ferred to as paired samples, matched samples, dependent samples, or within
samples, whereas independent samples are sometimes called unpaired samples,
unmatched samples, or uncorrelated samples.

To understand exactly what researchers did in comparing their two groups,
you must develop the ability to distinguish between correlated samples and inde-
pendent samples. The language used by the researchers can help to indicate the kind
of samples involved in the study. If a descriptive adjective is not used, you must
make a judgment based on the description of how the two samples were formed.
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The Inferential Purpose

Before we turn our attention to the way researchers typically summarize studies that
focus on two sample means, I want to underscore the fact that these comparisons
of means are inferential in nature. Figure 10.2 is designed to help you visualize this
important point.
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FIGURE 10.2 Two Different Kinds of Inferential Situations Involving Two Means
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Panel A in Figure 10.2 represents the case where the means of two indepen-
dent samples are compared. Panel B represents the case where two correlated sam-
ples of data are compared in terms of means. (In panel B, the dotted “chains” that
extend from population 1 to population 2 are meant to denote the pairing or match-
ing that is characteristic of correlated samples.)

Two points about Figure 10.2 must be highlighted. First, in both the independent-
samples situation and in the correlated-samples situation, inferential statements are
made about populations, not about samples. Unfortunately, researchers often dis-
cuss their results as if the samples were the total focus of their investigations. If you
keep Figure 10.2 in mind when you are dealing with such research summaries, you
can (and should) correct the discussion by having all conclusions apply to the
study’s populations.

My second point regarding Figure 10.2 concerns the fact that the statistical 
inference, in panel A or in panel B, extends from the full set of sample data to the
study’s pair of populations. Separate inferences are not made from each sample to
its corresponding population because the purpose is to make a comparison between
two things. The focus here is on how compares with and thus the inferential
arrow in each picture points to the dotted box surrounding both populations involved
in the study.

Setting Up and Testing a Null Hypothesis

The null hypothesis for the two-sample case having a focus on means can be expressed
in the same form regardless of whether the samples are independent or correlated.
The most general way to write the null hypothesis is to state

where a represents any pinpoint number the researcher wishes to use in In most
studies, researchers decide to set up a no-difference null hypothesis, and they accom-
plish this goal by saying Another way to express the notion of 
no difference is to say In Excerpt 10.7, we see an example of the null
hypothesis (as well as the alternative hypotheses) being stated in a research report.

H0 : m1 = m2.
H0 : m1 -  m2 = 0.

H0.

H0 : m1 -  m2 = a

m2,m1

EXCERPT 10.7 • Null Hypothesis for Comparing Two Means

[In comparing] gym members and non-gym members . . . , the null and alternative
hypotheses are:

Source: Leeman, O., & Ong, J. S. (2008). Lost and found again: Subjective norm in gym mem-
bership. DLSU Business & Economics Review, 18(1), 13–28.

H1: m1 Z m2 1population means are not the same.2

H0: m1 = m2 1population means are the same.2
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Unfortunately, the null and alternative hypotheses are rarely stated in studies
where two means are inferentially compared. Most researchers assume that their
readers will be able to discern the null hypothesis from the discussion of the way
the sample data are summarized. A good rule of thumb to use when trying to deci-
pher research reports is to presume that a test of two means revolved around a no-
difference unless it is explicitly stated that some other kind of null hypothesis
was set up. You should also presume that the alternative hypothesis was nondirec-
tional unless you see the term one-tailed or one-sided.

After the sample data are collected, summarized, and analyzed, the results of
the statistical comparison of the two sample Ms is presented within the text of the
report or in a table. Excerpts 10.8 and 10.9 illustrate the way results are typically
presented, with the studies associated with these excerpts involving independent
and correlated samples, respectively.

H0

EXCERPTS 10.8–10.9 • Comparison of Two Sample Means Using a t-Test

An independent samples t-test showed that girls were more accurate on no-go trials
during the GNG task than boys 

Source: He, J., Degnan, K. A., McDermott, J. M., Henderson, H. A., Hane, A. A., Xu, Q., et
al. (2010). Anger and approach motivation in infancy: Relations to early childhood inhibitory
control and behavior problems. Infancy, 15(3), 246–269.

A paired t-test showed a significant difference in the number of barriers [to engag-
ing in exercise] endorsed by participants between pre-test and post-test 

The number of barriers endorsed by participants at pretest 
was significantly reduced at post-test 

Source: Brinthaupt, T. M., Kang, M., & Anshel, M. H. (2010). A delivery model for overcom-
ing psycho-behavioral barriers to exercise. Psychology of Sport and Exercise, 11(4), 259–266.

14.48 ; 2.352.6.17 ; 2.642
1M ; SD =p 6 .0012.
1t1572 = 5.01;

M = 24.15, SD = 26.342, t11332 = 2.71, p 6 .01.
1n = 62,1n = 73, M = 38.68, SD = 34.442

As you can see, a t-test is referred to in Excerpts 10.8 and 10.9. The t-test is a
versatile statistical tool, because it can be used when a study’s statistical focus is on
a variety of other things (e.g., proportions and regression coefficients). Nevertheless,
t-tests probably are used more often with means than anything else. In Excerpt 10.8,
the t-test compared the two sample means (38.68 and 24.15) to see if they were fur-
ther apart than we would expect them to be, if the null hypothesis were true. That
was the case, as indicated by the notation In Excerpt 10.9, the means of
6.17 and 4.48 were compared, and once again the null hypothesis was rejected.

Note that the authors of Excerpts 10.8 and 10.9, in reporting their t-test re-
sults, provide information as to the degrees of freedom associated with the tests

p 6 .01.
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that were conducted. These df values—located inside parentheses between the let-
ter t and the calculated value—are useful because they allow us to know how
much data each t was based on. When t-tests are conducted to compare the means
of two independent samples, the total amount of data can be determined by adding
2 to the t-test’s df. When t-tests are used to see if a significant difference exists
between the means of two correlated samples of data, you can determine how
many pairs of data were used by adding 1 to the t-test’s df. Armed with this knowl-
edge, we can verify that there were a total of 135 boys and girls involved in the
study associated with Excerpt 10.8, and we can determine (on our own) that there
were 58 individuals in the study associated with Excerpt 10.9.

Although a statistical test comparing the two means can be conducted using
a t-test, it can also be accomplished by means of a z-test or an F-test. The z-test pro-
vides a result that is slightly biased in the sense that its probability of resulting in a
Type I error is greater than the level of significance (with this bias being more pro-
nounced when the sample sizes are small). In contrast, the F-test is not biased. The
F-test’s conclusion regarding is always identical to the conclusion reached by a
t-test. Hence, it really does not matter whether researchers compare their two means
using a t-test or an F-test.

In light of the fact that (1) some researchers opt to use an F-test when com-
paring two means and (2) the results of an F-test are typically presented in a way
that requires an understanding of concepts not yet addressed, I am obliged to com-
ment briefly about F-test results. Here, I focus attention exclusively on the use of
F-tests to compare the means of two independent samples. In Chapter 14, I show
how F-tests can be used with correlated samples.

To begin our discussion of F-tests applied to the means of two independent
samples, consider the material in Excerpt 10.10. In this excerpt, note that two
groups of teachers were being compared, that the focus was on the mean number
of “professional development” hours required (21.1 for low-poverty districts and
29.9 for high-poverty districts), and that a statistically significant difference was
found between these sample means, as indicated by the notation at the endp 6 .05

H0

EXCERPT 10.10 • Comparison of Means from Two Independent Samples
Using an F-Test

High-poverty districts required on average 9 hours more to be spent [by teachers] on
professional development than low-poverty districts (low-poverty districts 

high-poverty districts 

Source: Fall, A. M., & Billingsley, B. S. (2011). Disparities in work conditions among early
career special educators in high- and low-poverty districts. Remedial and Special Education,
32(1), 64–78.

p 6 .05.
M = 29.9, SD = 42.32, F11,5962 = 8.510,SD = 31.1;

M = 21.1,
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of the excerpt. Also note that the calculated value turned out equal to 8.510, and that
this value is referred to as F.

In Excerpt 10.10, also note that there are two degree of freedom values pre-
sented along with the calculated value. The dfs appear within a set of parentheses
immediately to the right of the F, and they are separated by a comma. F-tests al-
ways have a pair of df values associated with them, and in this case the df values
are equal to 1 and 596. Researchers always cite two df numbers in conjunction with
the calculated value from their F-test.

The df values presented along with the results of an F-test can be used to dis-
cern the amount of data used to make the statistical comparison. When an 
F-test is used as in Excerpt 10.10 to compare the means of two independent sam-
ples, all you must do to determine the amount of data is add the two df values to-
gether and then add 1 to the resulting sum. Thus, in this study, the calculated value
of 8.510 was based on a total of 598 pieces of data. Because each piece of data came
from a different person, we know that there were 598 people involved in this study.

Sometimes, a table is used to present the results of the kind of F-test we have
been discussing. An example of such a table is contained in Excerpt 10.11. In the
study associated with this excerpt, 408 students taking a college algebra course filled
out a survey that assessed each student’s “locus of attribution” (i.e., the degree to
which he or she felt responsible for doing well or poorly in the course). These at-
tribution scores were then used to compare two subgroups of the students: those
who passed the course and those who failed. The means of these groups (on a 1�9
scale) were 6.76 and 5.94, respectively.

EXCERPT 10.11 • F-Test Comparison of Two Sample Means

The results for the locus of causality dimension are presented in Table 6. These findings
indicate a statistically significant difference between the passing and failing students
in the locus of causality dimension at F11,4062 = 26.34, p 6 .0001.

TABLE 6 One-way ANOVA summary table for locus of causality by pass/fail

Source df SS MS F

Between groups 1 66.447 66.447 26.340*
Within groups 406 1024.219 2.523
Total 407 1090.666

*

Source: Cortés-Suárez, G., & Sandiford, J. R. (2008). Causal attributions for success or failure
of students in college algebra. Community College Journal of Research & Practice, 32(4–6),
325–346.

p 6 .0001.
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The first thing to note about Excerpt 10.11 is the researcher’s use of the
acronym ANOVA in the title of the table, which stands for the phrase analysis of
variance. This phrase is a bit misleading, for it probably would lead an uninformed
reader to think that the statistical focus was on variances. However, as you will see,
the analysis of variance focuses on means. Also note that the term one-way appears
in the table’s title. There are several different kinds of ANOVAs, and the term one-
way clarifies that the comparison groups were formed by considering just one thing
when putting people into one or the other of the two groups. In this study, that one
thing was whether a student passed or failed the algebra course.

The main thing going on in Excerpt 10.11 is a statistical comparison of the
two sample means (6.76 and 5.94) that appeared in the text of the research report.
The outcome of the inferential test comparing those two means is shown in the far
right column of the ANOVA summary table. The number that appears in the col-
umn labeled F is the data-based calculated value, and it turned out to be significant,
as indicated by the note beneath the table. Thus, the two sample means differed by
an amount that was beyond the limits of chance sampling. Accordingly, the null hy-
pothesis was rejected.

There are three df values presented in the analysis of variance table. On the row
labeled “Between Groups,” the df value is equal to 1; this is always the case when
two sample means are being compared. The df value on the row labeled “Within
Groups” is found first by subtracting 1 from each sample size and then by adding the
resulting figures. The sum of the dfs for the “Between Groups” and “Within Groups”
rows is equal to 407, one less than the total number of people used in the analysis.

The column of numbers to the right of the df numbers is labeled with the ab-
breviation SS, which stands for “sum of squares.” These numbers come from a sta-
tistical analysis of the sample data, and there is really no way to make sense out of
this column of the analysis of variance table. The next column is labeled MS, the
abbreviation for “mean square.” The first of these values was found by dividing the first
row’s SS by that row’s df In a similar fashion, the second
row’s MS of 2.523 was computed by dividing 1024.219 by 406. Finally, the calcu-
lated value for the F column was computed by dividing the “Between Groups” MS
by the “Within Groups” MS

In one sense, all of the numbers in the df, SS, and MS columns of the analy-
sis of variance table are used solely as stepping stones to obtain the calculated value.
The top two df values are especially important, however, because the size of the ap-
propriate critical value depends on these two df values (along with the selected level
of significance). When the statistical analysis is being performed on a computer, the
researcher’s decision to reject or not reject is made by looking at the p-value pro-
vided by the computer (rather than by comparing the calculated F against the crit-
ical value). The computer’s p-value, however, is influenced by the “between” and
“within” df values (as well as by and the computed F). Accordingly, the three
most important numbers in the table are the first two values in the df column and
the single number in the F column.

a

H0

166.447 , 2.523 = 26.3402.

166.447 , 1 = 66.4472.
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Interval Estimation with Two Means

As noted in Chapter 8, confidence intervals can be used to deal with a null hy-
pothesis that a researcher wishes to test. Or, the confidence interval can be set up
in studies where no test is being conducted on any with interest instead re-
siding strictly in the process of interval estimation. Regardless of the researcher’s
objective, it is important to be able to decipher the results of a study in which the
results are presented using a confidence interval around the difference between
two means.

Consider Excerpt 10.12. Within this excerpt, notice how there is just one
confidence interval, not two, even though each of the two groups was measured
twice. Instead of building a separate CI around each group’s pre-treatment and
post-treatment means, and instead of building a separate CI around each group’s
mean change, a single CI was built around 12.9, the difference between one
group’s mean change and the other group’s mean change. Because this CI did not
overlap 0, the researchers were able to say that a significant difference existed between
the two comparison groups. The null hypothesis—that —
was rejected.

m11pre-post2 = m21pre-post2

H0,

EXCERPT 10.12 • Using a Confidence Interval to Do Hypothesis Testing
with Two Means

The SPADI is a self-administered questionnaire consisting of [shoulder] pain and
disability subscales, where the means of the 2 subscales are combined to produce a
total score ranging from 0 (best) to 100 (worst). . . . Differences in change scores
for the SPADI for the success group were significantly better than for the nonsuc-
cess group with a mean difference between groups of 12.9 (95% CI �
7.3, 18.5). The mean SPADI score for the success group decreased by more than
50% (from 38.1 to 18.4), whereas the mean SPADI score for the nonsuccess group
decreased by 18% (from 37.9 to 30.4).

Source: Mintken, P. E., Cleland, J. A., Carpenter, K. J., Bieniek, M. L., Keirns, M., & Whitman,
J. M. (2010). Some factors predict successful short-term outcomes in individuals with shoulder
pain receiving cervicothoracic manipulation: A single-arm trial. Physical Therapy, 90(1), 26–42.

1P 6 .0012,

Multiple Dependent Variables

If data are collected from one or two samples on two or more dependent variables,
researchers with inferential interest in their data may build several confidence in-
tervals or set up and test several null hypotheses, one for each dependent variable.
A quick look at a few excerpts from recent studies illustrates how researchers often
talk about such analyses.
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Results Presented in the Text

In Excerpts 10.13 and 10.14, we see two examples of how researchers often dis-
cuss what they discovered when they compared two groups on multiple dependent
variables. Although both studies involved two means per comparison, note how a
t-test was used in Excerpt 10.13, whereas an F-test was used in Excerpt 10.14.
Note also that you can use the degrees of freedom to determine how many indi-
viduals were involved in each study. In the study associated with the first excerpt,
there were teachers who attended the workshop. In the study asso-
ciated with Excerpt 10.14, data were gathered from a total of 
students.

1 + 642 + 1 = 644
89 + 1 = 90

EXCERPTS 10.13–10.14 • Comparing Two Groups on Multiple Dependent
Variables

With regard to perceived confidence as a result of workshop participation, attendees
felt more confident in their ability to incorporate technology into their lessons in a
meaningful way, to plan field trips that engage students in
a meaningful learning experience, and to use virtual field
trips for student learning and various academic outcomes,
after participating in the workshop.

Source: Shriner, M., Clark, D. A., Nail, M., Schlee, B. M., & Libler, R. (2010). Social studies
instruction: Changing teacher confidence in classrooms enhanced by technology. Social Studies,
101(2), 37–45.

More academic responses were observed in the CM group
than were observed in the No CM group 

Fewer competing responses were observed in the CM group
than in the No CM group 

Source: Lee, S., Wehmeyer, M. L., Soukup, J. H., & Palmer, S. B. (2010). Impact of curriculum
modifications on access to the general education curriculum for students with disabilities.
Exceptional Children, 76(2), 213–233.

F 11, 6422 = 14.453, p 6 .001.
1M = .2645, SD = 442,1M = .1423, SD = .352

32.479, p 6 .001.
F11, 6422 =1M = .3030, SD = .462,

1M = .5196, SD = .302

t1892 = 13.09, p 6 .001,
t1892 = 7.80, p 6 .001,

t1892 = 5.28, p 6 .001,

Results Presented in a Table

Excerpt 10.15 illustrates how a table can be used to convey the results of a two-
sample comparison of means on several dependent variables. This table comes from
a study in which 99 older residents of Crete completed a questionnaire about anx-
iety that had been translated into Greek. Three t-tests were conducted using data
from the same people; the first compared men and women, the second compared



220 Chapter 10

EXCERPT 10.15 • Results of Several t-Tests in a Table

TABLE 4 Comparison of the Short Anxiety Screening Test (SAST) results for
sex, age distribution and health centres

Frequency, SAST score,
N mean t Test

Sex
Male 56
Female 43

Age distribution
65 to 74 46

53
Health centre

Spili 37
Anogia 62 df = 97, P = 0.70421.5 (;5.1)

t = 0.382,21.1 (;6.1)

df = 97, P = 0.40420.9 (;5.5)Ú  75
t = 0.837,21.8 (;5.5)

df = 97, P = 0.00219.5 (;4.3)
t = 3.105,22.8 (;5.8)

(;SD)

Source: Grammatikopoulos, I. A., Sinoff, G., Alegakis, A., Kounalakis, D., Antonopoulou, M.,
& Lionis, C. (2010). The Short Anxiety Screening Test in Greek: Translation and validation.
Annals of General Psychiatry, 9(1), 1–8.

those under 75 years old with those 75 or older, and the third compared the indi-
viduals located in two different areas of Crete.

In Excerpt 10.15, the t-test calculated values are presented in the right col-
umn. Hence, the first calculated value of 3.105 came from a comparison of SAST
sample means of 22.8 and 19.5. As you can see, this first t-test revealed a signifi-
cant difference between the gender subgroups. The other two t-tests were not
significant. In each of the three cases, the null hypothesis stated that the population
corresponding to the two samples being compared had equal means.

When reading research reports, try to remember that you can use the reported
df numbers to help you understand how the study was structured, how many groups
got compared, and how many participants were involved. In Excerpt 10.15, the sam-
ple sizes for each t-test were provided, so we know that there were 99 research par-
ticipants and that each comparison was made via an independent-samples t-test. In
some research reports, this information is not presented as clearly. In such cases, the
df value(s) can help you figure out things about the study that are not stated in words.

Knowing how to use df numbers, of course, is not the most important skill to
have when it comes to t- or F-tests. Clearly, it is more important for you to know
what these tests compare, what the null hypothesis is, and what kind of inferential
error might be made. Even though df numbers are not of critical importance, it is
worth the effort to learn how to use them as an aid to interpreting what went on in
the studies you read.
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Use of the Bonferroni Adjustment Technique

When a researcher sets up and tests several null hypotheses, each corresponding to
a different dependent variable, the probability of having at least one Type I error
pop up somewhere in the set of tests is higher than indicated by the level of signif-
icance used in making the individual tests. As indicated in Chapter 8, this problem
is referred to as the inflated Type I error problem. There are many ways to deal with
this problem, but the most common strategy is the application of the Bonferroni
adjustment technique.

In Excerpt 10.16, we see an example of the Bonferroni adjustment technique.
This excerpt is worth considering for two reasons. First, it contains an explanation
how the Bonferroni procedure works. Second, the adjusted alpha level is cited, near
the end of the excerpt, as the more conservative criterion that was used in judging
the wisdom, courage, and humanity t-tests to be nonsignificant.

EXCERPT 10.16 • Use of the Bonferroni Adjustment Procedure

Virtue scores were compared between students reporting alcohol use within the past
month and those who had not consumed alcohol. Using a Bonferroni-adjusted alpha
of .008 (.05/6), 3 of the 6 virtues were significantly higher in nondrinkers: justice

temperance and transcen-
dence Wisdom, courage, and humanity did not differ
significantly between the 2 groups 

Source: Logan, D. E., Kilmer, J. R., & Marlatt, G. A. (2010). The Virtuous drinker: Character
virtues as correlates and moderators of college student drinking and consequences. Journal of
American College Health, 58(4), 317–324.

1p 7 .0082.
1t14122 = 3.36, p = .0012.

1t14122 = 4.77, p 6 .0012,1t14122 = 3.43, p = .0012,

As indicated in Chapter 8, application of the Bonferroni adjustment procedure
makes it more difficult for a researcher to reject the null hypothesis because the
modified level of significance becomes more rigorous. The adjusted level does not
become overly conservative; it simply gets reset to its proper position. Stated dif-
ferently, if the Bonferroni adjustment procedure is not used when it should be, the
alpha level is more liberal than it seems.

Effect Size Assessment and Power Analyses

When dealing with one or two means using hypothesis testing, many researchers
give no evidence that they are aware of the important distinction between statisti-
cal significance and practical significance. Those researchers seem content simply
to reject or to fail to reject the null hypotheses they test. As indicated in Chapter 8,
a growing number of researchers use the concept of effect size to address the
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notion of practical significance, either by computing an estimate of effect size as
the last step of the seven-step version of hypothesis testing or by choosing an effect
size during the nine-step version of hypothesis testing. Now, I want to illustrate
how researchers actually do these things in studies where there is inferential in-
terest in one or two means.

In Excerpts 10.17 and 10.18, we see how researchers use two popular indices
to assess effect size. In the first of these excerpts, the index d accompanied the t-
test results that compared 69 male athletes to 36 female athletes (all of whom were
college undergraduates) in terms of their claimed willingness to take physical and
psychological risks. In Excerpt 10.18, the researchers used partial eta squared

in conjunction with their F-test comparison of two groups of undergraduate
students who individually stood on a two-story balcony and estimated its height off
the ground. Before doing this, one group was shown 30 emotionally arousing pic-
tures, while the other group saw 30 neutral pictures.

1h2
p2

EXCERPTS 10.17–10.18 • Effect Size Assessment with d and h2
p

Independent t-tests found that men [compared to women] have more positive atti-
tudes towards taking physical and psychological
risks 

Source: Crust, L., & Keegan, R. (2010). Mental toughness and attitudes to risk-taking.
Personality and Individual Differences, 49(3), 164–168.

We found that emotionally arousing stimuli influenced height perception, such that
individuals who viewed arousing pictures overestimated
the height of the balcony more than did the individuals who viewed nonarousing
pictures

Source: Stefanucci, J. K., & Storbeck, J. (2009). Don’t look down: Emotional arousal elevates
height perception. Journal of Experimental Psychology, 138(1), 131–145.

1M = 11.40 m, SD = 2.952, F11, 272 = 4.35, p 6 .05, h2
p = .14.

1M = 13.60 m, SD = 2.642

1t103 = 3.29, p 6 .01, d = 0.702.
1t103 = 3.36, p 6 .01, d = 0.692

The index d is computed as the difference between two sample means di-
vided by the “average” of the two standard deviations. Thus, d is very much like
z-score that “standardizes” any mean difference by eliminating the metric of the
measurement. Partial eta squared is more difficult to compute, but it is fairly easy
to interpret because it is analogous to the that is often paired with a bivariate
correlation. After comparing two means via a t-test or an F-test, provides an
index of the proportion of variability in the study’s dependent variable that is as-
sociated with (i.e., explained by) the study’s grouping variable. Just as is often
converted into a percentage, partial eta squared is frequently interpreted as

r2

h2
p

r2
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indicating the percentage of variability in the dependent variable that is explained
by the grouping variable.

In the research reports from which Excerpts 10.17 and 10.18 were taken, the
values of d and were presented without any comment as to their size. Many other
researchers like to attach one of three descriptive labels—small, medium, or large—
to the effect size estimates they compute. Because you are likely to see these three
labels used in research reports, it is important for you to know what criteria were
used to determine if the practical significance of a finding should be considered
large or medium or small.

Table 10.1 contains the popular criteria for small, medium, and large effect
sizes for seven different measures that researchers use. It is recommended that each
numerical value in this table be thought of as the lowest value needed in order to
use the label at the top of that entry’s column. Thus, the effect size estimates in
Excerpt 10.17 are medium in size, whereas the effect size estimate in Excerpt 10.18
qualify as being large.

So far, we have seen and considered just two of the effect size indices: d and
You are likely to encounter the others if you read many research reports. As you

can see from Table 10.1, there are two versions of eta squared and two versions 
of omega squared. The two versions of each measure differ in terms of the way “ex-
plained variance” is conceptualized. However, for the situation where just two sam-
ple means are being compared, eta squared is identical to partial eta squared, and
omega squared is identical to partial omega squared.

In terms of effect size measures, there are two additional things you must
know. First, the computed value for any of these measures is based on sample data,
which means that the actual effect size in the relevant populations is only estimated.
Because of this, it is proper for researchers to place confidence intervals around
their computed effect size so as to make clear that they are sample statistics and not
population parameters. Second, neither researchers nor you should blindly use the
values in Table 10.1 when interpreting effect size indices. Depending on the specific

h2
p.

h2
p

TABLE 10.1 Effect Size Criteria for Comparing Two Means

Effect Size Measure Small Medium Large

d .20 .50 .80
Eta ( ) .10 .24 .37
Eta Squared ( ) .01 .06 .14
Omega Squared ( ) .01 .06 .14
Partial Eta Squared ( ) .01 .06 .14
Partial Omega Squared ( ) .01 .06 .14
Cohen’s f .10 .25 .40

Note: These standards for judging relationship strength are quite general and should be changed to fit
the unique goals of any given research investigation.

vp
2

hp
2

v2
h2

h
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context of a given study, it might be fully appropriate to deviate from these general
“rules of thumb” or to add supplemental information that supports the claim for any
given estimated effect size.

In Excerpts 10.19 and 10.20, we see examples of researchers being careful
with their effect-size assessments. In the first of these excerpts, a confidence inter-
val was placed around the computed value of d. In Excerpt 10.20, the researchers
provided supplemental information that helped clarify the “clinical meaningful-
ness” of the statistically significant finding.

EXCERPTS 10.19–10.20 • Effect Size Assessment with Confidence Intervals
& Supplemental Data

However, the gains of the NBLI/FFW-L group did not differ significantly from the
wait/NBLI controls,

Source: Fey, M. E., Finestack, L. H., Gajewski, B. J., Popescu, M., & Lewine, J. D. (2010). A
preliminary evaluation of Fast ForWord-Language as an adjuvant treatment in language inter-
vention. Journal of Speech, Language & Hearing Research, 53(2), 430–449.

Effect size estimates indicate that the reductions in school absences and pain ratings
were in the medium range providing some sup-
port for the clinical significance of these changes. Further support for the clinical
meaningfulness of these changes can be drawn from the finding that 39% of respond-
ing participants reported a decrease of two points or more on a 0–10 visual analogue
scale assessing their worst pain following the intervention.

Source: Logan, D. E., & Simons, L. E. (2010). Development of a group intervention to im-
prove school functioning in adolescents with chronic pain and depressive symptoms: A Study
of feasibility and preliminary efficacy. Journal of Pediatric Psychology, 35(8), 823–836.

[d = .59 and d = .55, respectively],

t140.002 = 0.46, p = .65, d = 0.22 1 90% CI [-0.61, 1.05]2.

In the four excerpts we have just considered, the researchers’ computation of
effect size indices were all performed after the data in each study had been gathered.
As pointed out in Chapter 8, however, it is possible to conduct a power analysis
before any data are collected. The purpose of such an analysis is to determine how
large the sample(s) should be so as to have a known probability of rejecting when

is false by an amount at least as large as the researcher-specified effect size.
In Excerpt 10.21, we see what goes into, and what comes out of, an a priori

power analysis. In doing this power analysis, the researchers first decided that their
statistical focus would be the mean, that they would compare their sample means
with an unpaired (i.e., independent-samples) t-test, that they would use the .05 level
of significance, and that they wanted to have at least an 90 percent chance of

H0

H0



Inferences Concerning One or Two Means 225

EXCERPT 10.21 • An a Priori Power Analysis

An unpaired t-test with an alpha level set at .05 was used to compare adherence
[means] between the experimental group and comparison group. . . . An a priori
power analysis was conducted to estimate the number of participants needed to ob-
tain a statistical power of 0.90 at an alpha level of .05. The a priori power analysis
estimated a sample size of 10 participants in the experimental group and 10 partici-
pants in the comparison group would detect a 2.0 standardized effect size with a sta-
tistical power of at least 0.90 at an alpha level of .05.

Source: Taylor, J. D., Fletcher, J. P., & Tiarks, J. (2009). Impact of physical therapist-directed
exercise counseling combined with fitness center-based exercise training on muscular strength
and exercise capacity in people with type 2 diabetes: A randomized clinical trial. Physical
Therapy, 89(9), 884–889.

rejecting the null hypothesis (of equal population means) if the true and standard-
ized difference was as large as or larger than 2. After making these deci-
sions, the power analysis indicated that the researchers would need 10 individuals
in each comparison group.

In Excerpt 20.21, the computed sample sizes probably seem quite small, es-
pecially in light of the fact that power is set equal to .90. The reason why the a pri-
ori power analysis produced these small ns is the effect size specified by the
researchers. When comparing two means with a t-test, a standardized effect size of
2.0 is enormous. (Recall that the widely used criteria for small, medium, and large
effects are .2, .5, and .8, respectively.) In a power analysis, an inverse relationship
exists between effect size and sample size. Small effects require big samples to de-
tect them; big effects can be detected with small samples.

Underlying Assumptions

When a statistical inference concerning one or two means is made using a confi-
dence interval or a t-, F-, or z-test, certain assumptions about the sample(s) and pop-
ulation(s) are typically associated with the statistical technique applied to the data.
If one or more of these assumptions are violated, then the probability statements at-
tached to the statistical results may be invalid. For this reason, well-trained re-
searchers (1) become familiar with the assumptions associated with the techniques
they use to analyze their data and (2) take the time to check out important assump-
tions before making inferences from the sample mean(s).

For the statistical techniques covered thus far in this chapter, there are four
underlying assumptions. First, each sample should be a random subset of the

m1 - m2
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population it represents. Second, there should be independence of observations
(meaning that a particular person’s score is not influenced by what happens to any
other person during the study). Third, each population should be normally distrib-
uted in terms of the dependent variable being focused on in the study. And fourth,
the two populations associated with studies involving two independent samples or
two correlated samples should each have the same degree of variability relative to
the dependent variable.

The assumptions dealing with the randomness and independence of obser-
vations are methodological concerns, and researchers rarely talk about either of
these assumptions in their research reports. The other two assumptions, however,
are often discussed by researchers. To be a discerning consumer of the research
literature, you must know when the normality assumption and equal variance
assumption should be considered, what is going on when these assumptions are
tested, what researchers do if they find that their data violate these assumptions,
and under what conditions a statistical test is robust to violations of the normal-
ity or equal variance assumptions. This section is intended to provide you with
this knowledge.

Researchers should consider the normality and equal variance assumptions
before they evaluate their study’s primary Assumptions should be considered
first, because the statistical test used to evaluate the study’s may not function the
way it is supposed to function if the assumptions are violated. In a sense, then,
checking on the assumptions is like checking to see if there are holes in a canoe (or
whether your companion has attached an outboard motor) before getting in and pad-
dling out to the middle of a lake. Your canoe simply will not function the way it is
supposed to if it has holes or has been turned into a motorboat.

When the normality or equal variance assumption is examined, the researcher
uses the sample data to make an inference from the study’s sample(s) to its popu-
lation(s). This inference is similar to the one that the researcher wishes to make con-
cerning the study’s primary except that assumptions do not deal with the mean
of the population(s). As their names suggest, the normality assumption deals with
distributional shape, whereas the equal variance assumption is concerned with vari-
ability. Often, the sample data are used to test these assumptions. In such cases the
researcher applies all of the steps of the hypothesis testing procedure, starting with
the articulation of a null hypothesis and ending with a reject or fail-to-reject deci-
sion. In performing such tests, the researcher hopes that the null hypothesis of nor-
mality or of equal variance is not rejected, because then he or she is able to move
ahead and test the study’s main null hypothesis concerning the mean(s) of interest.

Excerpts 10.22 and 10.23 illustrate how the normality and equal variance as-
sumptions are sometimes tested by applied researchers.5 In each of these excerpts,

H0,

H0

H0.

5In Excerpt 10.22, the researcher used the Kolmogorov–Smirnov test to check on the normality assumption.
There are other available test procedures (e.g., the chi square goodness-of-fit test) that do the same thing. In
Excerpt 10.23, Levene’s test was used to check on the equal variance assumption. Other test procedures (e.g.,
Bartlett’s chi square) can be employed to make the same data check.
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EXCERPTS 10.22–10.23 • Testing the Normality and Equal Variance
Assumptions

Normality of the data was tested using the One-Sample Kolmogorov-Smirnov test
on the dependent variable which was the differences between pretest and posttest
scores. The test statistics was 0.053 (not significant at the 0.05 level), and distribu-
tion of the data was normal. . . . The one-group t test was used for the pretest and
posttest results within the same study group, and the two-group t test was used to
compare scores between the two study groups.

Source: Lu, D. F., Lin, Z., & Li, Y. (2009). Effects of a web-based course on nursing skills and
knowledge learning. Journal of Nursing Education, 48(2), 70–77.

Levene’s Test for Equality of Variances was run before interpreting the results of t
testing. Because the significance value was greater than .05 in Levene’s test (.091),
equal variances were assumed.

Source: Brock, S. E. (2010). Measuring the importance of precursor steps to transformative
learning. Adult Education Quarterly, 60(2), 122–142.

notice that the null hypothesis for the assumption was not rejected. That was the de-
sired result, for the researchers were then permitted to move ahead and to what they
were really interested in: a comparison of their two sample means.

The assumption of equal variances is often referred to as the homogeneity of
variance assumption. This term is somewhat misleading, however, because it may
cause you to think that the assumption specifies homogeneity within each popula-
tion in terms of the dependent variable. That is not what the assumption means. The
null hypothesis associated with the equal variance assumption says that 
This assumption can be true even when each population has a large degree of vari-
ability. Homogeneity of variance exists if is equal to regardless of how large
or small the common value of 

If a researcher conducts a test to see if the normality or equal variance assump-
tion is tenable, it may turn out that the sample data do not argue against the desired
characteristics of the study’s populations. That was the case in Excerpts 10.22 and
10.23. But what happens if the test of an assumption suggests that the assumption
is not tenable?

In the situation where the sample data suggest that the population data do not
conform with the normality or equal variance assumptions, there are three options
available to the researcher. These options include (1) using a special formula in the
study’s main test so as to compensate for the observed lack of normality or hetero-
geneity of variance; (2) changing each raw score by means of a data transformation
designed to reduce the degree of nonnormality or heterogeneity of variance, thereby

s2.
s2

2,s2
1

s2
1 = s2

2.
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permitting the regular t-test, F-test, or z-test to be used when the study’s main test
focuses on the study’s mean(s); or (3) using a test procedure other than t, F, or z—
one that does not involve such rigorous assumptions about the populations.
Excerpts 10.24, 10.25, and 10.26 illustrate these three options.

EXCERPTS 10.24–10.26 • Options When Assumptions Seem Untenable

For comparisons between two groups, a two-tailed Student’s t-test was conducted.
If the F-test revealed that the group variances were significantly different, Welch’s
t-test was used in place of Student’s t-test.

Source: Kiya, T., & Kubo, T. (2010). Analysis of GABAergic and Non-GABAergic neuron
activity in the optic lobes of the forager and re-orienting worker honeybee (Apis mellifera L.).
PLoS One. 5(1), 1–8.

Data for PTP80 was transformed (square root transformation) to fulfill assumptions
of normality. Paired t tests confirmed that baseline measures did not differ across the
two experimental sessions.

Erickson, E., & Sivasankar, M. (2010). Evidence for adverse phonatory change following an in-
haled combination treatment. Journal of Speech, Language & Hearing Research, 53(1), 75–83.

Student’s t test was used to compare means of continuous variables. If assumptions
of equality of variance and normality (assumed for the t test) were not met, the
Mann-Whitney U test (a nonparametric equivalent of the t test) was performed as
appropriate.

Source: Zyoud, A. H., Awang, R., Sulaiman, S. A. S., Sweileh, W. M., & Al-Jabi, S. W. (2010).
Incidence of adverse drug reactions induced by N-acetylcysteine in patients with acetaminophen
overdose. Human & Experimental Toxicology, 29(3), 153–160.

Excerpt 10.24 represents option 1, for a special version of the t-test (called
Welch’s t-test) has built-in protection against violations of the equal variance as-
sumption. Excerpt 10.25 shows option 2, the strategy of transforming the data and
then using the regular test procedure to compare the group means. Here, a square
root transformation was used. In Excerpt 10.26, the researchers wanted to use a
t-test to make comparisons of group means. However, in those cases where their
data violated the normality assumption, the researchers chose option 3; instead of
using the t-test, the researchers used the nonparametric Mann-Whitney U test that
does not assume normality.

When researchers are interested in comparing the means of two groups, they
often bypass testing the assumption of equal variances if the two samples are
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equally big. This is done because studies in theoretical statistics have shown that a
test on means functions very much as it should even if the two populations have un-
equal amounts of variability, as long as In other words, t-, F-, and z-tests
are strong enough to withstand a violation of the equal variance assumption if the
sample sizes are equal. Stated in statistical “jargoneze,” equal ns make these tests
robust to violations of the homogeneity of variance assumption.

Comments

Before concluding our consideration of inferences regarding one or two means, I
want to offer five warnings that, if you heed them, will cause you to be a more
informed recipient of research results. These warnings are concerned with (1) out-
comes where the null hypothesis is not rejected, (2) outcomes where is rejected,
(3) the typical use of t-tests, (4) practical significance, and (5) research claims that
seem to neglect the possibility of a Type I or a Type II error.

A Nonsignificant Result Does Not Mean Is True

In Chapter 7, I indicated that a null hypothesis should not be considered to be true
simply because it is not rejected. Researchers sometimes forget this important point,
especially when they compare groups in terms of pretest means. In making this kind
of comparison, researchers usually hope that the null hypothesis is not rejected, be-
cause they want to consider the comparison groups to have been the same at the be-
ginning of the study. There are three reasons why it is dangerous to think that is
true if it is not rejected.

The context for these three comments is a hypothetical study. Imagine that we
have two groups, E and C (experimental and control), with pretest data available on
each person in each group. Let’s also imagine that the sample means, ME and MC,
turn out equal to 16 and 14, respectively. Finally, imagine that a t-test or F-test is
used to compare these two pretest Ms, with the result being that the null hypothe-
sis is not rejected because 

The first reason for not accepting in this hypothetical study is purely logi-
cal in nature. If the null hypothesis had been set up to say that a
fail-to-reject decision also would have been reached, which is also what would have
happened if ’s pinpoint number had been set equal to any other value between 
and Because the data support multiple null hypotheses that could have been
set up (and that clearly are in conflict with each other), there is no scientific justifi-
cation for believing that any one of them is right while the others are wrong.

The second reason for not accepting concerns data quality. In Chapter 9, I
discuss attenuation and point out how measuring instruments that have less than
perfect reliability can function to mask a true nonzero relationship that exists be-
tween two variables. The same principle applies to inferential tests that focus on
things other than correlation coefficients, such as means. In our hypothetical study,

H0

+2.0.
-2H0

H0 : mE - mC = 1,
H0

ptwo- tailed 7 .05.1H0 : mE = mC2

H0

H0

H0

n1 = n2.
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data produced by a measuring instrument with low reliability could lead to a fail-
to-reject decision; with a more reliable instrument, the sample means—even if they
again turn out equal to 16 and 14—might end up producing a p that is lower than
.05! Thus, our hypothetical study may have produced a nonsignificant finding be-
cause of unreliability in the data, not because 

A final consideration that mitigates against concluding that when 
is retained has to do with statistical power. As I have pointed out on several occa-
sions, there is a direct relationship between sample size and the probability of de-
tecting a situation in which is false. Thus, the failure to find a statistically
significant finding in our hypothetical study may have been caused by ns that were
too small. Perhaps and differ greatly, but our study simply lacked the statis-
tical sensitivity to illuminate that situation.

For these three reasons (logic, reliability, and statistical power), be on guard
for unjustified claims that is true following a decision not to reject 

Overlapping Distributions

Suppose a researcher compares two groups of scores and finds that there is a sta-
tistically significant difference between M1 and M2. Notice that the significant dif-
ference exists between the means of the two groups. Be on guard for research
reports in which the results are discussed without reference to the group means, thus
creating the impression that every score in one group is higher than every score in
the second group. Such a situation is very unlikely.

To illustrate what I mean by overlapping distributions, consider once again
the information presented in Excerpt 10.9, in which we saw that the mean number
of barriers (for not exercising) cited by the research participants dropped from 6.17
at pretest to 4.48 at posttest. These two sample means were compared with a paired
t-test, and it turned out that there was a statistically significant difference between
the group means. The null hypothesis of equal pretest and posttest population means
was rejected with 

Did all research participants decrease the number of barriers they cited? The
evidence contained in Excerpt 10.9 allows us to answer this question with a re-
sounding “No.” Return to this excerpt and take a look at the standard deviations for
each group of scores. These standard deviations (along with the means) strongly
suggest that the two distributions of scores overlapped because the two group means
were 1.69 points apart, whereas the two standard deviations were 2.64 and 2.35.

Be on guard for researchers who make a comparison between two different
groups (or between a single group that is measured twice), who reject the null
hypothesis, and who then summarize their findings by saying something like “Girls
outperformed boys” or “The treatment produced higher scores than did the control”
or “Participants improved between pretest and posttest.” Such statements are often
seen in the abstracts of research reports. When you see these phrases, be sure to in-
sert the three words “On the average” at the beginning of the researcher’s summary.

p 6 .001.

H0.H0

mCmE

H0

H0mE = mC

H0 : mE = mC.
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Also, keep in mind that overlapping distributions are the rule, not the exception, in
research investigations.

The Typical Use of t-Tests

In this chapter, you have seen how a t-test can be used to evaluate a null hypothesis
dealing with one or two means.You will discover that t-tests can also be used when the
researcher’s statistical focus is on things other than means. For example, a t-test can be
used to see if a correlation coefficient is significantly different from zero, or if there is
a significant difference between two correlations. For this reason, it is best to consider
a t-test to be a general tool that can be used to accomplish a variety of inferential goals.

Although a t-test can focus on many things, it is used most often when the re-
searcher is concerned with one or two means. In fact, t-tests are used so frequently to
deal with means that many researchers equate the term t-test with the notion of a test
focusing on the mean(s). These researchers use a modifying phrase to clarify how
many means are involved and the nature of the samples, thus leading to the terms one-
sample t-test, independent-samples t-test, correlated-samples t-test, matched t-test,
dependent-samples t-test, and paired t-test. When any of these terms is used, a safe
bet is that the t-test being referred to had the concept of mean as its statistical focus.

Practical Significance versus Statistical Significance

Earlier in this chapter, you saw how researchers can do certain things in an effort
to see whether a statistically significant finding is also meaningful in a practical
sense. Unfortunately, many researchers do not rely on computed effect size indices
or power analyses to help them avoid the mistake of “Making a mountain out of a
molehill.” They simply use the six-step version of hypothesis testing and then get
excited if the results are statistically significant.

Having results turn out to be statistically significant can cause researchers to
go into a trance in which they willingly allow the tail to wag the dog. This is what
happened, I think, to the researchers who conducted a study a few years ago com-
paring the attitudes of two groups of women. In the researchers’ technical report I
examined, they first indicated that the means turned out equal to 67.88 and 71.24
(on a scale that ranged from 17 to 85) and then stated, “Despite the small difference
in means, there was a significant difference.”

To me, the final 11 words of the previous paragraph conjure up the image of
statistical procedures functioning as some kind of magic powder that can be sprinkled
on one’s data and transform a molehill of a mean difference into a mountain that
deserves others’ attention. However, statistical analyses lack that kind of magical
power. Had the researchers who obtained those means of 67.88 and 71.24 not been
blinded by the allure of statistical significance, they would have focused their at-
tention on the small difference and not the significant difference. And had they done
this, their final words would have been, “Although there was a significant differ-
ence, the difference in means was small.”



Estimates of effect size and power analyses can help keep researchers (and
you) alert to the important distinction between practical significance and statistical
significance. However, do not be reluctant to use your own knowledge (and com-
mon sense) when it comes to judging the “meaningfulness” of statistical results. In
some cases, you will be able to make confident decisions on your own as to whether
a “big difference” exists between two sample means. You ought to be able to do that
when you examine Excerpt 10.27. (The two means reported in this excerpt were on
a scale that extended from 1.0 to 5.0.)
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EXCERPT 10.27 • Practical Significance: Is This Mean Difference “Big”?

Male students showed significantly higher adoption
of scientific attitudes than did female students 

Source: Chen, C., & Howard, B. (2010). Effect of live simulation on middle school students’
attitudes and learning toward science. Journal of Educational Technology & Society, 13(1),
133–139.

F11,5502 = 4.13, p 6 .05.
1Mean = 3.01, SD = 0.412,

1Mean = 3.08, SD = 0.422

Type I and Type II Errors

My final comment concerns the conclusion reached whenever the hypothesis test-
ing procedure is used. Because the decision to reject or fail to reject is fully in-
ferential in nature (being based on sample data), there is always the possibility that
a Type I or Type II error will be committed. You must keep this in mind as you read
technical research reports, as most researchers do not allude to the possibility of in-
ferential error as they present their results or discuss their findings. In certain cases,
the researcher simply presumes that you know that a Type I or Type II error may
occur whenever a null hypothesis is tested. In other cases, the researcher unfortu-
nately may have overlooked this possibility in the excitement of seeing that the sta-
tistical results were congruent with his or her research hypothesis.

When reading research reports, you will encounter many articles in which the
researchers talk as if they have discovered something definitive. The researchers’
assertions typically reduce to the claim that “The data confirm our expectations, so
now we have proof that our research hypotheses were correct.” Resist the temptation
to bow down in front of such researchers and accept everything and anything they
might say, simply because they have used fancy statistical techniques when ana-
lyzing their data. Remember that inferences are always involved whenever (1) con-
fidence intervals are placed around means or differences between means and (2)
null hypotheses involving one or two means are evaluated. Nothing is proved by any
of these techniques, regardless of how bold the researchers’ claims might be.

H0
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Analysis of variance
Bonferroni adjustment 

technique
Confidence interval
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Dependent samples
Degrees of freedom (df)
Effect size
Equal variance 

assumption
Eta squared
F-test
Homogeneity of variance

assumption
Independent samples
Matched samples

Review Terms

MS
Normality assumption
Omega squared
Overlapping distributions
Paired samples
Partial eta squared
Power analysis
Pseudo-Bonferroni adjustment procedure
Robust
SS
t-test
Uncorrelated samples
Unmatched samples
Unpaired samples
Within samples
z-test

The Best Items in the Companion Website

1. An interactive online quiz (with immediate feedback provided) covering
Chapter 10.

2. Nine misconceptions about the content of Chapter 10.
3. An email message sent from the author to his students entitled “A Little t-Test

Puzzle.”
4. One of Chapter 10’s best passages: “Inference and Proof.”
5. Two good jokes about statistics.

To access the chapter outline, practice tests, weblinks, and flashcards, visit the com-
panion website at http://www.ReadingStats.com.

Review Questions and Answers begin on page 531.

http://www.ReadingStats.com


In Chapter 10, we considered various techniques used by researchers when they
apply inferential statistics within studies focusing on one or two means. I now
wish to extend that discussion by considering the main inferential technique used
by researchers when their studies involve three or more means. The popular tech-
nique used in these situations is called analysis of variance and it is abbreviated
as ANOVA.

As I pointed out in Chapter 10, the analysis of variance can be used to see if
there is a significant difference between two sample means. Hence, this particular
statistical technique is quite versatile. It can be used when a researcher wants to
compare two means, three means, or any number of means. It is also versatile in
ways that will become apparent in Chapters 13, 14, and 19.

The analysis of variance is an inferential tool that is widely used in many
disciplines. Although a variety of statistical techniques have been developed 
to help applied researchers deal with three or more means, ANOVA ranks first
in popularity. Moreover, there is a big gap between ANOVA and whatever ranks
second!

In the current chapter, we will focus our attention on the simplest version of
ANOVA, something called a one-way analysis of variance. I begin with a discus-
sion of the statistical purpose of a one-way ANOVA, followed by a clarification of
how a one-way ANOVA differs from other kinds of ANOVA. Then, we turn our at-
tention to the way researchers present the results of their one-way ANOVAs, with
examples to show how the Bonferroni adjustment technique is used in conjunction
with one-way ANOVAs, how the assumptions underlying a one-way ANOVA are
occasionally tested, and how researchers sometimes concern themselves with power
analyses and effect size. Finally, I offer a few tips that should serve to make you
better able to decipher and critique the results of one-way ANOVAs.

C H A P T E R 11
Tests on Three or More Means
Using a One-Way ANOVA
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The Purpose of a One-Way ANOVA

When a study has been conducted in which the focus is centered on three or more
groups of scores, a one-way ANOVA permits the researcher to use the data in the
samples for the purpose of making a single inferential statement concerning the
means of the study’s populations. Regardless of how many samples are involved,
there is just one inference that extends from the set of samples to the set of popu-
lations. This single inference deals with the question, “Are the means of the various
populations equal to one another?”

Figure 11.1 illustrates what is going on in a one-way ANOVA. There are three
things to notice about this picture. First, our picture illustrates the specific situation
where there are three comparison groups in the study; additional samples and pop-
ulations can be added to parallel studies that have four, five, or more comparison
groups. Second, there is a single inference made from the full set of sample data to
the group of populations. Finally, the focus of the inference is on the population
means, even though each sample is described in terms of M, SD, and n.

Although you may never come across a journal article that contains a picture
like that presented in Figure 11.1, I hope my picture helps you understand what is
going on when researchers talk about having applied a one-way ANOVA to their
data. Consider, for example, Excerpt 11.1, which comes from a study focused on
the use of multimedia technology to assist students as they read an electronic essay.
All 69 of the research participants (college freshmen) individually read the same
essay. However, the technology-based learning aids were different. Students in one
group could click on any of 42 highlighted vocabulary words and see a1n = 232
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FIGURE 11.1 Illustration of a One-Way ANOVA’s Inferential Objective
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definition. Members of the second group had the same words highlighted,
but a click on any of them brought forth a picture along with the definition. Those
in the third group , if they clicked a highlighted word, saw the definition
plus a brief 10–15 second video. After reading the essay, all students were given a
34-item reading comprehension test covering the material in the essay.1

With Figure 11.1 fresh in your mind, you should be able to look at Excerpt
11.1 and discern what the researcher was trying to accomplish by using a one-way
ANOVA. Each row of data in this excerpt, of course, corresponds to one of the
study’s three samples. Connected to each sample was an abstract population (i.e., a
larger group of students, like the ones in the study, who theoretically could be given
the essay and the reading comprehension test). The researchers’ goal was to use the
data from all three samples to make a single inference concerning the means of
those populations. The statistical question dealt with by the one-way ANOVA could
be stated as: “In light of the empirical information available in the samples, is it rea-
sonable to think that the mean score on the reading comprehension test is the same
across the three populations?”

As you can see, the sample means in Excerpt 11.1 turned out to be different
from each other. Based on the fact that the Ms in this study were dissimilar, you
might be tempted to think that there was an easy answer to the inferential question
being posed. However, the concept of sampling error makes it impossible to simply
look at the sample means, see differences, and then conclude that the population
means are also different. Possibly, the population means are identical, with the sam-
ple means being dissimilar simply because of sampling error. Or, maybe the dis-
crepancy between the Ms is attributable to dissimilarities among the population
means. A one-way ANOVA helps researchers decide, in a scientific manner, whether
their sample means are far enough apart to place their eggs into the second of these
two proverbial baskets.

1n = 232

1n = 232

1This study actually involved more data, hypotheses, and statistical analyses than described here.

EXCERPT 11.1 • Typical Data Used in a One-Way ANOVA

TABLE 4 Means and standard deviations for reading comprehension test

Group Mean SD

Definition (D) 15.30 3.57
Definition & picture (DP) 17.43 3.69
Definition & movie 16.09 3.55

Source: Akbulut, Y. (2007). Effects of multimedia annotations on incidental vocabulary learning
and reading comprehension of advanced learners of English as a foreign language. Instructional
Science, 35(6), 499–517.
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The Distinction between a One-Way ANOVA 
and Other Kinds of ANOVA

In this chapter, we are focusing our attention on the simplest kind of ANOVA; the
kind that is referred to as a one-way ANOVA, as a one-factor ANOVA, or as a
simple ANOVA. Because there are many different kinds of analysis variance, it is
important to clarify the difference between the kind that we are considering in this
chapter and the more complex kinds of ANOVA that are discussed in Chapters 13,
14, and 19. (Some of the more complex kinds of analysis of variance have the
labels two-way ANOVA, repeated measures ANOVA, and multivariate ANOVA.)

Although all ANOVAs are alike in that they focus on means, they differ in
three main respects: the number of independent variables, the number of dependent
variables, and whether the samples are independent or correlated. In terms of these
distinguishing characteristics, a one-way ANOVA has one independent variable, it
focuses on one dependent variable, and it involves samples that are independent. It
is worthwhile to consider each of these defining elements of a one-way ANOVA be-
cause researchers sometimes use the term ANOVA by itself without the clarifying
adjective one-way.

When we say that there is just one independent variable, this means that the
comparison groups differ from one another, prior to the collection and analysis of any
data, in one manner that is important to the researcher. The comparison groups can
differ in terms of a qualitative variable (e.g., favorite TV show) or in terms of a quan-
titative variable (e.g., number of siblings), but there can be only one characteristic that
defines how the comparison groups differ. Because the terms factor and independent
variable mean the same thing within the context of analysis of variance, this first way
in which a one-way ANOVA differs from other ANOVAs can be summed up in this
manner: A one-way ANOVA has a single factor (i.e., one independent variable).

Excerpt 11.2 comes from a study in which 904 school children in grades 3
through 6 completed a personality inventory called the SEARS-C. This instrument had
been developed to measure a child’s opinion of his or her social–emotional strengths,

EXCERPT 11.2 • The Independent and Dependent Variables in a 
One-Way ANOVA

Data on the SEARS-C were analyzed using a one-way, between-subjects analysis of
variance to estimate the degree of difference across grade levels. . . . Grade was the
independent variable with four levels: (a) 3rd grade, (b) 4th grade, (c) 5th grade, and
(d) 6th grade. Total sum score on the SEARS-C was the dependent variable.

Source: Cohn, B., Merrell, K. W., Felver-Grant, J., Tom, K., & Endrulat, N. R. (2009). Strength-
based assessment of social and emotional functions. Paper presented at the meeting of the
National Association of School Psychologists, Boston.
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with Likert items such as “I make friends easily” and “I stay calm when there is an ar-
gument or a problem.” A one-way ANOVA was used to see if differences existed
among the four grade levels in terms of the children’s total score on the SEARS-C.

As illustrated by Excerpt 11.2, some researchers identify explicitly the inde-
pendent variable associated with their one-way ANOVA. However, many re-
searchers choose not to do this and instead presume that their readers can figure out
what the independent variable was based on a description of samples used in the
study. By the end of this chapter, I believe that you will have little difficulty identi-
fying the independent variable in any one-way ANOVA you encounter.

As you might suspect, a two-wayANOVA has two independent variables, a three-
way ANOVA has three independent variables, and so on. Beginning in Chapter 13, we
consider some of these more complex ANOVAs. In this chapter, however, we restrict
our focus to the kind of ANOVA that has a single independent variable.

Even if there is just one independent variable within a study in which the
analysis of variance is applied, the ANOVA may or may not be a one-way ANOVA.
The second criterion that distinguishes one-way ANOVAs from many other kinds
of ANOVAs has to do with the number of dependent variables involved in the analy-
sis. With a one-way ANOVA, there is always just one dependent variable. (If there
are two or more dependent variables involved in the same analysis, then you are
likely to see the analysis described as a multivariate ANOVA, or MANOVA.)

The dependent variable corresponds to the measured characteristic of peo-
ple, animals, or things from whom or from which data are gathered. For example,
in the study from which Excerpt 11.1 was taken, the dependent variable was the stu-
dents’ reading comprehension as measured by the 34-item test administered after
the students read the multimedia essay. In that excerpt, the table’s title lets us know
what the dependent variable was. In Excerpt 11.2, the researchers came right out
and told us what their dependent variable was.

The third distinguishing feature of a one-way ANOVA concerns the fact that
the comparison groups are independent (rather than correlated) in nature. As you
may recall from the discussion in Chapter 10 of independent versus correlated sam-
ples, this means that (1) the people or animals who provide the scores in any given
group are different from those who provide data in any other comparison group, and
(2) there is no connection across comparison groups because of matching or be-
cause several triplets or litters were split up (with one member of each family being
put into each of the comparison groups). It is possible for an ANOVA to be applied
to the data that come from correlated samples, but I delay my discussion of that
form of analysis until Chapter 14.

As indicated in Excerpt 11.2, researchers sometimes refer to their study’s in-
dependent variable as being the between-subjects variable. The adjective between-
subjects is used to clarify that comparisons are being made with data that have come
from independent samples. (Chapter 14 discusses one-way ANOVAs used in studies
where the data come from correlated samples, and you will see that the independent
variables in those studies are considered to be within-subjects in nature.) Because
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each of the one-way ANOVAs discussed in this chapter involves data collected from
separate groups of individuals who have not been matched in any way, every inde-
pendent variable we encounter here is a between-subjects independent variable.

Now, we turn our attention to the specific components of a one-way ANOVA,
and we begin with a consideration of the one-way ANOVA’s null and alternative
hypotheses.

The One-Way ANOVA’s Null and Alternative Hypotheses

The null hypothesis of a one-way ANOVA is always set up to say that the mean
score on the dependent variable is the same in each of the populations associated
with the study. The null hypothesis is usually written by putting equal signs between
a set of s, with each representing the mean score within one of the populations.
For example, if there were four comparison groups in the study, the null hypothe-
sis would be .

If you recall my claim (Chapter 7) that every null hypothesis must contain a
pinpoint parameter, you may now be wondering how the symbolic statement at the
end of the preceding paragraph qualifies as a legitimate null hypothesis because it
does not contain a pinpoint number. In reality, there is a pinpoint number contained
in that but it is simply hidden from view. If the population means are all equal
to one another, then there is no variability among those means. Therefore, we can
bring ’s pinpoint number into plain view by rewriting the null hypothesis as

As we said earlier, however, you are more likely to see written with
Greek mus and equal signs and no pinpoint number (e.g., ) rather
than with a sigma squared (with as a subscript) set equal to zero.

In Excerpts 11.3 and 11.4, we see examples of one-way ANOVA null hy-
potheses that have appeared in research summaries. Notice that these two excerpts

m

�0: m1 = m2 = m3

H0�0 : s
2
m = 0.
H0

H0,

H0: m1 = m2 = m3 = m4

mm

EXCERPTS 11.3–11.4 • The Null Hypothesis in a One-Way ANOVA

The null hypothesis is constructed as (the improvement are equal),
which essentially implies that the three feedback strategies are identically effective.

Source: Shen, Y. (2010). Evaluation of an eye tracking device to increase error recovery by
nursing students using human patient simulation. Unpublished Master’s theses, University of
Massachusetts, Amherst.

ANOVA test was used to identify the relationship between BMI categories and age.
The null-hypothesis is was tested.

Source: Rosnah, M.Y., Mohd R. H., & Sharifah_Norazizan, S.A.R. (2009). Anthropometry di-
mensions of older Malaysians: Comparison of age, gender and ethnicity. Asian Social Science,
5(6), 133–140.

1H0 : m1 = m2 = m3 = m42

H0 : m1 = m2 = m3
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are similar in that each null hypothesis deals with its study’s population means.
Moreover, both null hypotheses have been set up to say that there are no differences
among the population means. These excerpts differ, however, in that the first study
involved three populations, whereas there were four in the second study.

The researchers associated with Excerpts 11.3 and 11.4 deserve high praise
for taking the time to articulate the null hypothesis associated with their one-way
ANOVAs. The vast majority of researchers do not do this. They tell us about the
data they collected and what happened in terms of results, but they skip over the
important first step of hypothesis testing. Perhaps they assume that readers will
know what the null hypothesis was.

In hypothesis testing, of course, the null hypothesis must be accompanied by
an alternative hypothesis. This always says that at least two of the population
means differ. Using symbols to express this thought, we get . Unfortu-
nately, the alternative hypothesis is rarely included in technical discussions of re-
search studies. Again, researchers evidently presume that their readers are familiar
enough with the testing procedure being applied and familiar enough with what
goes on in a one-way ANOVA to know what is without being told.

Presentation of Results

The outcome of a one-way ANOVA is presented in one of two ways. Researchers
may elect to talk about the results within the text of their report and to present an
ANOVA summary table. However, they may opt to exclude the table from the re-
port and simply describe the outcome in a sentence or two of the text. (At times, a
researcher wants to include the table in the report but is told by the journal editor
to delete it due to limitations of space.)

Once you become skilled at deciphering the way results are presented within
an ANOVA summary table, I am confident that you will have no difficulty interpret-
ing results presented within a “tableless” report. For this reason, I begin the next
section with a consideration of how the results of one-way ANOVAs are typically
presented in tables. I divide this discussion into two sections because some reports
contain the results of a single one-way ANOVA, whereas other reports present the
results of many one-way ANOVAs.

Results of a Single One-Way ANOVA

In Excerpt 11.5, we see the ANOVA summary table for the data presented earlier
in Excerpt 11.1. As you may recall, that earlier excerpt, and now this new one, come
from a study wherein the researchers wanted to know if different kinds of multime-
dia “learning aids” differ in their ability to help students with their reading compre-
hension when confronted with an electronic essay. You might want to take a quick
look at Excerpt 11.1 before proceeding.

Ha

Ha : s
2
m Z 0

Ha
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In Excerpt 11.5, the number 2.054 is the calculated value, and it is positioned
in the column labeled F. That calculated value was obtained by dividing the mean
square (MS) on the “Between groups” row of the table (26.710) by the mean
square on the “Within groups” row of the table (13.005). Each row’s MS value
was derived by dividing that row’s sum of squares (SS) value by its df value.2

Those SS values came from an analysis of the sample data. The df values, however,
came from simply counting the number of groups, the number of people within each
group, and the total number of participants—with 1 subtracted from each number
to obtain the df values presented in the table.3

The first two df values determined the size of the critical value against which
2.054 was compared. (That critical value, at the .05 level of significance, was equal
to 3.14.) I am confident that a computer used the df values of 2 and 66 to determine
the critical value, and then the computer said that p was equal to .136. This is the stan-
dard way of getting a precise p-value like the one reported in Excerpt 11.5. (In a few
cases, the researcher uses the two df values to look up the size of the critical value in
a statistical table located in the back of a statistics book. Such tables allow researchers
to see how big the critical values are at the .05, .01, and .001 levels of significance.)

Whereas the df numbers in a one-way ANOVA have a technical and theoretical
meaning (dealing with things called central and noncentral F distributions), those df
numbers can be useful to you in a very practical fashion. To be more specific, you can
use the first and the third df to help you understand the structure of a completed study. To

2A mean square is never computed for the total row of a one-way ANOVA or for the total row of any other kind
of ANOVA.
3The within df was computed first by subtracting 1 from each of the three sample sizes, and then by adding the
three n – 1 values.

EXCERPT 11.5 • Results from a One-Way ANOVA Presented in a Table

TABLE 5 ANOVA summary table for the reading comprehension test

Source SS df MS F

Between groups 53.420 2 26.710 2.054
Within groups 858.348 66 13.005
Total 911.768 68

Source: Akbulut, Y. (2007). Effects of multimedia annotations on incidental vocabulary learning
and reading comprehension of advanced learners of English as a foreign language. Instructional
Science, 35(6), 499–517.

The ANOVA summary table is provided in Table 5. As the table suggests, the reading
comprehension scores of the groups did not differ significantly 
p = .1362.

1F2,66 = 2.054,
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show you how this is done, let’s focus on Excerpts 11.5 and 11.1. By adding 1 to the
between groups df, you can determine, or verify, there were groups in
this study. By adding 1 to the total df, you can figure out that there were 
students who read the multimedia essay and then took the reading comprehension test.

In the ANOVA summary table displayed in Excerpt 11.5, the second row of
numbers was labeled “Within groups.” I would be remiss if I did not warn you that
a variety of terms are used by different researchers to label this row of a one-way
ANOVA summary table. On occasion, you are likely to see this row referred to as
Within, Error, Residual, or Subjects within groups. Do not let these alternative la-
bels throw you for a loop. If everything else about the table is similar to the table
we have just examined, then you should presume that the table you are looking at
is a one-way ANOVA summary table.

Some of the one-way ANOVA summary tables you see are likely to be mod-
ified in two ways beyond the label given to the middle row of numbers. Some re-
searchers delete entirely the bottom row (for Total), leaving just the rows for
“Between groups” and “Within groups.” Other researchers either switch the loca-
tion of the df and SS columns or delete altogether the SS column. These variations
do not affect the main things being communicated by the ANOVA summary table,
nor do they hamper your ability to use such tables to as you try to make sense out
of a study’s structure and its results.

Because the calculated F-value and the p-value are considered to be the two
most important numbers in a one-way ANOVA summary table, those values are
sometimes pulled out of the summary table and included in a table containing the
comparison group means and standard deviations. By doing this, space is saved in
the research report because only one table is needed rather than two. Had this been
done in Excerpt 11.1, a note might have appeared beneath Table 4 saying
“ ” Because this kind of note indicates the df for be-
tween groups and within groups, you can use these numbers to determine how many
people were involved in the study if the sample sizes are not included in the table.
A note like this does not contain SS or MS values, but you really do not need them.

Although the results of a one-way ANOVA are sometimes presented in a table
similar to the one we have just considered, more often the outcome of the statistical
analysis is discussed in the text of the report, with no table included. In Excerpt 11.6,
we see an illustration of a one-way ANOVA being summarized in five sentences.

F12, 662 = 2.054, p = .136.

68 + 1 = 69
2 + 1 = 3

EXCERPT 11.6 • Results from a One-Way ANOVA Presented Without a
Table

The purpose of our experiment was to study how different output modalities of a GPS
navigation guide affect drivers and driving performance during real traffic driving. We
included three output modalities namely audio, visual, and audio-visual [and used]

(continued)
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In the study associated with Excerpt 11.6, the independent variable was the
kind of output produced by a car’s GPS navigation system. Ten of the study’s
drivers had a NAV system that just talked, 10 others had a system that provided
only visual output, and a third group of 10 had a system that provided both audi-
tory and visual output. The dependent variable was the number of speeding viola-
tions recorded on videotape as the drivers drove 16 kilometers through both rural
and urban sections of Denmark. The excerpt’s final sentence contains the ANOVA’s
results, with the calculated value (6.67) being shown. The p-statement at the end of
the excerpt indicates that the three samples had mean scores that were further apart
than would be expected by chance. Accordingly, the null hypothesis was rejected.

Excerpt 11.6 also contains two numbers in parentheses next to the letter F.
These are the df values taken from the between groups and within groups rows of
the one-way ANOVA summary table. By adding 1 to the first of these df values, you
can verify or determine how many groups were compared. To figure out or verify
how many people were involved in the study, you must add the two df values to-
gether and then add 1 to the sum. Thus, it is possible from the excerpt to determine
that 30 drivers provided data for the ANOVA.

As you can see, Excerpt 11.6 ends with the statement “ ” This small
decimal number (0.01) was not the researchers’ level of significance. In their research
report, the investigators did not indicate their alpha level; however, I can tell from their
full set of results that it was set equal to .05. By reporting p as being less than .01
(rather than by saying ), the researchers wanted others to realize that the three
population means, if identical, would have been very unlikely to yield sample means
as dissimilar as those actually associated with this study’s three comparison groups.

Results of Two or More One-Way ANOVAs

Data are often collected on two or more dependent variables in studies characterized
by at least three comparison groups, a concern for means, and a single independent

p 6 .05

p 6 0.01.

30 people ranging between 21–38 years of age. . . . We utilized a between-subject
experimental design [and] assigned five GPS system users and five non-users to each
of the three configurations (which constitute three groups of ten). . . . Our experiment
showed that participants using the audio configuration on average had 8.8 [speeding]
violations during the trails whereas visual participants on average had 17.9 violations
and audio-visual participants had 19.3 violations. An ANOVA test showed significant
difference among the three configurations,

Source: Jensen, B. S., Skov, M. B., & Thiruravichandran, N. (2010). Studying driver attention
and behaviour for three configurations of GPS navigation in real traffic driving. Proceedings
of the 28th International Conference on Human Factors in Computing Systems, 1271–1280.

F12,272 = 6.67, p 6 0.01.

EXCERPTS 11.6 • (continued)
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variable. Although such data sets can be analyzed in various ways, many researchers
choose to conduct a separate one-way ANOVA for each of the multiple dependent
variables. The ANOVA results are sometimes presented in tables; however, more
often than not the findings are presented only in the text of the research report.
Excerpt 11.7 contains such a presentation.

In the study from which Excerpt 11.7 was taken, each respondent to the on-
line survey was put into one of three groups based on his or her engineering expe-
rience. Those in the “high” group had engineering degrees and first-hand
engineering experience; those in the “intermediate” group were learners of engi-
neering; those in the “low” group were non-engineers who had little or no interest
in engineering. The survey instrument assessed one’s self-concept for conducting
an engineering design task, and it had four scales: self-efficacy, motivation, ex-
pectancy, and anxiety. A separate one-way ANOVA was used to compare the means
of the three groups on each scale of the self-confidence instrument.

As you read the passage in Excerpt 11.7, you ought to be able to determine
what the independent variable was, how many individuals were in the study, how
many null hypotheses were tested, and what decision was made regarding each .
You also should be able to indicate what level of significance was used and which
numbers are the calculated values. Most important, you should be able to explain
the meaning of each null hypothesis that was tested.

H0

EXCERPT 11.7 • Results from Several Separate One-Way ANOVAs

A 36-item online instrument was developed and administered to [several] individuals
with different levels of engineering experience. . . . A one-way ANOVA was conducted
to compare mean scores on self-efficacy, motivation, outcome expectancy, and anxiety
toward engineering design for the three groups. There were statistically significant ef-
fects on all four task-specific self-concepts at the level for the three groups

. . .
The results of this study demonstrate [that] engineering design self-concept is highly
dependent on engineering experiences. This is evident in significant differences in task-
specific self-concepts among high, intermediate, and low engineering experience groups.

Source: Carberry, A. R., Lee, S., & Ohland, M. W. (2010). Measuring engineering design self-
efficacy. Journal of Engineering Education, 99(1), 71–79.

Fexpectancy12,1992 = 77.91, p 6 0.0012; Fanxiety12,1992 = 8.76, p 6 0.0012].
[Fself- efficacy12,1992 = 79.16, p 6 0.0012; Fmotivation12,1992 = 71.73, p 6 0.0012; 

p 6 0.05

If they had been presented, each null hypothesis in the engineering study
would have looked the same: They would differ,
however, with respect to the data represented by the For the first one-way
ANOVA, the three population means would be dealing with self-efficacy; in the sec-
ond null hypothesis, the three means would be dealing with motivation; and so on.

ms.
�0 : mHigh = mIntermediate = mLow.
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Thus, the four null hypotheses connected to the passage in Excerpt 11.7 were iden-
tical in terms of the number of and the group represented by each . Those pop-
ulation means differed, however, based on which of the four dependent variables
was under consideration.

Excerpt 11.7 is worth considering for one other reason. Note that the re-
searchers indicate that the level of significance was set at .05, yet the result of each
F-test is reported to be . This excerpt is like Excerpt 11.6 in the sense
that both sets of researchers wanted to show that they rejected their null hypothe-
ses “with room to spare.” This is a common practice, but it is not universal. A small
number of researchers want their alpha level and their p-statements to be fully con-
gruent. They do this by reporting if the null hypothesis is rejected at the
.05 level of significance, even if the computer analysis reveals that the data-based
p is smaller than .01 (or even smaller than .001).

The Bonferroni Adjustment Technique

In the preceding section, we looked at an example where separate one-way
ANOVAs were used to assess the data from multiple dependent variables. In a sit-
uation such as this, there is an inflated Type I error risk unless something is done
to compensate for the fact that multiple tests are being conducted. In other words,
if the data associated with each of several dependent variables are analyzed sepa-
rately by means of a one-way ANOVA, the probability of incorrectly rejecting at
least one of the null hypotheses is greater than the common alpha level used across
the set of tests. (If you have forgotten what an inflated Type I error risk is, return to
Chapter 8 and read again the little story about the two gamblers, dice, and the bet
about rolling, or not rolling, a six.)

Several statistical techniques are available for dealing with the problem of an
inflated Type I error risk. Among these, the Bonferroni adjustment procedure ap-
pears to be the most popular choice among applied researchers. As you may recall
from our earlier consideration of this procedure, the researcher compensates for the
fact that multiple tests are being conducted by making the alpha level more rigor-
ous on each of the separate tests.

In Excerpts 11.8 and 11.9, we see two cases where the Bonferroni technique
was used. In the first of these excerpts, the researchers conducted two one-way
ANOVAs, whereas five one-way ANOVAs were used in the second excerpt. In each
of these studies, the researchers wanted the Type I error risk for their set of one-way
ANOVAs to be no greater than .05. Therefore, they simply divided .05 by the num-
bers of tests being conducted. This caused alpha to change from .05 to .025 in
Excerpt 11.8 and to .01 in Excerpt 11.9. Each modified in each study became the
criterion against which its ANOVAs’ p-values were compared.

There is no law, of course, that directs all researchers to deal with the prob-
lem of an inflated Type I error risk when multiple one-way ANOVAs are used. Fur-
thermore, there are circumstances where it would be unwise to take any form of

a

p 6 .05

p 6 0.001

mms
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corrective action. Nevertheless, I believe that you should value more highly those
reports wherein the researcher either (1) does something (e.g., uses the Bonferroni
procedure) to hold down the chances of a Type I error when multiple tests are con-
ducted, or (2) explains why nothing was done to deal with the inflated Type I error
risk. If neither of these things is done, you have a right to downgrade your evalua-
tion of the study.

Assumptions of a One-Way ANOVA

In Chapter 10, we considered the four main assumptions associated with t-tests,
F-tests, and z-tests: independence, randomness, normality, and homogeneity of
variance. My earlier comments apply as much now to cases in which a one-way
ANOVA is used to compare three or more means as they did to cases in which
two means are compared. In particular, I hope you recall the meaning of these
four assumptions and my point about how these tests tends to be robust to the
equal variance assumption when the sample sizes of the various comparison
groups are equal.

Many researchers who use a one-way ANOVA seem to pay little or no attention
to the assumptions that underlie the F-test comparison of their sample means. Conse-
quently, I encourage you to feel better about research reports that (1) contain discus-
sions of the assumptions, (2) present results of tests that were conducted to check on
the testable assumptions, (3) explain what efforts were made to get the data in line
with the assumptions, or (4) point out that an alternative test having fewer assumptions

EXCERPTS 11.8–11.9 • Use of the Bonferroni Adjustment

Finally, we conducted one-way ANOVAs using a Bonferroni-corrected of
to test for the two hypothesized rater differences [across the three

groups] in mean fundamental and advanced MET adherence.

Source: Martino, S., Ball, S., Nich, C., Frankforter, T. L. & Carroll, K. M. (2009). Correspon-
dence of motivational enhancement treatment integrity ratings among therapists, supervisors,
and observers. Psychotherapy Research, 19(2): 181–193.

One-way ANOVA was used to detect differences [among the three gang groups]. The
Bonferroni adjustment technique (alpha/number of statistical tests performed) was
used to control for type I error due to alpha inflation. This was done for each indi-
vidual question. Hence, the adjusted level of significance is 

Source: Lanier, M. M., Pack, R. P., & Akers, T. A. (2010). Epidemiological criminology: Drug
use among African American gang members. Journal of Correctional Health Care, 16(1), 6–16.

.05/5 = .01.

.025 1.05/022
a
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than a regular one-way ANOVA F-test was used. Conversely, I encourage you to
lower your evaluation of research reports that do none of these things.

Consider Excerpts 11.10 and 11.11 (that deal with boars and bullfrogs, re-
spectively). In both studies, the researchers used a one-way ANOVA. Before
doing so, however, they screened their data regarding the normality and equal
variances assumption. In the first excerpt, the Kolmogorov–Smirnov and Levene
tests were applied to the sample data to see if the normality and homoscedastic-
ity (i.e., equal variance) assumptions, regarding the populations, were untenable.
Excerpt 11.11 illustrates how these same two assumptions can be dealt with by
means of alternative procedures: the Shapiro–Wilk test and the Bartlett test.
Whenever researchers use one of these tests to check an assumption, they hope
that the test procedure will cause the null hypothesis (concerning the shape of and
variability in the study’s populations) to be retained, not rejected. Assumptions
should be met, not violated.

EXCERPTS 11.10–11.11 • Attending to the Normality and Equal Variance
Assumptions

These results were analysed using a one-way analysis of variance (ANOVA) with an
independent factor (the treatment) and a dependent variable (a sperm quality para-
meter). . . . Before the ANOVA test was applied, the data were tested for normality
and homoscedasticity using the Kolmogorov–Smirnov and Levene tests.

Source: Yeste, Briz, M., Pinart, E., Sancho, S., Bussalleu, E., & Bonet, S. (2010). The osmotic
tolerance of boar spermatozoa and its usefulness as sperm quality parameter. Animal Repro-
duction Science, 119(3–4), 265–274.

Normality and homogeneity of variance of the data were tested using Shapiro–Wilk
normality test and Bartlett’s test, respectively. Differences of target gene (StAR) 
expression were analyzed by one way analysis of variance (ANOVA).

Source: Paden, N. E., Carr, J. A., Kendall, R. J., Wages, M., & Smith, E. E. (2010). Expression
of steroidogenic acute regulatory protein (StAR) in male American bullfrog (Rana catesbeiana)
and preliminary evaluation of the response to TNT. Chemosphere, 80(1), 41–45.

The researchers associated with Excerpts 11.10 and 11.11 set a good exam-
ple by demonstrating a concern for the normality and equal variance assumptions
of a one-way ANOVA. Unfortunately, many researchers give no indication that they
thought about either of these assumptions. Perhaps they are under the mistaken
belief that the F-test is always robust to violations of these assumptions. Or, perhaps
they simply are unaware of the assumptions. In any event, I salute the researchers
associated with Excerpts 11.10 and 11.11 for checking their data before conducting
a one-way ANOVA.
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Sometimes, preliminary checks on normality and the equal variance assump-
tion suggest that the populations are not normal or have unequal variances. When
this happens, researchers have four options: They can (1) identify and eliminate any
existing outliers, (2) transform their sample data in an effort to reduce nonnormal-
ity or stabilize the variances, (3) use a special test that has a built-in correction for
violations of assumptions, or (4) switch from the one-way ANOVA F-test to some
other test that does not have such rigorous assumptions. In Excerpts 11.12, 11.13,
and 11.14, we see cases in which researchers took the 2nd, 3rd, and 4th of these
courses of action.

EXCERPTS 11.12–11.14 • Options When Assumptions Seem Violated

Assumptions of nonnormality were investigated graphically with the Kolmogorov-
Smirnov test, and when significant, the distribution of log-transformed variables was
also checked in the same way. The data were analyzed by one-way ANOVA. . . .

Source: Kim, M-K., Tanaka, K, Kim, M-J., Matsuo, T., Tomita, T., Ohkubo, H., et al. (2010).
Epicardial fat tissue: Relationship with cardiorespiratory fitness in men. Medicine and Science
in Sports and Exercise, 42(3), 463–469.

Homogeneity of variances was tested by Levene’s test and Welch’s ANOVA was
used to compare group means when the group variances were unequal.

Source: Shrestha, S., Ehlers, S. J., Lee, J., Fernandez, M., & Koo, S. I. (2009). Dietary Green
Tea Extract Lowers Plasma and Hepatic Triglycerides and Decreases the Expression of Sterol
Regulatory Element-Binding Protein-1c mRNA and Its Responsive Genes in Fructose-Fed,
Ovariectomized Rats. Journal of Nutrition, 139(4), 640–645.

[T]he assumption of homogeneity of variance failed for all variables, as the Levene’s
tests turned out to be significant. Because parametric testing was not justified, non-
parametric tests (Kruskal-Wallis) were conducted.

Source: Terband, H., Maassen, B., Guenther, F. H., & Brumberg, J. (2009). Computational
neural modeling of speech motor control in childhood apraxia of speech (CAS). Journal of
Speech, Language & Hearing Research, 52(6), 1595–1609.

Of the four assumptions associated with a one-way ANOVA, the one that is
neglected most often is the independence assumption. In essence, this assumption
says that a particular person’s (or animal’s) score should not be influenced by the
measurement of any other people or by what happens to others while the study is
conducted. This assumption would be violated if different groups of students (per-
haps different intact classrooms) are taught differently, with each student’s exam
score being used in the analysis.
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In studies where groups are a necessary feature of the investigation, the rec-
ommended way to adhere to the independence assumption is to have the unit of
analysis (i.e., the scores that are analyzed) be each group’s mean rather than the
scores from the individuals in the group. Many researchers shy away from using
the group mean as the unit of analysis because doing this usually causes the sam-
ple size to be reduced dramatically. The solution, of course, is to use lots of
groups!

Statistical Significance versus Practical Significance

Researchers who use a one-way ANOVA can do either of two things to make their
studies more statistically sophisticated than would be the case if they use the crude
six-step version of hypothesis testing. The first option involves doing something
after the sample data have been collected and analyzed. Here, the researcher can
compute an estimate of the effect size. The other option involves doing something
on the front end of the study, not the tail end. With this option, the researcher can
conduct an a priori power analysis.

Unfortunately, not all of the researchers who use a one-way ANOVA take the
time to perform any form of analysis designed to address the issue of practical sig-
nificance versus statistical significance. In far too many cases, researchers simply
use the simplest version of hypothesis testing to test their one-way ANOVA’s 
They collect the amount of data that time, money, or energy allows, and then they
anxiously await the outcome of the analysis. If their F-ratios turn out significant,
these researchers quickly summarize their studies, with emphasis put on the fact
that “significant findings” have been obtained.

I encourage you to upgrade your evaluation of those one-way ANOVA re-
search reports in which the researchers demonstrate that they were concerned about
practical significance as well as statistical significance. Examples of such concern
appear in Excerpts 11.15 and 11.16. In each case, the effect size associated with the
ANOVA was estimated. As you can see, the effect size measures used in these stud-
ies were eta squared and Cohen’s f.

H0.

EXCERPTS 11.15–11.16 • Estimating the Effect Size

A one-way between groups ANOVA [indicated] that there were significant differ-
ences among marital status groups in the change score for sexual feelings and be-
havior toward men, The effect size calculated using eta
squared was .08, indicating a moderate effect.

Source: Karten, E. Y., & Wade, J. C. (2010). Sexual orientation change efforts in men: A client
perspective. Journal of Men’s Studies, 18(1), 84–102.

F12,1072 = 4.43, p 6 .05.

(continued)
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In Excerpts 11.15 and 11.16, notice the terms moderate effect and very large
effect sizes. The researchers used these terms in an effort to interpret their effect
size estimates. Most likely, they used the relevant information in Table 11.1 as a
guide when trying to judge whether the estimated effect size number deserved the
label small, medium, or large. (This table does not include any information about
d, because this measure of effect size cannot be used when three or more means
are compared.)

In Excerpts 11.17 and 11.18, we see two cases in which teams of researchers
performed a power analysis to determine the needed sample size for their one-way
ANOVA. In the first of these excerpts, notice that the researchers specify an unstan-
dardized effect size (10 degrees), a desired power level (80%), the standard devia-
tion (15 degrees), and a level of significance (.05) as the ingredients of their power
analysis. Doing this, they determined the needed sample size (35). The information
in Excerpt 11.18 is less specific, but it is clear that those researchers also conducted
an a priori power analysis to determine the needed sample size for each of the three
comparison groups.

In order to examine the conversational differences among these three groups, a One-
way Analysis of variance was used [and revealed] significant overall differences among
the groups on all three of these scales, with very large effect sizes . . . (Pragmatic 
Behaviors: ; Speech/Prosody Behaviors:

; Paralinguistic Behaviors: very
large).

Source: Paul, R., Orlovski, S. M., Marcinko, H. C., & Volkmar, F. (2009). Conversational
behaviors in youth with high-functioning ASD and Asperger Syndrome. Journal of Autism &
Developmental Disorders, 39(1), 115–125.

F = 14.8, p 6 .0001, f = 3.9,p 6 .0001,  f = 4.5
F = 20.2,F = 34.2, p 6 .0001, f = 5.8

EXCERPTS 11.15–11.16 • (continued)

TABLE 11.1 Effect Size Criteria for a One-Way ANOVA 

Effect Size Measure Small Medium Large

Eta ( ) .10 .24 .37

Eta Squared ( ) .01 .06 .14

Omega Squared ( ) .01 .06 .14

Partial Eta Squared ( ) .01 .06 .14

Partial Omega Squared ( ) .01 .06 .14

Cohen’s f .10 .25 .40

Note: These standards for judging relationship strength are quite general and should be changed to fit the
unique goals of any given research investigation.
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Cautions

Before concluding this chapter, I want to offer a few tips that will increase your
skills at deciphering and critiquing research reports based on one-way ANOVAs.

Significant and Nonsignificant Results from One-Way
ANOVAs

When researchers say that they have obtained a statistically significant result from a
one-way ANOVA, this means that they have rejected the null hypothesis. Because
you are unlikely to see the researchers articulate the study’s (in words or sym-
bols) or even see them use the term null hypothesis in discussing the results, it is es-
pecially important for you to remember (1) what the one-way ANOVA stipulates,
(2) why is rejected, and (3) how to interpret correctly the decision to reject 

Although a one-way ANOVA can be used to compare the means of two
groups, this chapter focuses on the use of one-way ANOVAs to compare three or
more means. If the data lead to a significant finding when more than two means
have been contrasted, it means that the sample data are not likely to have come from
populations having the same This one-way ANOVA result does not provide any
information as to how many of the values are likely to be dissimilar, nor does it
provide any information as to whether any specific pair of populations are likely to

m

m.
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EXCERPTS 11.17–11.18 • An A Priori Power Analysis

A priori power analysis showed that in order to have a power of 80% to detect a dif-
ference of as little as 10 degrees at the 0.05 level of significance assuming a standard
deviation of 15 degrees, 35 women would be needed in each group. The increased 
enrolment improved the power of the study. Statistical analysis was performed using
the one factor ANOVA.

Source: Papadakis, M., Papadokostakis, G., Kampanis, N., Sapkas, G., Papadakis, S. A., &
Katonis, P. (2010). The association of spinal osteoarthritis with lumbar lordosis. BMC Muscu-
loskeletal Disorders, 11, 1–6.

We carried out an a priori power analysis for one-way analysis of variance with 3
groups of participants, to calculate number of subjects needed to have sufficient power
to detect effect sizes similar to those found in previous positive studies (ES � 0.6 to
0.9 for amygdala and ES � 0.9 for hippocampal volume decreases in pediatric or
adolescent patients with BD) as statistically significant.

Source: Hajek, T., Gunde, E., Slaney, C., Propper, L., MacQueen, G., Duffy, A., et al. (2009).
Amygdala and hippocampal volumes in relatives of patients with bipolar disorder: A high-risk
study. Canadian Journal of Psychiatry, 54(11), 726–733.
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have different values. The only thing that a significant result indicates is that the
variability among the full set of sample means is larger than would be expected if
all population means were identical.

Usually, a researcher wants to know more about the likely state of the popu-
lation means than is revealed by a one-way ANOVA. To be more specific, the typ-
ical researcher wants to be able to make comparative statements about pairs of
population means, such as “ is likely to be larger than but and cannot
be looked on as different based on the sample data.” To address these concerns, the
researcher must move past the significant ANOVA F and apply a subsequent analy-
sis. In Chapter 12 we consider such analyses, which are called, understandably, post
hoc or follow-up tests.

In any research report discussing the results of a one-way ANOVA, you are
given information about the sample means. If a significant result has been obtained,
you may be tempted to conclude that each population mean is different from every
other population mean. Do not fall prey to this temptation!

To gain an understanding of this very important point, consider once again
Excerpt 11.7. In that excerpt, the results of four one-way ANOVAs are presented
from a study in which three groups differing in engineering experience responded
to a survey that measured four components of self-confidence in performing an en-
gineering design task. The three means compared on anxiety were 38.77, 49.46, and
62.16, and the F-test yielded statistical significance with This result in-
dicates that the null hypothesis of equal population means was rejected. Hence, it
is legitimate to think that is probably not true. However, it is not
legitimate to think that all three of the population means are different from each
other. Perhaps two of the are the same, but different from the third 4

You must also be on guard when it comes to one-way ANOVAs that yield non-
significant Fs. As I have pointed out on several occasions, a fail-to-reject decision
should not be interpreted to mean that is true. Unfortunately, many researchers
make this inferential mistake when different groups are compared in terms of mean
scores on a pretest. The researchers’ goal is to see whether the comparison groups
are equal to one another at the beginning of their studies, and they mistakenly in-
terpret a nonsignificant F-test to mean that no group began with an advantage or a
disadvantage.

One-way ANOVAs, of course, can produce a nonsignificant F-value when
groups are compared on things other than a pretest. Consider once again Excerpt
11.5. This ANOVA (comparing the mean reading comprehension scores of three
multimedia groups) yielded a nonsignificant F of 2.054. This results should not be
interpreted to mean that individuals like those involved in this study—computer
savvy college freshmen from Turkey taking a course in English from the foreign
language department—have the same mean reading comprehension scores regard-
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p 6 .001.
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m

4If I tell you that the three coins in my pocket are not all identical, you might quickly guess that all three coins
are different. That guess would be wrong if two of my coins are the same.
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less of whether their multimedia learning aid is just definitions, definitions plus pic-
tures, or definitions plus a brief movie when reading an online essay. In other words,
neither you nor the researchers who conducted this study should draw the conclu-
sion that because the p-value associated with the ANOVA F turned
out to be larger than the selected level of significance. A one-way ANOVA, if non-
significant, cannot be used to justify such an inference.

Confidence Intervals

In Chapter 10, you saw how a confidence interval can be placed around the differ-
ence between two sample means. You also saw how such confidence intervals can
be used to test a null hypothesis, with rejected if the null’s pinpoint numerical
value lies beyond the limits of the interval. As we now conclude our consideration
of how researchers compare three or more means with a one-way ANOVA, you may
be wondering why I have not said anything in this chapter about the techniques of
estimation.

When a study’s focus is on three or more means, researchers occasionally
build a confidence interval around each of the separate sample means. This is done
in situations where (1) there is no interest in comparing all the means together at
one time or (2) there is a desire to probe the data in a more specific fashion after
the null hypothesis of equal population means has been tested. Whereas re-
searchers sometimes use interval estimation (on individual means) in lieu of or as
a complement to a test of the hypothesis that all are equal, interval estimation
is not used as an alternative strategy for testing the one-way ANOVA null hypoth-
esis. Stated differently, you are not likely to come across any research studies
where a confidence interval is put around the variance of the sample means in order
to test 

Other Things to Keep in Mind

If we momentarily lump together this chapter with the ones that preceded it, it is
clear that you have been given a slew of tips or warnings designed to help you be-
come a more discerning recipient of research-based claims. Several of the points
are important enough to repeat here.

1. The mean is focused on in research studies more than any other statistical con-
cept. In many studies, however, a focus on means does not allow the research
question to be answered because the question deals with something other than
central tendency.

2. If the researcher’s interest resides exclusively in the group(s) from which data
are collected, only descriptive statistics should be used in analyzing the data.

3. The reliability and validity of the researcher’s data are worth considering. To
the extent that reliability is lacking, it is difficult to reject even when is
false. To the extent that validity is lacking, the conclusions drawn will be 
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unwarranted because of a mismatch between what is truly being measured and
what the researcher thinks is being measured with a one-way ANOVA.

4. With a one-way ANOVA, nothing is proved regardless of what the researcher
concludes after analyzing the data. Either a Type I error or a Type II error always
will be possible, no matter what decision is made about 

5. The purpose of a one-way ANOVA is to gain an insight into the population
means, not the sample means.

6. Those researchers who talk about (and possibly test) the assumptions under-
lying a one-way ANOVA deserve credit for being careful in their utilization
of this inferential technique.

7. A decision not to reject the one-way ANOVA’s does not mean that all pop-
ulation means should be considered equal.

8. Those researchers who perform an a priori power analysis or compute effect
size indices (following the application of a one-way ANOVA) are doing a
more conscientious job than are those researchers who fail to do anything to
help distinguish between statistical significance and practical significance.

9. The Bonferroni procedure helps to control the risk of Type I errors in studies
where one-way ANOVAs are conducted on two or more dependent variables.

10. The df values associated with a one-way ANOVA (whether presented in an
ANOVA summary table or positioned next to the calculated F-value in the text
of the research report) can be used to determine the number of groups and the
total number of participants involved in the study.

A Final Comment

We have covered a lot of ground in this chapter. We have looked at the basic ingre-
dients that go into any one-way ANOVA, seen different formats for showing what
pops out of this kind of statistical analysis, considered underlying assumptions, and
observed how conscientious researchers make an effort to discuss practical signifi-
cance as well as statistical significance. You may have assimilated everything pre-
sented in this chapter, you may have assimilated only the highlights (with a review
perhaps in order), or you may be somewhere between these two extremes. Regard-
less of how well you now can decipher research reports based on one-way
ANOVAs, it is exceedingly important that you leave this chapter with a crystal clear
understanding of one essential point, and unless you heed the advice embodied in
this final comment, you are likely to lose sight of the forest for all the trees.

A one-way ANOVA (like any other statistical analysis) cannot magically
transform a flawed study into a sound one. And where can a study be flawed the
most? The answer to this question is unrelated to F-tests, equal variance assump-
tions, effect size indices, or Bonferroni adjustments, because the potential worth of
any study is connected, first and foremost, to the research question that sets the data
collection and analysis wheels in motion. If the research question is silly or irrelevant,

H0

H0.
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a one-way ANOVA cannot make the study worthwhile. Hence, do not be impressed
by any result from a one-way ANOVAs until you have first considered the merits of
the research question being addressed.

If you would like to see an example of a silly one-way ANOVA, consider
Excerpt 11.19. The full research report from which this excerpt was taken discussed
many analyses that dealt with important issues. However, this particular one-way
ANOVA does not deserve that kind of positive evaluation. For this analysis, the 644
children in the study were put into three groups based on their scores on the Diag-
nostic Evaluation of Language Variation—Screening Test (DELV-S), a test de-
signed to measure dialect variation in language (i.e., deviation from “mainstream
American English”). These DELV-S groups were then compared on how the chil-
dren scored on the DVAR, a measure of “dialect variation” computed as “the per-
centage of scored items that were observed to vary from MAE.” Because the
DELV-S and the DVAR instruments were so similar in what they were measuring,
it is not surprising at all that the groups formed on the basis of one of these tests
had extremely differing means on the other test. The three sample means were miles
apart, as indicated by the gigantic calculated value generated by the one-way
ANOVA. You likely will never see an F-value as large as this one ever again!

EXCERPT 11.19 • An Unnecessary One-Way ANOVA

In the sample, 28% [of the children] were classified on the DELV–S as speaking with
strong variation, 9% with some variation, and 62% with no variation from MAE [Main-
stream American English]. . . . Students in the MAE group achieved significantly lower
DVAR scores compared with students whose dialect varied somewhat

or strongly from MAE, .

Source: Terry, N. P., Connor, C. M., Thomas-Tate, S., & Love, M. (2010). Examining relation-
ships among dialect variation, literacy skills, and school context in first grade. Journal of
Speech, Language & Hearing Research, 53(1), 126–145.

F12, 6412 = 1,854.2, p 6 .0011M = 78.721M = 50.32
1M = 12.42

A priori power analysis
ANOVA
Between groups
Between subjects variable
Bonferroni adjustment 

procedure
Dependent variable
df
Effect size

Review Terms

Error
Factor
f
F
Homogeneity of variance assumption
Independence assumption
Independent variable
Mean square (MS)
Normality assumption
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One-factor ANOVA
One-way ANOVA
Practical significance 

versus statistical 
significance

Simple ANOVA

Source
Sum of squares (SS)
Summary table
Unit of analysis
Within groups

The Best Items in the Companion Website

1. An interactive online quiz (with immediate feedback provided) covering
Chapter 11.

2. Eight misconceptions about the content of Chapter 11.
3. An email message sent from the author to his students entitled “A Closed 

Hydraulic System.”
4. The author-selected best passage from Chapter 11: “One-Way ANOVAs and

What’s Really Important.”
5. An interactive online resource entitled “One-Way ANOVA (a).”

To access the chapter outline, practice tests, weblinks, and flashcards, visit the com-
panion website at http://www.ReadingStats.com.

Review Questions and Answers begin on page 531.

http://www.ReadingStats.com


In Chapter 11, we examined the setting, purpose, assumptions, and outcome of a one-
way analysis of variance that compares three or more groups. In this chapter, we
turn our attention to two categories of inferential procedures closely related to the
one-way ANOVA. As with a one-way ANOVA, the procedures looked at in this
chapter involve one independent variable, one dependent variable, no repeated mea-
sures, and a focus on means.

The two classes of procedures considered here are called post hoc compar-
isons and planned comparisons. Post hoc comparisons were developed because a
one-way ANOVA F, if significant, does not provide any specific insight into what
caused the null hypothesis to be rejected. To know that all population means are
probably not equal to one another is helpful, but differing scenarios fit the general
statement that not all are identical. For example, with three comparison groups,
it might be that two are equal, but the third is higher; or maybe two are equal,
but the third is lower; or it could be that all three are different. By using a post
hoc procedure, the researcher attempts to probe the data to find out which of the
possible non-null scenarios is most likely to be true.

Planned comparisons were developed because researchers sometimes pose
questions that cannot be answered by rejecting or failing to reject the null hypothe-
sis of the more general one-way ANOVA . For example, a researcher might won-
der whether a specific pair of is different, or whether the average of two is
different from a third In addition to allowing researchers to answer specific ques-
tions about the population means, planned comparisons have another desirable char-
acteristic. Simply stated, the statistical power of the tests used to answer specific,
preplanned questions is higher than is the power of the more generic F-test from a
one-way ANOVA. In other words, planned comparisons allow a researcher to deal
with specific, a priori questions with less risk of a Type II error than does a two-step
approach involving an ANOVA F-test followed by post hoc comparisons.
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Researchers use post hoc comparisons more often than they do planned com-
parisons. For this reason, we first consider the different test procedures and report-
ing schemes used when a one-way ANOVA yields a significant F and is followed
by a post hoc investigation. We then turn our attention to what researchers do when
they initially set up and test planned comparisons instead of following the two-step
strategy of conducting a one-way ANOVA followed by a post hoc analysis. Finally,
we look at a set of related issues, including some special terminology, the impor-
tance of assumptions to planned and post hoc comparisons, and the distinction
between statistical versus practical significance.

Post Hoc Comparisons

Definition and Purpose

There is confusion among researchers as to what is or is not a post hoc test. I have
come across examples where researchers conducted a post hoc investigation but
used the term planned comparisons to describe what they did. I have also come
across research reports where planned comparisons were conducted by means of a
test procedure that many researchers consider to be post hoc in nature. To help you
avoid getting confused when you read research reports, I want to clarify what does
and does not qualify as a post hoc investigation.

If a researcher conducts a one-way ANOVA and uses the outcome of the F-test
to determine whether additional specific tests should be conducted, then I refer to the
additional tests as being post hoc in nature. As this definition makes clear, the defin-
ing criterion of a post hoc investigation has nothing to do with the name of the test
procedure employed, with the number of tests conducted, or with the nature of the
comparisons made. The only thing that matters is whether the ANOVA F-test must
first be checked to see if further analysis of the data set is needed.

In turning to a post hoc investigation, the researcher’s objective is to better
understand why the ANOVA yielded a significant F. Stated differently, a post hoc
investigation helps the researcher understand why the ANOVA was rejected.
Because the specifies equality among all population means, you might say that
a set of post hoc comparisons is designed to help the researcher gain insight into
the pattern of As we indicated at the outset of this chapter, the ANOVA F can
turn out to be significant for different reasons—that is, because of different possi-
ble patterns of The post hoc analysis helps researchers in their efforts to under-
stand the true pattern of the population means.

In light of the fact that empirical studies are usually driven by research
hypotheses, it is not surprising to find that post hoc investigations are typically con-
ducted to find out whether such hypotheses are likely to be true. Furthermore, it should
not be surprising that differences in research hypotheses lead researchers to do dif-
ferent things in their post hoc investigations. Sometimes, for example, researchers
set up their post hoc investigations to compare each sample mean against every
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other sample mean. On other occasions they use their post hoc tests to compare the
mean associated with each of several experimental groups against a control group’s
mean, with no comparisons made among the experimental groups. On rare occa-
sions, a post hoc investigation is implemented to compare the mean of one of the
comparison groups against the average of the means of two or more of the remain-
ing groups. I illustrate each of these post hoc comparisons later in the chapter.

Terminology

Various terms are used in a synonymous fashion to mean the same thing as the term
post hoc test. The three synonyms that show up most often in the published literature
are follow-up test, multiple comparison test, and a posteriori test. Excerpts 12.1
through 12.3 show how three of these four terms have been used.

EXCERPTS 12.1–12.3 • The Term Post Hoc and Its Synonyms

Statistical analysis of electrophysiology data was performed by a one-way ANOVA
and post hoc tests with significance assessed as .

Source: Sharma, A., Hoeffer, C. A., Takayasu, Y., Miyawaki, T., McBride, S. M., Klann, E.,
et al. (2010). Dysregulation of mTOR signaling in Fragile X Syndrome. Journal of Neuro-
science, 30(2), 694–702.

One-way ANOVA was used to analyse potential differences between the climate
change adaptation options of the skier types. Multiple comparisons were made be-
tween the skier types [in order] to find out which groups differ and whether the dif-
ferences are statistically significant at 

Source: Lanmdauer, M., Sievänen, T., & Neuvonen, M. (2009). Adaptation of Finnish cross-
country skiers to climate change. Fennia, 187(2), 99–113.

[W]e conducted a one-way analysis of variance [and then] follow-up tests were per-
formed to evaluate pairwise differences among the means.

Source: Zingerevich, C., Greiss-Hess, L., Lemons-Chitwood, K., Harris, S. W., Hessl, D.,
Cook, K., et al. (2009). Motor abilities of children diagnosed with fragile X syndrome with
and without autism. Journal of Intellectual Disability Research, 53(1), 11–18.

p …  0.05.

p 6 0.05

You may come across a research report in which the term contrast appears.
The word contrast is synonymous with the term comparison. Hence, post hoc con-
trasts are nothing more than post hoc comparisons. Follow-up contrasts are nothing
more than follow-up comparisons. A posteriori contrasts are nothing more than a
posteriori comparisons.
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It is also worth noting that the F-test used in the preliminary ANOVA is some-
times referred to as the omnibus F-test. This term seems appropriate because the
ANOVA’s involves all of the population means. Because post hoc (and planned)
investigations often use F-tests to accomplish their objectives, it is helpful when 
researchers use the term omnibus (when referring to the ANOVA F) to clarify which
F is being discussed. Excerpt 12.4 illustrates the use of this term.

H0

EXCERPT 12.4 • The Omnibus F-Test

The only statistically significant difference in means [among] conditions as tested
by a one way ANOVA omnibus F test was for the Go-Signal Respond RT difference.

Source: Liddle, E. B., Scerif, G., Hollis, C. P., Batty, M. J., Groom, M. J., Liotti, M., et al. (2009).
Looking before you leap: A theory of motivated control of action. Cognition, 112(1), 141–158.

Finally, the terms pairwise and nonpairwise often pop up in discussions of
post hoc (and planned) comparisons. The term pairwise simply means that groups
are being compared two at a time. For example, pairwise comparisons among
three groups labeled A, B, and C would involve comparisons of A versus B, A ver-
sus C, and B versus C. With four groups in the study, a total of six pairwise com-
parisons would be possible.

A nonpairwise (or complex) comparison involves three or more groups,
with these comparison groups divided into two subsets. The mean score for the data
in each subset is then computed and compared. For example, suppose there are four
comparison groups in a study: A, B, C, and D. The researcher might be interested
in comparing the average of groups A and B against the average of groups C and D.
This would be a nonpairwise comparison, as would a comparison between the first
group and the average of the final two groups (with the second group omitted from
the comparison).

In Excerpts 12.5 and 12.6, reference is made to the pairwise and nonpair-
wise (complex) comparisons the researchers set up in their studies. In the first of
these excerpts, pairwise comparisons were made following a one-way ANOVA.

EXCERPTS 12.5–12.6 • Pairwise and Nonpairwise Comparisons

Data were compared in the three groups using one way ANOVA and then post hoc
pairwise comparisons between groups were performed.

Source: Kim, C., Marcus, C. L., Bradford, R., Gallagher, P. R., Torigian, D., Victor, U., et al.
(2010). Upper airway soft tissue differences in apneic adolescent children compared to BMI
matched controls. Paper presented at the American Thoracic Society International Conference,
New Orleans.

(continued )
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In Excerpt 12.6, we see two nonpairwise comparisons conducted in a post hoc fash-
ion. One of these tests compared the mean of the control group against the single
mean of the three treatment groups combined together. In the second nonpairwise
comparison, the mean of one of the treatment groups was compared against the sin-
gle mean of the other two treatment groups combined. Of the two kinds of compar-
isons illustrated in these two excerpts, you are likely to see the pairwise kind far
more often than the nonpairwise kind.

Test Procedures Frequently Used in Post Hoc Analyses

A wide array of statistical procedures is available for making post hoc comparisons.
Many of these you are unlikely to see, simply because they are not used very often.
Three procedures are used by a few researchers, and thus you may come across
Fisher’s LSD test, Duncan’s multiple range test, or the Newman-Keuls test. The
three most frequently used procedures are called the Bonferroni test, the Tukey
test, and Scheffé test. Excerpts 12.7 through 12.9 show how researchers indicate
that they have chosen to use these three popular tests.

EXCERPTS 12.7–12.9 • Test Procedures Frequently Used in Post Hoc
Investigations

Tukey’s post hoc test was used to compare pairwise differences between mean values.

Source: Graham, J. B., & Vandewalle, K. S. (2010). Effect of long-term storage temperatures
on the bond strength of self-etch adhesives. Military Medicine, 175(1), 68–71.

EXCERPTS 12.5–12.6 • (continued)

This study involved one independent variable (thinking aloud) with three treatment
conditions and a control. The three TA conditions were the traditional technique, the
speech-communication technique, and coaching. The control condition was silence:
Participants in this condition did not think aloud. . . . The one-way analysis of vari-
ance (ANOVA) with alpha � 0.05 shows that condition has a significant effect on
Accuracy (F3,636 �13.48, p 0.0001). To understand the result of the study, we
determined which condition had the biggest effect on Accuracy, and whether all the
conditions were significantly different from the control condition. The first [non-
pairwise] comparison compared the control with all the other conditions. The next
[nonpairwise] comparison was the coaching condition against the first two condi-
tions, traditional and speech communication, ignoring the control in this contrast.

Source: Olmsted-Hawala, E. L., Murphy, E. D., Hawala, S., & Ashenfelter, K. T. (2010).
Think-aloud protocols: A comparison of three think-aloud protocols for use in testing data-
dissemination Web sites for usability. Proceedings of the ACM Conference on Human Factors
in Computer Systems, 28, 2381–2390.

6

(continued )
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You may have been surprised to see, in Excerpt 12.8, that the Bonferroni pro-
cedure can be used to conduct post hoc tests, but it can. Suppose there are four com-
parison groups (A, B, C, and D) in a study, suppose that a one-way ANOVA has
yielded a significant F, and finally suppose that the researcher uses A post
hoc investigation involving the Bonferroni test involves a set of six independent-
samples t-tests within which each group’s mean is compared with every other
group’s mean, two at a time vs. vs. etc.), with these post hoc tests
conducted at a reduced alpha level of .0083 (i.e., .05/6). Using the Bonferroni pro-
cedure is logically equivalent to using it in a two-group study where six t-tests are
conducted because there are six dependent variables.

Instead of dealing with the problem of an inflated Type I error risk by adjusting
the level of significance (as is done when the Bonferroni technique is applied), the
Duncan, Newman-Keuls, Tukey, and Scheffé procedures make an adjustment in the
size of the critical value used to determine whether an observed difference between two
means is significant. To compensate for the fact that more than one comparison is
made, larger (and more rigorous) critical values are used. However, the degree to which
the critical value is adjusted upward varies according to which test procedure is used.

When the critical value is increased only slightly (as compared with what
would have been the critical value in the situation of a two-group study), the test
procedure is considered to be liberal. In contrast, when the critical value is in-
creased greatly, the test procedure is referred to as being conservative. Liberal pro-
cedures provide less control over Type I errors, but this disadvantage is offset by
increased power (i.e., more control over Type II errors). Conservative procedures
do just the opposite; they provide greater control over Type I error risk, but do so
at the expense of lower power (i.e., higher risk of Type II errors).

MC,MB, MA1MA

a = .05.

EXCERPTS 12.7–12.9 • (continued)

We compared changes in knowledge, attitudes, and beliefs across the 3 randomized
groups using [one-way] analyses of variance (ANOVA), and used a Bonferroni test
to assess pairwise comparisons among the 3 ad types.

Source: Murphy-Hoefer, R., Hyland, A., & Rivard, C. (2010). The influence of tobacco coun-
termarketing ads on college students’ knowledge, attitudes, and beliefs. Journal of American
College Health, 58(4), 373–381.

One-way analysis of variance (ANOVA) was performed [and then] Scheffe’s post-hoc
test was used to compare the disability scores across the subgroups.

Source: Thirthalli, J., Venkatesh, B. K., Naveen, M. N., Venkatasubramanian, G., Arunachala,
U., Kishore Kumar, K.V., & Gangadhar, B. N. (2010). Do antipsychotics limit disability in
schizophrenia? A naturalistic comparative study in the community. Indian Journal of Psychiatry,
52(1), 37–41.
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The Fisher LSD test procedure is the most liberal of the test procedures, because
it makes no adjustment for the multiple tests being conducted. In a very real sense, it
is just like comparing every pair of means with a t-test. On the other end of the lib-
eral–conservative continuum is the Scheffé test. It has enormous protection against
Type I errors, because it was designed for the situation where the researcher wishes
to make all possible pairwise comparisons plus all possible nonpairwise comparisons.
Few researchers need or want that level of protection! The other test procedures (such
as Bonferroni and Tukey) lie between these two liberal–conservative extremes.

You are likely to come across two additional test procedures that are used in
post hoc investigations. These tests have special purposes compared with the ones
we have considered so far. One of these procedures is Dunnett’s test; the other one
is called Tamhane’s test.

Dunnett’s test makes pairwise comparisons, as do the other test procedures
we have considered. However, Dunnett’s test does not pair every mean with every
other mean. Instead, the Dunnett test compares the mean of a particular group in
the study against each of the remaining group means. This procedure might be used,
for example, if a researcher cares only about how each of several versions of an
experimental treatment affects the dependent variable, compared with a controlled
(or placebo) condition. In Excerpt 12.10, we see a case where the Dunnett test was
used in just this manner.

The second of our two special case test procedures is Tamhane’s post hoc
test. This test—referred to by many researchers as Tamhane’s T2 test—was created
so that researchers could make pairwise comparisons among group means in the sit-
uation where the equal variance assumption seems untenable. Excerpt 12.11 illus-
trates the use of the Tamhane test.

EXCERPTS 12.10–12.11 • The Dunnett and Tamhane Tests

One-way ANOVA test was used to make comparisons among three groups, and the
Dunnett’s test was further used to compare each treated group with the control group.

Source: Maa, P., Wang, Z., Pflugfelder, S. C., & Li, D. (2010). Toll-like receptors mediate induc-
tion of peptidoglycan recognition proteins in human corneal epithelial cells. Experimental Eye
Research, 90(1), 130–136.

In checking the assumptions of [the one-way ANOVA] it was noted that the only
constructs to pass the homogeneity of variance assumption were those of Centrality
and Sign in Study 1. As such, the relatively stringent Tamhane’s post hoc analysis
was relied on to assess if significant differences were actually present in all tests
other than for Centrality and Sign in Study I.

Source: Beaton, A. A., Funk, D., C., & Alexandris, K. (2009). Operationalizing a theory of
participation in physically active leisure. Journal of Leisure Research, 41(2), 177–203.
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The Null Hypotheses of a Post Hoc Investigation

In the next section, we look at the different ways researchers present the results of
their post hoc analyses. In such presentations, you rarely see reference made,
through symbols or words, to the null hypotheses that are associated with the test
results. Consequently, you must remember that all of the post hoc procedures are
inferential in nature and are concerned with null hypotheses.

In most post hoc analyses, two or more contrasts are investigated, each involv-
ing a null hypothesis. For example, in a study involving three groups (A, B, and C) and
pairwise comparisons used to probe a significant result from a one-way ANOVA, three
null hypotheses would be tested: 1

With a similar analysis involving four groups, there are six null hypotheses. With
Dunnett’s test, there is one fewer null hypothesis than there are comparison groups.

The purpose of a post hoc analysis is to evaluate the null hypothesis associ-
ated with each contrast that is investigated. As I have pointed out several times,
many applied researchers seem to forget this exceedingly important point. They
often talk about their findings with reference only to their sample means, and they
discuss their results in such a way as to suggest that they have proved something in
a definitive manner. When they do so, they are forgetting that their “discoveries” are
nothing more than inferences regarding unseen population means, with every
inference potentially being nothing more than a Type I or Type II error.

Presentation of Results

Researchers often summarize the results of their post hoc investigations through the
text of the technical report. Usually it is not difficulty to figure out what the re-
searcher has concluded when results are presented in this fashion. Sometimes, how-
ever, you must read carefully. Consider, for example, Excerpts 12.12 and 12.13. The

and H0: mB = mC.H0: mA = mC,H0: mA = mB,

1Although the null hypotheses of a post hoc investigation theoretically can be set up with something other
than zero as ’s pinpoint number, you are unlikely to ever see a researcher test anything except no-difference
null hypotheses in a post hoc analysis.

H0

EXCERPTS 12.12–12.13 • Results of Post Hoc Investigations

A one-way ANOVA indicated a statistically significant difference in post-test moods
scores based on music condition, Post-hoc Tukey
tests indicated that the students nested in the heavy metal music con-
dition had significantly higher scores (indicating higher anxious moods) than those
in both the classical and pop music conditions.

Source: Rea, C., MacDonald, P., & Carnes, G. (2010). Listening to classical, pop, and metal
music: An investigation of mood. Emporia State Research Studies, 46(1), 1–3.

1M = 33.5321M = 31.522

1M = 46.282
F12, 512 = 18.79,  p 6 0.001.

(continued )
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first of these excerpts conveys the results of four separate tests that were conducted.
One involved the omnibus ANOVA comparison of all three comparison groups. The
other three were pairwise comparisons using the Tukey test, with reference made to
only the two of these that turned out to be significant. Turning our attention to
Excerpt 12.13, can you tell how many null hypotheses were set up and tested?2

Excerpts 12.12 and 12.13 nicely illustrate the fact that different researchers
not only use different test procedures in their post hoc investigation but also use dif-
ferent techniques while reporting the results of such investigations. In Excerpt
12.12, we are given the sample means for all groups involved in the study. In con-
trast, Excerpt 12.13 contains a confidence interval positioned around the mean dif-
ference for only the pairwise comparisons that turned out to be significant.

Take one final look at Excerpt 12.13 and notice that the researchers say that
they used “post hoc Tukey tests” after the ANOVA turned out to be significant.
Actually, there are several versions of the Tukey post hoc test procedure, and
researchers often specify which particular Tukey test they used. The three most pop-
ular version are referred to as Tukey HSD, Tukey–Kramer, and Tukey-B. For all prac-
tical purposes, these different versions of Tukey’s test are nearly equivalent.3 They
all compare means in a pairwise fashion.

When the results of a post hoc analysis are presented graphically, one of three
formats is typically used. These formats involve (1) a table of means with attached
letters, (2) a table of means with one or more notes using group labels and less-
than or greater-than symbols to indicate which groups were found to be significantly

2A total of seven null hypotheses were tested. Of these, one was connected to the omnibus F-test that com-
pared all four sample means at once; the other six were connected to various pairwise tests needed to com-
pare each sample mean with every other sample mean.
3The Tukey-Kramer test was designed to handle situations where the sample sizes of the comparison groups
differ; the Tukey HSD (honestly significantly different) test was designed for the situation where the
researcher desires to make all possible pairwise comparison; and the Tukey-B test (also called the Tukey WSD
test) was created for situations where interest lies in fewer than all possible pairwise comparisons or where
there is a desire to use a test that is a bit more liberal than the Tukey HSD test.

EXCERPTS 12.12–12.13 • (continued)

Results of the one-way ANOVA reveals that there was a statistically significant difference
among the four groups, . . . Post-hoc analyses
[Bonferroni] were conducted to explore differences among the four CLBP groups.
There was a significant difference between Groups 4 and 1 

Furthermore, there was
a significant difference between Group 4 and Group 3 

95 percent confidence interval (1.27, 15.19)].

Source: DeCarvalho, L. T. (2010). Important missing links in the treatment of chronic low
back pain patients. Journal of Musculoskeletal Pain, 18(1), 11–22.

p = .0011,
[mean difference = -8.23,

p 6 .001, 95 percent confidence interval 1-19.63, -5.182].
[mean difference = -12.40,

F[3, 160] = 7.401, p 6 .0001.
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different from one another, and (3) a figure containing lines drawn above vertical
bars. These three formats are identical in that they reveal where significant differ-
ences were found among the comparison groups.

Consider the table Excerpt 12.14. In the study from which this table was
taken, there were four groups of pharmacy workers who differed in terms of job
title. Separate one-way ANOVAs compared these groups in terms of age and expe-
rience, and in each case the F-test was significant. Two post hoc investigations were
then conducted, one involving all possible pairwise comparisons of the four age
means and the other making the same six group-versus-group comparisons of the
four experience means. The subscripts attached to each row of means indicate the
post hoc results. To interpret those subscripts, we must read the second and third
sentences in the note beneath the table.

EXCERPT 12.14 • Results of a Post Hoc Investigation Presented 
in a Table with Letters Attached to Group Means

TABLE 7 Comparison of Staff Characteristics between Job Titles

Job Title

BS Pharmacy 
PharmD Pharm CPhT Technician df F

Age (years) 33.96a 54.45b 36.30a 33.75a 3, 95 24.12***

(8.73) (11.65) (11.06) (16.14)
Experience 6.00a 20.63b 5.65a 3.09a 3,135 24.81***

(years) (4.83) (14.65) (6.10) (2.44)

Note: *** Standard deviations appear in parentheses below means. Results of
LSD post hoc paired comparisons are shown using subscripts (a, b). Means with the same sub-
script are not significantly different while means with different subscripts are significantly dif-
ferent from one another at the p … .05.

= p …  .001.

Source: Wilkerson, T. W. (2009). An exploratory study of the perceived use of workarounds
utilized during the prescription preparation process of pharmacies in Alabama. Unpublished
doctoral dissertation, Auburn University, Auburn, Alabama.

When looking at a table in which the results of a post hoc investigation are
shown via letters attached to the means, you must carefully read the note that
explains what the letters mean. It is important to do this because all authors do not
set up their tables in the same way. In some tables, the same letter attached to any
two means indicates that the tested null hypothesis was not rejected; in other
tables, common letters indicate that the tested null hypothesis was rejected.
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Excerpt 12.14 provides an example of the first (and more typical) situation. The
second (less typical) situation can be illustrated best by these words that I recently
saw in a note positioned beneath a table: “means sharing the same subscript were
all significant at ”

The second method for summarizing the results of a post hoc investigation
also involves a table of group means, as did the first method. Instead of attach-
ing letters to those means, however, the second method involves (1) an ordering
of abbreviations or numbers that represent the group means and (2) the use of
the symbols (positioned within those group abbreviations or num-
bers) to indicate the findings of the pairwise comparisons. If this method had
been used in the study from which Excerpt 12.14 was taken, perhaps the four
groups would have been abbreviated as PD (for PharmD), BS (for BS Pharm),
CT (for CPhT), and PT (for Pharmacy Technician). Using these abbreviation,
the researcher could have put the results of the post hoc investigation concern-
ing age in a note beneath the table saying either “ ” or
“ ”

Sometimes researchers use a graph of some type to help others see what
was discovered in a post hoc investigation. Excerpt 12.15 contains an example
of this helpful strategy. In this case, each of the three means was plotted as a 
bar, and the brackets above the bars indicate which pairwise comparisons were
significant.

BS7CT,PD,PT.
BS7CT=PD=PT

7 , 6 , and =

p 6 .05.

EXCERPT 12.15 • Results of a Post Hoc Investigation Displayed 
in a Bar Graph

30
p = 0.002

p = 0.05
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FIGURE 5 Differences in weekly hours watching TV by household income
(Study 2).

Source: Drenowatz, C., Eisenmann, J. C., Pfeiffer, K. A., Welk, G., Heelan, K., Gentile, D., et al.
(2010). Influence of socio-economic status on habitual physical activity and sedentary behavior
in 8- to 11-year old children. BMC Public Health, 10(214), 1–11.
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Planned Comparisons

So far we have considered the comparison of group means using a two-step strat-
egy that involves conducting a one-way ANOVA followed by a post hoc investiga-
tion. Researchers can, if they wish, bypass the ANOVA F-test and move directly to
one or more specific comparisons of particular interest. Such comparisons among
means (without reliance on a green light from a significant omnibus F-test) are
called planned comparisons.4 Although planned comparisons are used less fre-
quently than post hoc comparisons, they show up in the research literature often
enough to make it important for you to recognize and understand this kind of sta-
tistical test on means.

Excerpt 12.16 illustrates the use of planned comparisons. As you will see, the
researchers bypassed the more typical one-way ANOVA because they considered
their planned comparisons to be better aligned with the research hypotheses they
wanted to test. One of their three planned comparisons was pairwise in nature; the
other two were of the nonpairwise variety.

4The term a priori comparison means the same thing as planned comparison.

EXCERPT 12.16 • Planned Pairwise and Nonpairwise Comparisons

One hundred thirty-seven students . . . were randomly assigned to one of the fol-
lowing five conditions: (a) deciding for themselves (self), (b) deciding for a close
same-sex friend (friend–decide), (c) predicting the decisions of a close same-sex
friend (friend–predict), (d) deciding for a typical same-sex student in the United
States (typical student–decide), and (e) predicting the decisions of a typical same-
sex student in the United States (typical student–predict). . . . We had three primary
questions we were interested in addressing in these analyses [and] because each of
these issues corresponds to a specific contrast or set of contrasts, we analyzed these
issues via planned comparisons rather than by a full ANOVA. . . . Aggregating
across impact level, a comparison of the self condition to the average
of the friend–decide and typical student–decide condi-
tions was not significant, partial . . . A planned
comparison between the two deciding-for-others conditions found no difference be-
tween the friend–decide and typical student–decide conditions,

partial . . . A planned contrast comparing the self condition to
the average of the predict conditions showed that our participants did not predict that
others would decide differently than they themselves decide,
partial 

Source: Stone, E. R., & Allgaier, L. (2008). A social values analysis of self-other differences
in decision making involving risk. Basic & Applied Social Psychology, 30(2), 114–129.

h2 = .002.
t11272 = 0.44, p = .66,

h2 = .006.p = .38,
t11272 = 0.88,

h2 = .010.t11272 = 1.11, p = .27,
1M = 10.3321M = 10.592

1M = 9.722
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In the study from which Excerpt 12.16 was taken, there were five groups. As
you can see, each of those groups was labeled with a letter. The single nonpairwise
contrast involved a comparison of the sample means from groups “b” and “d.” One
of the two nonpairwise contrasts involved comparing the mean from group “a”
against the mean created by combining groups “b” and “d.” The other nonpairwise
contrast involved comparing the mean from group “a” against the mean created by
combining groups “c” and “e.”

In Excerpt 12.16, each of the planned comparisons was evaluated statistically
by means of an independent-samples t-test. That was the case for the single pair-
wise comparison that was tested as well as for each of the two cases in which non-
pairwise comparisons were tested. The use of this kind of t-test in these situation seems
logical when you realize that two means were involved in each of the three comparisons.
Granted, the nonpairwise comparisons each involved three of the original groups. How-
ever, each of these comparisons boiled down to a statistical look at just two means after
two of the three original groups involved in each comparison were combined.

In general, planned comparisons are good for two distinct reasons. First of all,
this kind of comparison usually is more powerful than is the omnibus F-test. In
other words, Type II error risk is typically lower when planned comparisons are
examined instead of the generic one-way ANOVA F-test. Second, well-trained
researchers usually have justifiable hypotheses (gleaned from their own earlier stud-
ies and their knowledge of others’ research findings), and this expertise shows
through better in a set of planned comparisons than it does in the two-step strategy
of doing a one-way ANOVA followed by a post hoc investigation. Therefore, give
researchers a double set of bonus points when you see them discuss planned com-
parisons in their technical written reports or in their oral presentations. That was
what I did when I came across the passage that appears in Excerpt 12.17.

EXCERPT 12.17 • Decision to Bypass Using a One-Way ANOVA

Given that we hypothesised that there would be specific SES group differences in
the places that children undertook physical activities, we employed the use of a priori
comparisons rather than using ANOVA procedures because a priori comparisons have
greater power and improve the clarity of comparisons over the omnibus F-test.

Source: Ziviani, J., Wadley, D., Ward, H., Macdonald, D., Jenkins, D., & Rodger, S. (2008).
A place to play: Socioeconomic and spatial factors in children’s physical activity. Australian
Occupational Therapy Journal, 55(1), 2–11.

Comments

As we come to the end of this chapter on planned and post hoc comparisons, there
are a few final things to consider. If you take the time to consider these end-of-chapter
issues, you will be better able to decipher and critique research reports. These issues
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are positioned here at the end of the chapter because each of them has relevance to
both post hoc and planned comparisons.

Terminology

Earlier in this chapter, you encountered six technical terms: post hoc, planned, com-
parison, contrast, pairwise, and nonpairwise. (A seventh term, a priori, appears in
a footnote.) We now must consider two additional terms: 1 df F-test and
orthogonal. After you add these two terms to your working vocabulary, you will be
able to understand just about any research report wherein the researchers discuss
their post hoc and planned comparisons.

In reading discussions of post hoc and planned comparisons, you may come
across the term one-degree-of-freedom F-test. This term pops up every so often
when nonpairwise contrasts are conducted via F-tests, and it simply refers to the fact
that the first of the two df values of such an F-test is always 1, no matter how many
groups are involved in the comparison being made. Thus, if a study involves the per-
sonality trait of “hot-temperedness” among groups of blonds, brunettes, and redheads,
the researcher might want to pool together the blond-haired men and the brown-haired
men and compare that combined group’s mean against the mean of the red-haired
men. An F-test used to do this would have a between-groups df equal to 1.

My hair color example, of course, is quite artificial. To see an example of this
special kind of F-test, take another look at Excerpt 12.16. Three t-tests appear in
that excerpt, two of which involved nonpairwise comparisons. All three of those
tests could have been conducted via F-tests rather than t-test, with identical results.
Had that been done, each F-test’s dfs would have been 1 and 127. The first of those
two df number would have been 1, even for the two nonpairwise comparisons that
involved three of the five groups, because such comparisons really were comparing
just two means, not three.5

The second new term for us to consider is orthogonal. In a researcher’s
planned or post hoc investigation, two contrasts are said to be orthogonal to one
another if the information yielded by one contrast is new and different (i.e., inde-
pendent) from what is revealed by the other contrast. For example, with three
groups in a study (A, B, and C), a contrast comparing group A against the average
of groups B and C would be orthogonal to a contrast comparing group B against
group C because knowing how the first contrast turned out would give you no clue
as to how the second contrast will turn out.

In Excerpt 12.18, we see case where a group of researchers set up and tested a
pair of orthogonal contrasts just like those discussed in the preceding paragraph. As you
can see, both of these contrasts turned out to be significant. However, the orthogonal

5The second of the two df values in Excerpt 12.16 is correct despite the fact that there were 137 research partici-
pants in the study. The researchers used a research design, with 9 df associated with the two main
effects and the interaction (even though none of these three effects was actually tested).

2 *  5
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nature of these two t-tests meant that the first test could have rejected its null hypoth-
esis, whereas the second t-test retained its H0. Or, the results of the two t-tests could
have been just the opposite in their outcomes. With orthogonal comparisons, any com-
bination of results is possible, because the tests are independent of each other.

Assumptions

The various planned and post hoc test procedures mentioned earlier in this chapter
will function as they are supposed to function only if four underlying assumptions
hold true for the populations and samples involved in the study. These assumptions
are the same ones that underlie a one-way ANOVA F-test, and they are referred to by
the terms randomness, independence, normality, and homogeneity of variance. I hope
you remember the main points that I made in Chapter 11 about these assumptions.

Although the various test procedures covered so far in this chapter generally
are robust to the normality assumption, the same point cannot be made regarding
the equal variance assumption—especially in situations where the sample sizes are
dissimilar. If researchers conduct planned comparisons, they ought to talk about the
issue of assumptions. If the study’s sample sizes vary, a test should be applied to
assess the homogeneity of variance assumption. With a post hoc investigation, the
assumptions should have been discussed in conjunction with the omnibus F-test;
those assumptions do not have to be discussed or tested a second time when the
researcher moves from the one-way ANOVA to the post hoc comparisons.

If the equal variance assumption is tested and shown to be untenable (in con-
nection with planned comparisons or with the one-way ANOVA), the researcher will
likely make some form of adjustment when a priori or post hoc contrasts are tested.
This adjustment might take the form of a data transformation, a change in the level
of significance employed, or a change in the test procedure used to compare means.
If the latter approach is taken, you are likely to see the Welch test applied to the data
(because the Welch model does not assume equal population variances).

EXCERPT 12.18 • Orthogonal Comparisons

We conducted two a priori orthogonal comparison tests, the adults compared to the
average of the 2 child groups and the second test compared the mean of the typical
child group to the mean of the group of children with SPD. The a priori tests revealed
that adults had a significantly smaller mean P50 T/C ratio than the average of both
child groups, Typical children also demon-
strated a statistically significant smaller mean P50 T/C ratio than children with SPD,

Source: Davies, P. L., Chang, W., & Gavin, W. J. (2009). Maturation of sensory gating perfor-
mance in children with and without sensory processing disorders. International Journal of
Psychophysiology, 72(2), 187–197.

t1682 = -2.01, p 6 .049, d = .49.

t1682 = -2.44, p = .017, d = .67.
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Many of the test procedures for making planned or post hoc comparisons were
developed for the situation in which the various samples are the same size. When
used with samples that vary in size, researchers may indicate that they used a vari-
ation of one of the main techniques. Thus, Kramer’s extension of Tukey test or of
Duncan’s multiple range test simply involves a modification of the regular Tukey
or Duncan test procedure to make it usable in studies in which the ns vary. Do not
let such extensions or modifications cause you to shy away from deciphering
research reports in the same way you would if the regular planned or post hoc test
had been used.

The Researcher’s Choice of Test Procedure

As I pointed out near the outset of this chapter, the various post hoc procedures dif-
fer in terms of how liberal or conservative they are. Ideally, a researcher ought to
choose among these procedures after considering the way they differ in terms of
power and control of Type I errors. Realistically, however, the decision to use a par-
ticular test procedure is probably influenced most by what computer programs are
available for doing the data analysis, by what procedure was emphasized in a spe-
cific textbook or by a specific instructor, or by habit.

In Excerpt 12.19, a team of researchers did the right thing; they explained why
they chose the test procedure they used to make multiple comparisons among
means. As indicated in this excerpt, they used the Tukey test because they wanted
their post hoc investigation to be based on a test procedure that was “middle of the
road” in terms of the liberal/conservative continuum. In other words, they wanted
to use a test that balanced the risks of making Type I and Type II errors.

EXCERPT 12.19 • Explaining Why a Test Procedure Was Used

Finally, a post hoc analysis was conducted, whose results allowed [us] to evaluate
the statistical significance of the units’ autonomy and verify them. From among sev-
eral methods at hand the Tukey’s test (HSD) was chosen due to its medium position
on the scale of conservativeness in comparison with a more conservative Scheffe’s
test, giving statistically less significant results between the averages, and a less con-
servative Newman-Keuls’s [procedure].

Source: Zubel, P., Gugnacka-Fiedor, W., Rusinek, A., & Barcikowski, A. (2008). Different
faces of polar habitats extremity observed from the angle of arctic tundra plant communities
(West Spitsbergen). Ecological Question, 9(1), 25–36.

Regardless of the stated (or unstated) reasons why a researcher chooses to use
a particular test procedure, you are in full control of how you interpret the results
presented in the research report. If a researcher uses a test procedure that is too
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liberal or too conservative for your taste, remember that you have the undisputed
right to accept only a portion of the researcher’s full set of conclusions. In the
extreme case, you can, if you wish, reject the totality of what is “discovered” in a
research study because the test procedure employed to make statistical inferences
was far too liberal (or far too conservative) for your taste.

Statistical Significance versus Practical Significance

We have considered the distinction between statistical significance and practical
significance in earlier chapters. My simple suggestion at this point is to keep this
distinction in mind when you come into contact with the results of planned and post
hoc comparisons.

In Excerpt 12.20, we see a case in which the measure d was used in a post hoc
investigation to assess the practical significance of the two pairwise comparisons
that turned out to be statistically significant. In this excerpt, notice that different
measures of effect size were computed for the ANOVA F-test and the post hoc pair-
wise comparisons. Also note that the researchers labeled the d estimates of .71 and
.49 with the terms medium and small-to-medium, respectively. When you come
across passages like the one in Excerpt 12.20, upgrade your evaluation of the
researchers’ work.

EXCERPT 12.20 • Concern for Practical Significance in a Post Hoc
Investigation

A one-way ANOVA revealed a statistically significant effect,
Post-hoc analysis, Tukey’s HSD, of all possible paired

comparisons revealed two differences among the conditions. Students in the GO-
only group answered more target-material items correctly than did stu-
dents in the SD-only condition with a medium effect size
[while those] in the Control group answered more target-material questions correctly
than did students in the SD-only condition compared to 
respectively), with a small-to-medium effect size [being estimated].

Source: Rowland-Bryant, E., Skinner, C. H., Skinner, A. L., Saudargas, R., Robinson, D. H., &
Kirk, E. R. (2009). Investigating the interaction of graphic organizers and seductive details: Can
a graphic organizer mitigate the seductive-details effect? Research in the Schools, 16(2), 29–40.

d = 0.49,
M = 7.80,1M = 9.20

1M = 7.802, d = 0.71,
1M = 9.752

p 6 .01, eta-squared = 0.07.
F13, 2032 = 5.15,

As exemplified by Excerpt 12.20, researchers often use terms such as small,
medium, or large to describe the estimated effect sizes associated with pairwise
comparisons. When they do this, they are using a set of criteria for interpreting d
that are widely used by researchers in many different disciplines. Those criteria for
comparing two means were presented earlier in Chapter 10. If you refer to Table 10.1,
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you will be able to tell whether the use of the effect size labels in Excerpt 12.20 was
justified.

The distinction between statistical significance and practical significance is
just as important to planned comparison as it is to post hoc comparisons. To see ex-
amples where researchers attended to this distinction with their planned compar-
isons, look again at Excerpts 20.16 and 20.18. They illustrate the use of partial 
in conjunction with both pairwise and nonpairwise comparisons, as well as the use
of d with orthogonal comparisons.

Other Test Procedures

In this chapter, we considered several test procedures that researchers use when
comparing means within planned and post hoc investigations. The excerpts we have
considered demonstrate the popularity of the Tukey and Bonferroni test procedures.
However, we have seen additional excerpts that illustrate the use of other test pro-
cedures, such as Tamhane’s test, Scheffé’s test, and Dunnett’s test. All these proce-
dures help hold down the chances of a Type I error when two or more contrasts are
evaluated.

Although we have seen examples of a variety of test procedures in this chap-
ter, there are additional test procedures that we have not considered. The tests men-
tioned in the preceding paragraph are the ones I believe you will encounter most
often when you read research reports. However, you may come across one or more
techniques not discussed in this text. If this happens, I hope you will not be thrown
by the utilization of a specific test procedure different from those considered here.
If you understand the general purpose served by the planned and post hoc tests we
have considered, I think you will have little difficulty understanding the purpose and
results of similar test procedures that we have not considered.

h2

A posteriori test
A priori
Bonferroni test
Comparison
Complex comparison
Conservative
Contrast
Duncan’s multiple 

range test
Dunnett test
Fisher’s LSD test
Follow-up test
Liberal

Review Terms

Multiple comparison test
Newman-Keuls test
Nonpairwise (or complex) comparison
Omnibus F-test
One-degree-of-freedom F-test
Orthogonal
Pairwise comparison
Planned comparisons
Post hoc comparisons
Post hoc test
Scheffé test
Tamhanes’ post hoc test
Tukey test
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In Chapters 10 and 11, we saw how one-way ANOVAs can be used to compare two
or more sample means in studies involving a single independent variable. In this
chapter, I want to extend our discussion of analysis of variance to consider how this
extremely popular statistical tool is used in studies characterized by two indepen-
dent variables. It should come as no surprise that the kind of ANOVA to be con-
sidered here is referred to as a two-way ANOVA. Because you may have come
across the term multivariate analysis of variance or the abbreviation MANOVA, it
is important to clarify that this chapter does not deal with multivariate analyses of
variance. The first letter of the acronym MANOVA stands for the word multivariate,
but the letter M indicates that multiple dependent variables are involved in the same
unitary analysis. Within the confines of this chapter, we will look at ANOVAs that
involve multiple independent variables but only one dependent variable. Accord-
ingly, the topics in this chapter (along with those of earlier chapters) fall under the
general heading univariate analyses.

Similarities between One-Way and Two-Way ANOVAs

A two-way ANOVA is similar to a one-way ANOVA in several respects. Like any
one-way ANOVA, a two-way ANOVA focuses on group means. (As you will soon
see, a minimum of four Ms are involved in any two-way ANOVA.) As with a one-
way AVOVA, any two-way ANOVA is actually concerned with the set of values
that correspond to the sample means that are computed from the study’s data. With
both kinds of ANOVAs, the inference from the samples to the populations is made
through the six-, seven-, or nine-step version of hypothesis testing. Statistical as-
sumptions may need to be tested with each kind of ANOVA, and the research ques-
tions dictate whether planned or post hoc comparisons are used in conjunction with

m
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(or in lieu of) the two-way ANOVA, as is the case with a one-way ANOVA. De-
spite these similarities between one-way and two-way ANOVAs, the kind of
ANOVA to which we now turn is substantially different from the kind we exam-
ined in Chapter 11.

The Structure of a Two-Way ANOVA

Before we discuss what kinds of research questions can be answered by a two-way
ANOVA, it is essential that you understand how a two-way ANOVA is structured.
Therefore, now I explain (1) how factors and levels come together to form cells; (2)
how randomization is used to fill the ANOVA’s cells with the people, animals, or
things from which data are eventually collected; and (3) why this chapter deals ex-
clusively with two-way ANOVAs having “between-subjects” factors.

Factors, Levels, and Cells

A two-way ANOVA always involves two independent variables. Each independent
variable, or factor, is made up of, or defined by, two or more elements called levels.
When looked at simultaneously, the levels of the first factor and the levels of the
second factor create the conditions of the study to be compared. Each of these con-
ditions is referred to as a cell.

To help you see how factors, levels, and cells form the basic structure of any
two-way ANOVA, let’s consider a recent study that involved 18 male and 20 female
college undergraduates who participated in a simulated job-hiring task. Each of
these students initially examined the résumés of two fictitious applicants and had to
decide which one to hire. Half of each gender group then wrote a rejection letter to
the applicant who was not hired, whereas the other half of each gender group wrote
a private critique of either résumé.

After participating in some additional superfluous activities, all 38 students
read a description of a new club on campus and then indicated how likely they were
to join the new club to make new friends. Each person’s response (on the 1–12
scale) became his or her score that went into the two-way ANOVA.

I have pulled a few of the summary statistics from the research report of the
simulated job-hiring study and put them into a kind of picture. This picture was not
included in the actual research report, but it is useful here because it permits us to
see the factors, levels, and cells of this particular two-way ANOVA.

In my picture, the term Gender labels the two main rows, whereas the term
Treatment labels the two main columns. These are the two independent variables,
or factors, involved in this study. The specific rows and columns indicate the levels
that went together to make up the two factors. Thus the factor of Gender was made
up of two levels, Male and Female, whereas the Treatment factor was made up of
two levels, Rejection Letter and Résumé Critique. If you take either row of my picture
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and combine it with either of the columns, you end up with one of the four cells as-
sociated with this particular two-way ANOVA. Each of these cells represents the
home of one of the four subgroups of the college students.

Within each cell of my picture, there is a mean, a standard deviation, and a
sample size. These three numerical values constitute a summary of the scores on
the dependent variable—desire to join the new campus club—collected from the
college students who were in each cell. As you will soon see, these data were very
important to the two-way ANOVA that was conducted in conjunction with this
study. The factors, levels, and cells provided the structure for the two-way ANOVA;
without data on the dependent variable, however, there would have been no way to
probe any of the research questions of interest.

As indicated earlier, all two-way ANOVAs involve two factors. Researchers
tell you what factors were involved in their studies, but they are not consistent in
their descriptions. Sometimes factors are called independent variables, sometimes
they are called main effects, and sometimes they are not called anything. Two of the
variations in the way researchers label the factors of their two-way ANOVAs are 
illustrated in Excerpts 13.1 and 13.2.

Treatment

M � 6.72
SD � 2.38

n � 9

M � 5.55
SD � 2.36

n � 10

M � 7.38
SD � 1.08

n � 9

M � 8.15
SD � 1.36

n � 10

Male

Gender

Write Rejection
Letter

Write Résumé
Critique

Female

Source: Data from Zhou, X., Zheng, L., Zhou, L., &
Guo, N. (2009). The act of rejecting reduces the de-
sire to reconnect: Evidence for a cognitive disso-
nance account. Journal of Experimental Social
Psychology, 45(1), 44–50.

EXCERPTS 13.1–13.2 • Alternative Names for a Two-Way ANOVA’s Factors

The data analysis (relating to the ability to apply reading strategies) was based on
two-way ANOVA. The independent variables are: group (experimental or control)
and Chinese reading ability (high or low).

Source: Chang, K., Lan, Y., Chang, C., & Sung, Y. (2010). Mobile-device-supported strategy
for Chinese reading comprehension. Innovations in Education & Teaching International,
47(1), 69–84.

(continued )
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When describing their two-way ANOVAs, most researchers indicate how
many levels were in each factor. They do this by using terms such as 
ANOVA, ANOVA, ANOVA, and ANOVA. When such notation
is used, the first of the two numbers that precede the acronym ANOVA specifies
how many levels went together to make up the first factor, while the second num-
ber indicates how many levels composed the second factor. Excerpts 13.3 and 13.4
illustrate the use of this kind of notation.

2 * 33 * 52 * 4
2 * 2

EXCERPTS 13.1–13.2 • (continued)

Statistical analyses were performed using a two-way ANOVA for non-repeated mea-
sures using training and MTP inhibition as the main effects.

Source: Chapados, N. A., & Lavoie, J. (2010). Exercise training increases hepatic endoplasmic
reticulum (er) stress protein expression in MTP-inhibited high-fat fed rats. Cell Biochemistry
and Function, 28(3), 202–210.

EXCERPTS 13.3–13.4 • Delineating a Two-Way ANOVA’s Dimensions

A analysis of variance design (averaging method testing frequency) is
used to explore the effects of the two independent variables on student achievement.

Source: Vaden-Goad, R. E. Leveraging summative assessment for formative purposes. College
Teaching, 57(3), 153–155.

A ANOVA was performed, with frame and occupational status as independent
variables and bonus importance perceptions as a dependent variable.

Source: Lozza, E., Carrera, S., & Bosio, A. C. (2010). Perceptions and outcomes of a fiscal bonus:
Framing effects on evaluations and usage intentions. Journal of Economic Psychology, 31(3),
400–404.

2 * 3

*2 * 2

The researchers who are most helpful in describing their two-way ANOVAs
are the ones who indicate not only the names of the factors and the number of lev-
els in each factor but also the names of the levels. An example of this kind of de-
scription appears in Excerpt 13.5. Based on the information contained in this
excerpt, you can and should create a picture (either on paper or in your mind) like
the one I created in my picture for the simulated job-hiring study. Here, however,
the picture has five rows, two columns, and 10 cells. Collectively, the five rows are
labeled Faculty (i.e., the equivalent of a college within a university), with the spe-
cific rows being Technical studies, Natural sciences, Social sciences, Arts, and
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Humanities. Collectively, the two columns would be labeled with the word Gender,
with the specific columns corresponding to Males and Females.1

Later in this chapter we consider the null hypotheses typically tested when re-
searchers use a two-way ANOVA, and we also look at the different reporting
schemes used by researchers to report the results of such tests. I cannot overem-
phasize how important it is to understand the concepts of factor, level, and cell
before considering what a two-way ANOVA tries to accomplish. Stated differently,
if you cannot create a picture that shows the structure of a researcher’s two-way
ANOVA, there is no way you can understand the results or evaluate whether the re-
searcher’s claimed discoveries are supported by the empirical data.

Active versus Assigned Factors and the 
Formation of Comparison Groups

All two-way ANOVAs are the same in that the levels of the two factors jointly de-
fine the cells. However, there are different ways to fill each cell with the things (peo-
ple, animals, or objects) from which measurements will be taken. In any given
study, one of three possible procedures for forming the comparison groups is used
depending on the nature of the two factors. Because any factor can be classified as
being assigned or active in nature, a two-way ANOVA could be set up to involve
two assigned factors, two active factors, or one factor of each type.

An assigned factor deals with a characteristic of the things being studied that
they “bring with them” to the investigation. In situations where the study focuses
on people, for example, such a factor might be gender, handedness, birth order, in-
tellectual capability, color preference, grade point average (GPA), or personality
type. If the study focuses on dogs, an assigned factor might be breed, size, or age.
The defining element of an assigned factor is that a person’s (or animal’s) status for
this kind of independent variable is determined by the nature of that person (or an-
imal) on entry into the study.

1The picture created for Excerpt 13.5 could be set up with rows corresponding to Gender and columns corre-
sponding to Faculty. If we set it up that way, there would be two rows and five columns. With two-way ANOVAs,
it makes no difference whether a particular factor is used to define the picture’s rows or its columns.

EXCERPT 13.5 • Naming Factors and Levels

We performed a univariate factorial ANOVA with [students’] global trait EI as the 
dependent variable, and faculty (technical studies/natural sciences/social sciences/
arts/humanities) and gender (male/female) as the independent variables.

Source: Sánchez-Ruiz, M. J., Pérez-González, J. C., & Petrides, K. V. (2010). Trait emotional
intelligence profiles of students from different university faculties. Australian Journal of
Psychology, 62(1), 51–57.
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The second kind of factor is called an active factor. Here, a participant’s sta-
tus on the factor is determined within the investigation, because active factors deal
with conditions of the study that are under the control of the researcher. Simply put,
this means that the researcher can decide, for any participant, which level of the fac-
tor that participant will experience. Examples of active factors include type of diet,
time allowed to practice a task, gender of the counselor to whom the participant is
assigned, and kind of reward received following the occurrence of desirable behav-
ior. The hallmark of these and all other active factors is the researcher’s ability to de-
cide which level of the factor any participant experiences during the investigation.

If a two-way ANOVA involves two assigned factors, the researcher simply puts
the available participants into the various cells of the ANOVA design based on the
characteristics of the participants. If the factors are both active, the researcher forms
the comparison groups by randomly assigning participants to the various cells of the
design. If there is one active factor and one assigned factor, the researcher forms the
comparison groups by taking the participants who share a particular level on the as-
signed factor and randomly assigning them to the various levels of the active factor.
Examples of these three ways of getting people into the cells of a two-way ANOVA
can be found in Excerpts 13.5, 13.2, and 13.1, respectively.

Between-Subjects and Within-Subjects Factors

Each of the factors in a two-way ANOVA can be described as being either between
subjects or within subjects in nature. The distinction between these two kinds of fac-
tors revolves around the simple question, “Are the study’s participants measured
under (i.e., have exposure to) just one level of the factor, or are they measured re-
peatedly across (and thus exposed to) all levels of the factor?” If the former situation
exists, the factor is a between-subjects factor; otherwise, it is a within-subjects factor.

To help clarify the difference between these two kinds of factors, let’s consider
a simple (yet hypothetical) study. Imagine that a researcher wants to see if a golfer’s
ability to putt accurately is influenced by whether the flag is standing in the hole and
whether the golf ball’s color is white or orange. Further imagine that 20 golfers agree
to participate in our study, that all putts are made on the same green from the same
starting spot 25 feet from the hole, and that putting accuracy (our dependent vari-
able) is measured by how many inches each putted ball ends up away from the hole.

In our putting investigation, we might design the study so both of our inde-
pendent variables (flag status and ball color) are between-subjects factors. If we do
that, we create four comparison groups (each with ) and have the golfers in
each group putt under just one of the four conditions of our study (e.g., putting an
orange ball toward a flagless hole). Or, we might want to have both factors be
within-subjects in nature. If that were our choice, we would have all 20 golfers putt
under all four conditions of the study. There’s also a third possibility. We could have
one between-subjects factor and one within-subjects factor. For example, we could
have all golfers putt both white and orange balls, with half of the golfers putting

n = 5
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toward the hole with the flag in and the other half putting toward the hole with the
flag out. In this third example, the flag’s status would be a between-subjects factor,
whereas ball color would be a within-subjects factor.

In this chapter, we consider only two-way ANOVAs involving two between-
subjects factors. If a researcher indicates that he or she used a two-way ANOVA
(without any specification as to the type of factors involved), you should presume
that it is the kind of two-way ANOVA being discussed in this chapter. You can feel
relatively confident doing this because most researchers use the generic phrase two-
way ANOVA when both factors are of the between-subjects variety.2 Occasionally,
as illustrated in Excerpt 13.6, you will see a clear indication that two between-
subjects factors were involved in the ANOVA being discussed.

2If one or both of the factors are of the within-subjects variety, researchers will normally draw this to your at-
tention by labeling the factor(s) in that way or by saying that they used a repeated-measures ANOVA, a mixed
ANOVA, or a split-plot ANOVA. We will consider such ANOVAs in Chapter 14.

EXCERPT 13.6 • Between-Subjects Factors

ANOVAs were conducted for each trial with sex (male, female) and age (9–13,
14–17, 18 and older) as between-subjects factors.

Source: Lawson, R. (2010). People cannot locate the projection of an object on the surface of
a mirror. Cognition, 115(2), 336–342.

Samples and Populations

The samples associated with any two-way ANOVA are always easy to identify.
There are as many samples as there are cells, with the research participants who
share a common cell creating each of the samples. Thus there are four distinct sam-
ples in any ANOVA, six distinct samples in any ANOVA, 12 distinct
samples in any ANOVA, and so on.

As is always the case in inferential statistics, a distinct population is associated
with each sample in the study. Hence, the number of cells designates not only the
number of samples (i.e., comparison groups) in the study, but also the number of
populations involved in the investigation. Although it is easy to tell how many pop-
ulations are involved in any two-way ANOVA, care must be exercised in thinking
about the nature of these populations, especially when one or both factors are active.

Simply put, each population in a two-way ANOVA should be conceptualized
as being made up of a large group of people, animals, or objects that are similar to
those in the corresponding sample represented by one of the cells. Suppose, for ex-
ample, that the dart-throwing ability of college students is measured via a two-way
ANOVA in which the factors are gender (male and female) and handedness (right

3 * 4
2 * 32 * 2
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and left). One of the four populations in this study is right-handed male college stu-
dents. Each of the other three populations in this study is defined in a similar fash-
ion by the combination of one level from each factor. If the four samples in this
study were extracted from a larger group of potential participants, then each popu-
lation is considered tangible in nature. If, however, all available dart-throwers were
used, then the populations are abstract in nature.3

If a two-way ANOVA involves one or two active factors, the populations as-
sociated with the study are definitely abstract in nature. To understand why this is
true, let’s consider a study that produced results we will see later (in Excerpt 13.9).
In this study concerning the vicarious effects of weight-related teasing, 88 college
women participated, 44 of whom were binge eaters. Each woman read one of two
short vignettes about a female shopping at a mall. These vignettes were identical
except that the main character in one of the vignettes was teased about being over-
weight (with phrases such as, “Hey, Fatty”) by people she encountered at the mall.
Half of the binge-eating and half of the non-binge-eating research participants were
given each vignette. After reading the story about the mall, all women filled out a
questionnaire designed to measure a personality trait called negative affect.

In this study, the populations were abstract because they were characterized
by people like the study’s research participants who read the vignettes. There un-
doubtedly were (and are) lots of college women similar to the ones who served as
participants in this investigation. However, there probably is no one outside the
study who has read one of the two vignettes and then has taken the personality in-
ventory that measures negative effect. Even though the women in this study were
drawn randomly from a larger, tangible group of potential participants, the study’s
four populations (defined by binge-eating status and which vignette is read) became
fully unique and abstract because of the experimental conditions created by the
researchers in their investigation.

Three Research Questions

To gain an understanding of the three research questions that are focused on by a
two-way ANOVA, let’s continue our examination of the simulated job-hiring study
discussed earlier in the chapter. As you may recall, male and female college students
in this study first read two résumés and had to reject one of the two applicants. Then,
half of the males and half of the females had to write a rejection letter to the person
not hired. After some irrelevant tasks (designed to hide the study’s true purpose), all
research participants were asked to rate their interest in joining a new campus club.
To facilitate our current discussion, I reproduce here a picture containing the origi-
nal four cells means and sample sizes, plus I added four additional numbers that we
must consider. As you may recall, the means in this study reflect the college students’
stated desire to join the new club on a 1 to 12 scale.

3I discussed the difference between tangible and abstract populations in Chapter 5.
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When the researchers applied a two-way ANOVA to the data provided by the
38 college students, they obtained answers to three research questions. Although
these three research questions were tied to the specific independent and dependent
variables involved in this study, the nature of their questions is identical to the na-
ture of the three research questions that are posed and answered in any two-way
ANOVA. These three questions, in their generic form, can be stated as follows: (1)
Is there a statistically significant main effect for the first factor? (2) Is there a sta-
tistically significant main effect for the second factor? (3) Is there a statistically sig-
nificant interaction between the two factors?

The first research question asked whether there was a statistically significant
main effect for Gender. To get a feel for what this first research question was ask-
ing, you must focus your attention on the main effect means for the Gender factor.
These means, located on the right side of the box containing the four cells, turned
out equal to 7.05 and 6.85. The first of these means is simply the overall mean for
the 18 males who were asked to rate their interest in joining the new club. (Because
there are 9 males in each of the top two cells, the top row’s main effect mean is
equal to the arithmetic average of 6.72 and 7.38.) The second main effect mean for
the Gender factor is the overall mean for the 20 female students who rated their in-
terest in joining the club. Those 20 students are located, so to speak, within the two
cells on the bottom row of the box.

In any two-way ANOVA, the first research question asks whether there is a
statistically significant main effect for the factor that corresponds to the rows of
the two-dimensional picture of the study. Stated differently, the first research
question is asking whether the main effect means associated with the first factor
are further apart from each other than would be expected by chance. There are as
many such means as there are levels of the first factor. In the study we are con-
sidering, there were two levels (Male and Female) of the first factor (Gender),
with the first research question asking whether the difference between 7.05 and
6.85 was larger than could be accounted for by chance. In other words, the first
research question asks, “Is there a statistically significant difference between the
means from the 18 males and the 20 males when they rated their interest in joining
the new club?”

Treatment

M � 5.55
n � 10

M � 6.72
n � 9

M � 7.38
n � 9

7.05

6.11 7.79

6.85
M � 8.15
n � 10

Male

Gender

Write Rejection
Letter

Write Résumé
Critique

Female
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The second research question in any two-way ANOVA asks whether there is
a significant main effect for the factor that corresponds to the columns of the two-
dimensional picture of the study. The answer to this question is yes if the main ef-
fect means for the second factor turn out to be further apart from each other than
would be expected by chance. In the study we are considering, there are two main
effect means for Treatment, one for those who wrote the rejection letter and one for
those who wrote a private critique of one of the job applicant’s résumés. These
means turned out equal to 6.11 and 7.79, respectively. Simply put, the second
research question in this study asks, “Is there a statistically significant difference,
regarding interest in joining the new club, between the mean of the 19 research
participants who had to write a rejection letter and the mean of the 19 others who
simple wrote a private critique of a résumé?”

The third research question in any two-way ANOVA asks whether there is a
statistically significant interaction between the two factors involved in the study.
As you will soon see, interaction deals with cell means, not main effect means.
Therefore, there are always four means involved in the interaction of any 
ANOVA, six means involved in any ANOVA, and so on.

Interaction exists to the extent that the difference between the levels of the first
factor changes when we move from level to level of the second factor. To illustrate,
consider again the simulated job-hiring study. The difference between the means for
the males who wrote a rejection letter and the males who critiqued a résumé was .66,
with the mean in the right cell being larger than the mean in the left cell. If this dif-
ference of .66 were to show up again in the bottom row (with the same ordering of
those means in terms of their magnitude), there would be absolutely no interaction.
However, if this difference in the bottom row is either smaller or larger than .66 (or if
it is .66 with a reverse ordering of the means), then interaction is present in the data.

When we look at the cell means in the bottom row, we can see that the dif-
ference between them does not mirror what we saw in the top row. The females who
critiqued a résumé had a mean that was 2.60 higher than the mean for the females
who wrote a rejection letter. Hence, there is some interaction between the Gender
and Treatment factors. But is the amount of interaction contained in the four cell
means more than what one would expect by chance? If so, then it can be said that
a statistically significant interaction exists between the study’s two factors, Gender
and Treatment.

It should be noted that the interaction of a two-way ANOVA can be thought
of as dealing with the difference between the levels of the column’s factor as one
moves from one level to another level of the row’s factor, or it can be thought of as
dealing with the difference between the levels of the row’s factor as one moves from
one level to another level of the column’s factor. For example, in the study we are
considering, the difference between the cell means in the left column is 1.17, with
the top mean being larger, whereas the difference between the means in the right
column is (The negative sign is needed because the top mean is now smaller
than the bottom mean.) Although these two differences (1.17 and ) are not the- .77

- .77.

2 * 3
2 * 2
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same as the differences discussed in the preceding two paragraphs (.66 and 2.60),
note that in both cases the difference between the differences is exactly the same:
1.94. My point here is simply that there is only one interaction in a two-way
ANOVA; the order in which the factors are named (or used to compare cell means)
makes no difference whatsoever.

The Three Null Hypotheses (and Three Alternative Hypotheses)

There are three null hypotheses examined within a two-way ANOVA. One of these
null hypotheses is concerned with the main effect of the row’s factor, the second is
concerned with the main effect of the column’s factor, and the third is concerned
with the interaction between the two factors. Rarely are these null hypotheses re-
ferred to in a research report. In Excerpt 13.7, however, we see a case where a team
of researchers enumerated the main effect and interaction null hypotheses associ-
ated with their two-way ANOVA.4

4It would have been better if the word significant had not appeared in these three null hypotheses. Whether
results are or are not statistically significant is dependent upon sample data. Null hypotheses, in contrast, are
statements about a study’s populations and any is not influenced whatsoever by sample data.H0

EXCERPT 13.7 • The Three Null Hypotheses of a Two-Way ANOVA

In order to determine the effects of REBT [rational–emotive behavior therapy] on
the test anxiety level of groups at the end of treatment, the following hypotheses
were tested using test anxiety level as dependent variable.

There is no significant difference in the test anxiety level of groups sub-
jected to REBT therapy and control after treatment.

There is no significant difference in the test anxiety level of groups with
moderate and high entry anxiety level at the end of treatment.

There is no significant interaction effect of treatment by entry test anxi-
ety level on test anxiety level at the end of treatment.

Source: Egbochuku, E. O., Obodo, B., & Obada, N. O. (2009). Efficacy of rational-emotive
behaviour therapy on the reduction of test anxiety among adolescents in secondary schools.
European Journal of Social Sciences, 6(4), 152–164.

H03:

H02:

H01:

To explain how each of these null hypotheses should be conceptualized, I
want to reiterate that the group of participants that supplies data for any cell of the
two-way ANOVA is only a sample. As was pointed out earlier in this chapter, a pop-
ulation is connected to each cell’s sample. Sometimes each of these populations is
concrete in nature, with participants randomly selected from a finite pool of potential
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participants. In many studies, each population is abstract, with the nature of the pop-
ulation tailored to fit the nature of the group within each cell and the condition under
which data are collected from the participants in that group.

In the ANOVA from the simulated job-hiring experiment, four popula-
tions were involved. As indicated earlier, each of these populations was abstract
(rather than tangible). One of them should be conceptualized as being made up of
male college students (like those used in the study) who first review two résumés,
then write a rejection letter to the person not selected, and finally (following some
irrelevant activities designed simply to conceal the study’s true purpose) rate their
interest in joining a new campus club. The other three populations should be con-
ceptualized in this same way, with changes made in the gender of the students (sub-
stituting females for males) and the writing task (substituting a critique of the
résumé for the rejection letter). Each of these four populations is created, in our
minds, to match the gender of the students and treatment condition associated with
each of the ANOVA’s cells.

The first null hypothesis in any two-way ANOVA deals with the main effect
means associated with the rows factor of the study. This null hypothesis asserts that
the population counterparts of these sample-based main effect means are equal to
each other. Stated in symbols for the general case, this null hypothesis is as follows:

For the study dealing with the hiring decision,
writing task, and club rating, this null hypothesis took the form 

The second null hypothesis in any two-way ANOVA deals with the main ef-
fect means associated with the columns factor. This null hypothesis asserts that the
population counterparts of these sample-based main effect means are equal to each
other. For the general case, the null hypothesis says 

For the study dealing with the simulated hiring decision, this null hy-
pothesis took the form résumé critique.

Before we turn our attention to the third null hypothesis of a two-way
ANOVA, I must clarify the meaning of the that appear in the null hypothesis
for the main effects. Each of these like the data-based sample mean to which
it is tied, actually represents the average of cell means. For example, is the
average of the associated with the cells on row 1, while is the average
of the associated with the cells in column 1. Each of the other main effect 
similarly represents the average of the associated with the cells that lie in a
common row or in a common column. This point about the main effect is im-
portant to note because (1) populations are always tied conceptually to samples
and (2) the samples in a two-way ANOVA are located in the cells. Unless you re-
alize that the main effect are conceptually derived from averaging cell you
might find yourself being misled into thinking that the number of populations as-
sociated with any two-way ANOVA can be determined by adding the number of
main effect means to the number of cells. Hopefully, my earlier and current com-
ments help you see that a two-way ANOVA has only as many populations as there
are cells.

ms,ms

ms
ms

msms
mcolumn1ms

mrow1

ms,
ms

H0: mrejection letter = m
mlast column.

H0: mcolumn1 = mcolumn2 = . . . =

H0: mmales = mfemales.
H0: mrow1 = mrow2 = . . . = mbottom row.
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The third null hypothesis in a two-way ANOVA specifies that there is no in-
teraction between the two factors. This null hypothesis deals with the cell means,
not the main effect means. This null hypothesis asserts that whatever differences
exist among the population means associated with the cells in any given column of
the two-way layout are equal to the differences among the population means asso-
ciated with the cells in each of the other columns. Stated differently, this null hy-
pothesis says that the relationship among the population means associated with the
full set of cells is such that a single pattern of differences, in any specific column,
accurately describes what exists within every other column.5

To express the interaction null hypothesis using symbols, we must first agree
to let j and stand for any two different rows in the two-way layout, and to let 
k and stand for any two different columns. Thus the intersection of row j and col-
umn k designates cell jk, with the population mean associated with this cell being
referred to as The population mean associated with a different cell in the same
column would be symbolized as The population means associated with two
cells on these same rows, j and but in a different column, could be symbol-
ized as and respectively. Using this notational scheme, we can express the
interaction null hypothesis of any two-way ANOVA as follows:

for all rows and columns 
(i.e., for all combinations of both j and and )

To help you understand the meaning of the interaction null hypothesis, I have
constructed sets of hypothetical population means corresponding to a ANOVA,
a ANOVA, and a ANOVA. In each of the hypothetical ANOVAs, the
interaction null hypothesis is completely true.

2 * 42 * 3
2 * 2

k¿j¿, k
H0: mjk - mj¿k = mjk¿ - mj¿k¿,

mj¿k¿,mjk¿

k¿,j¿,
mj¿k.

mjk.

k¿
j¿

5The interaction null hypothesis can be stated with references to parameter differences among the cell means
within the various rows (rather than within the various columns). Thus, the interaction null hypothesis asserts that
whatever differences exist among the population means associated with the cells in any given row of the two-way
layout are equal to the differences among the population means associated with the cells in each of the other rows.
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Before turning our attention to the alternative hypotheses associated with a
two-way ANOVA, it is important to note that each we have considered is inde-
pendent from the other two. In other words, any combination of the three null hy-
potheses can be true (or false). To illustrate, I have constructed three sets of
hypothetical population means for a layout. Moving from left to right, we
see a case in which only the row means differ, a case in which only the interaction
null hypothesis is false, and a case in which the null hypotheses for both the row’s
main effect and the interaction are false.

2 * 2
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Because the three null hypotheses are independent of each other, a conclusion
drawn (from sample data) concerning one of the null hypotheses is specific to that
particular The same data set can be used to evaluate all three null statements,
but the data must be looked at from different angles in order to address all three null
hypotheses. This is accomplished by computing a separate F-test to see if each 
is likely to be false.

If the researcher who conducts the two-way ANOVA evaluates each by
means of hypothesis testing there will usually be three alternative hypotheses. Each

is set up in a nondirectional fashion, and they assert that:

1. The row are not all equal to each other;
2. The column are not all equal to each other;
3. The pattern of differences among the cell in the first column (or the first row)

fails to describe accurately the pattern of differences among the cell in at
least one other column (row).

Presentation of Results

The results of a two-way ANOVA can be communicated through a table or within the
text of the research report. We begin our consideration of how researchers present the
findings gleaned from their two-way ANOVAs by looking at the results of the study
dealing with job applicants, writing tasks, and ratings of a new campus club. We then
consider how the results of other two-way ANOVAs were presented. Near the end of
this section, we look at the various ways researchers organize their findings when two
or more two-way ANOVAs have been conducted within the same study.

Results of the Two-Way ANOVA from 
the Simulated Job-Hiring Study

In the research report of the study we considered at the beginning of this chapter,
the findings were not presented in a two-way ANOVA summary table. If such a
table had been prepared, it probably would have looked like Table 13.1.

In Table 13.1, notice that this summary table is similar to the summary table
for a one-way ANOVA in terms of (1) the number and names of columns included
in the table, (2) each row’s MS being computed by dividing the row’s df into its SS,
(3) the total df being equal to one less than the number of participants used in the
investigation, and (4) calculated values being presented in the F column. Despite
these similarities, one-way and two-way ANOVA summary tables differ in that the
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latter contain five rows (rather than three) and three F-ratios (rather than one). Note
that in the two-way summary table, the MS for the next-to-bottom row (which is
usually labeled error or within groups) was used as the denominator in computing
each of the three F-ratios:

There are three values in the F column of a two-way ANOVA summary table
because there are three null hypotheses associated with this kind of ANOVA. Each
of the three Fs addresses a different null hypothesis. The first two Fs are concerned
with the study’s main effects; in other words, the first two Fs deal with the two sets
of main effect means. The third F deals with the interaction between the two fac-
tors, with the focus of this F being on cell means. In the ANOVA summary table,
look at the results for the two main effects. The first F was small and not signifi-
cant. If you look again at the table I created to display the cell, row, and column
means, you see that the main effect means for the Gender factor were quite similar:
7.05 and 6.85. With F-tests in ANOVAs, a homogeneous set of means causes the F
to be small and nonsignificant. Statistically speaking, the observed difference be-
tween the row main effect means was not large enough to cast doubt on the Gender
null hypothesis: The two main effect means for Treatment
(6.11 and 7.79) were further apart, and this larger difference caused the F to be
larger: 7.06. At the .05 level of significance, this F is statistically significant.

In the ANOVA summary table, you can see that the interaction F was not sig-
nificant because its p was larger than .05. As we noted earlier, there was some in-
teraction in the sample data because the difference between the means for the two
groups of males (.66) was not the same as the difference between the means for the
two groups of females (2.60). The two-way ANOVA considered the difference
between these differences and declared that it was “within the limits of chance sam-
pling.” In other words, this degree of observed interaction in the sample data was
not unexpected if the four samples had come from populations in which there was
no interaction. Accordingly, the interaction null hypothesis was not rejected, as
indicated by the p of .124 next to the F of 2.47.

Results from Additional Two-Way ANOVA Studies

In Excerpt 13.8, we see the summary table from a study in which a ANOVA
was used. It is worth the effort to compare this table to Table 13.1 so as to see how

2 * 3

H0: mmales = mfemales.

.38>3.57 = .11, 25.21>3.57 = 7.06, 8.82>3.57 = 2.47.

TABLE 13.1 ANOVA Summary Table for Ratings for Joining the New Club

Source SS df MS F p

Gender .38 1 .38 .11 .747
Treatment 25.21 1 25.21 7.06 .012
Gender Treatment 8.82 1 8.82 2.47 .124
Within Groups 121.42 34 3.57
Total 155.83 37

*
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different authors vary the way they present the results of their two-way ANOVAs,
even when such results are put into a table. Can you determine the three main dif-
ference between this ANOVA summary table and the one we examined earlier?

First, notice that there are only four rows of numbers, not five. As is the case
with many ANOVA summary tables, the row for Total has been discarded. (You can
still figure out how many scores went into the analysis from a table like this; simply
add up all of the df numbers and then add 1 to the total.) The second thing to notice
is that the fourth row of numbers has a different label here: “w. cell (error).” As you
might guess, the w stands for within. (The word in parentheses, error, is often used
by itself to label this row of the ANOVA summary table.) Finally, notice that there
is no column of actual p-levels provided to the right of the computed F-values; in-
stead, an asterisk has been attached to the F-values that were statistically significant,
with a note beneath the table explaining the statistical meaning of the asterisk.

I have seen summary tables for two-way ANOVAs that differ in other ways from
the two we have just considered. Sometimes the position of the SS and df columns is
reversed. In a few instances, the row that’s usually called “Within Groups” or “Error”
is called “Residual.” On occasion, there will be no column of SS numbers. (In this last
situation, you are not at a disadvantage by not having SS values, because you could,
if you so desired, compute all five missing SS values by multiplying each row’s df
by its MS.)

Despite the differences between Table 13.1 and Excerpt 13.8, these two
ANOVA summary tables are similar in several respects. In each case, the title of the
table reveals what the dependent variable was. In each case, the names of the first
two rows reveal the names of the two factors. In each case, the df values for the main
effect rows of the table allow us to know that there how many levels were in each
factor. In each case, the three F-values were computed by dividing the MS values on
the first three rows by the MS value located on the fourth row (i.e., within groups or

EXCERPT 13.8 • Two-Way ANOVA Summary Table

TABLE 5 Summary of ANOVA for marking frequency 

Source SS df MS F

MEF 718.21 1 718.21 13.99*

Examinees’ EA 169.97 2 84.98 1.66
MEF Examinees’ EA 417.23 2 208.62 4.06*

w. cell (error) 11810.15 230 51.35

*p .05

Source: Chen, L. J., Ho, R. G., & Yen, Y. C. (2010). Marking strategies in metacognition-
evaluated computer-based testing. Journal of Educational Technology & Society, 13(1), 246–259.

6

*

(N = 236)
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error). And in each case, three calculated F-values are presented, with each one
addressing a different null hypotheses associated with the two-way ANOVA.

In reporting the outcome of their two-way ANOVAs, researchers often talk
about the results within the text of the research report without including a summary
table. In Excerpt 13.9, we see how this was done for a study we considered earlier
in the chapter. In this investigation, an equal number of binge-eating and non-binge-
eating females first read one of two vignettes concerning a girl shopping at a mall
(who, in one vignette, was teased about her weight); then, all of the research par-
ticipants filled out a personality inventory designed to measure a component of mood
called negative effect.

6If you are tempted to think that there were 86 research participants in this study, make another guess.

EXCERPT 13.9 • Results of a Two-Way ANOVA Presented in the Text

A between subjects ANOVA with binge eating status and vignette as inde-
pendent variables and negative mood as the dependent variable was conducted. This
analysis revealed a significant main effect of vignette,

such that participants who read the weight-related teasing vignette re-
ported significantly more negative affect than those who
read the neutral vignette There was no main effect of binge
status nor was there an interaction between binge status and vignette

Source: Aubie, C. D., & Jarry, J. L. (2009). Weight-related teasing increases eating in binge
eaters. Journal of Social & Clinical Psychology, 28(7), 909–936.

1p = .392.
1p = .122,

1M = 13.87, SD = 3.422.
1M = 15.75, SD = 4.992

eta2 = .05,
F11, 842 = 4.57, p = .04,

2 * 2

Based on the information in Excerpt 13.9, you should be able to discern what
the three null hypotheses were, what decision was reached regarding each and
what level of significance was probably used by the researchers. In addition, you
should be able to figure out how many college women supplied data for this two-
way ANOVA.6 Finally, you should also be able to determine whether the two means
contained in this passage are cell means or main effect means.

Follow-Up Tests

If none of the two-way ANOVA Fs turns out to be significant, no follow-up test
will be conducted. However, if at least one of the main effects is found to be sig-
nificant, or if the interaction null hypothesis is rejected, you may find that a fol-
low-up investigation is undertaken in an effort to probe the data. We consider first
the follow-up tests used in conjunction with significant main effect F-ratios. Then,
we examine post hoc strategies typically employed when the interaction F turns
out to be significant.

H0,
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Follow-Up Tests to Probe Significant Main Effects

If the F-test for one of the factors turns out to be significant and if there are only two
levels associated with that factor, no post hoc test is applied. In this situation, the out-
come of the F-test indicates that a significant difference exists between that factor’s
two main effect means, and the only thing the researcher must do to determine where
the significant difference lies is to look at the two row (or two column) means.
Whichever of the two means is larger is significantly larger than the other mean. If
you take another look at Excerpt 13.9, you see an example in which just one of the
main effect Fs was significant in a ANOVA. Because there were only two main
effect means associated with the significant F, the researchers interpreted these results
directly. That interpretation is presented in the second portion of the second sentence
in Excerpt 13.9, where the focus is on the teasing and non-teasing main effect means.

If the two-way ANOVA yields a significant F for one of the two factors, and
if that factor involves three or more levels, the researcher is likely to conduct a post
hoc investigation in order to compare the main effect means associated with the sig-
nificant F. This is done for the same reasons that a post hoc investigation is typi-
cally conducted in conjunction with a one-way ANOVA that yields a significant
result when three or more means are compared. In both cases, the omnibus F that
turns out to be significant must be probed to allow the researcher (and others) to
gain insight into the likely pattern of population means.

Excerpt 13.10 shows how a post hoc investigation can help to clarify the
meaning of a significant main effect in a two-way ANOVA. In the study associated

2 * 2

EXCERPT 13.10 • Post Hoc Investigation Following a Significant 
Main Effect

To test hypothesis two, a two-way ANOVA was run. The interaction between PA
level and HR intensity level was not significant. The main effect of PA level was not
significant. However, ANOVA results indicated a significant main effect [of] heart
rate intensity level [on] attention change. The was statistically sig-
nificant . . . The high intensity group had the highest average inatten-
tion change improvement followed by the self-regulated
group the low intensity group 
and the control group A Tukey post hoc multiple compari-
son of means revealed significant mean differences between high run-
ning intensity and the control group (2.531), but not between high intensity and
self-regulated or low intensity groups. There were not statistically significant mean
differences between the self-regulated group mean and low, high, or the control
group means. There were not statistically significant mean differences between the
low group mean and the self-regulated, high, or the control group means.

Source: Norling, J. C., Sibthorp, J., Suchy, Y., Hannon, J. C., & Ruddell, E. (2010). The ben-
efit of recreational physical activity to restore attentional fatigue: The effects of running in-
tensity level on attention scores. Journal of Leisure Research, 42(1), 135–152.

1p = .0442
1M = .83, SD = 3.802.

1M = 1.27, SD = 3.962,1M = 1.81, SD = 3.402,
SD = 4.162,1M = 3.36,

1p = .0252.
F13, 1122 = 3.24
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with this excerpt, 120 recreational runners were initially classified according to
three levels of physical activity (PA) and four levels of running intensity. These in-
dividuals then took a test on a computer that measured their ability to keep their at-
tention focused on a visual task. In this passage from the research report, notice how
Tukey’s test was used to compare, in a pairwise fashion, the four main effect means
of the intensity factor.

If each of the factors in a two-way ANOVA turns out significant and if each
of those factors contains three or more levels, then it is likely that a separate post
hoc investigation will be conducted on each set of main effect means. The purpose
of the two post hoc investigations would be the same: to identify the main effect
means associated with each factor that are far enough apart to suggest that the cor-
responding population means are dissimilar. When both sets of main effect means
are probed by means of post hoc investigations, the same test procedure (e.g.,
Tukey’s) is used to make comparisons among each set of main effect means.

Follow-Up Tests to Probe a Significant Interaction

When confronted with a statistically significant interaction, researchers typically do
two things. First, they refrain from interpreting the F-ratios associated with the two
main effects. Second, post hoc tests are conducted or a graph of the interaction is
prepared to help explain the specific nature of the interaction within the context of
the study that has been conducted. Before turning our attention to the most fre-
quently used follow-up strategies employed by researchers after observing a statis-
tically significant interaction, let’s consider what they typically do not do.

Once the results of the two-way ANOVA become available, researchers usu-
ally first look to see what happened relative to the interaction F. If the interaction
turns out to be nonsignificant, they move their attention to the two main effect Fs
and interpret them in accordance with the principles outlined in the previous sec-
tion. If, however, the interaction turns out to be significant, little or no attention is
devoted to the main effect F-ratios, because conclusions based on main effects can
be quite misleading in the presence of significant interactions.

To illustrate how the presence of interaction renders the interpretation of main
effects problematic, consider the three hypothetical situations presented in Figure 13.1.
The number within each cell of each diagram is meant to be a sample mean, the
numbers to the right of and below each diagram are meant to be main effect means
(assuming equal cell sizes), and the abbreviated summary table provides the results
that would be obtained if the samples were large enough or if the within-cell vari-
ability were small enough.

In situation 1 (on the left), both main effect Fs turn out nonsignificant. These
results, coupled with the fact that there is no variability within either set of main ef-
fect means, might well lead one to think that the two levels of factor A are equiva-
lent and to think that the three levels of factor B are equivalent. An inspection of
the cell means, however, shows that those conclusions based on main effect means



Two-Way Analyses of Variance 295

would cause one to overlook potentially important findings. The two levels of fac-
tor A produced different means at the first and third levels of factor B, and the three
levels of factor B were dissimilar at each level of factor A.

To drive home this point about how main effect Fs can be misleading when
the interaction is significant, pretend that factor A is gender (males on the top row,
females on the bottom row), that factor B is a type of headache medicine given to
relieve pain (brands X, Y, and Z corresponding to the first, second, and third
columns, respectively), with each participant asked to rate the effectiveness of his
or her medication on a 0 to 40 scale ( no relief; total relief) 60 minutes
after being given a single dose of one brand of medication. If one were to pay at-
tention to the main effect Fs, one might be tempted to conclude that men and
women experienced equal relief and that the three brands of medication were
equally effective. Such conclusions would be unfortunate because the cell means
suggest strongly (1) that males and females differed, on the average, in their reac-
tions to headache medications X and Z, and (2) that the three medications differed
in the relief produced (with brand X being superior for females, brand Z being supe-
rior for males).

In the second of our hypothetical situations (located in the center of Figure
13.1), notice again how the main effect Fs are misleading because of the interac-
tion. Now, the main effect of factor A is significant, and one might be tempted to
look at the main effect means and draw the conclusion that males experienced less
relief from their headache medicines than did females. However, inspection of the
cell means clearly shows that no difference exists between males and females when
given brand Z. Again, the main effect F for factor B would be misleading for the
same reason as it would be in the first set of results.

In the final hypothetical situation (on the right in Figure 13.1), both main
effect Fs are significant. Inspection of the cell means reveals, however, that the
levels of factor A do not differ at the first or at the second levels of factor B, and
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that the levels of factor B do not differ at the first level of factor A. Within the
context of our hypothetical headache study, the main effect Fs, if interpreted,
would lead one to suspect that females experienced more relief than males and
that the three medicines differed in their effectiveness. Such conclusions would
be misleading, for males and females experienced differential relief only when
given brand Z, and the brands seem to be differentially effective only in the case
of females.

When the interaction F turns out to be significant, the main effect Fs must
be interpreted with extreme caution—or not interpreted directly at all. This is why
most researchers are encouraged to look at the interaction F first when trying to
make sense out of the results provided by a two-way ANOVA. The interaction F
serves as a guidepost that tells the researchers what to do next. If the interaction
F turns out to be nonsignificant, this means that they have a green light and may
proceed to interpret the F-ratios associated with the two main effects. If, however,
the interaction F is significant, this is tantamount to a red light that says, “Don’t
pay attention to the main effect means but instead focus your attention on the 
cell means.”

One of the strategies used to help gain insight into a statistically significant
interaction is a graph of the cell means. We will look at such a graph that was 
included in a recent research report; first, however, you must become acquainted
with the study.

In this study’s experiment, half of the research participants (who were college
students) were asked to think of someone about their age with whom they had an
especially close relationship, whereas the others were asked to think of an age-level
peer who was more of an acquaintance rather than a close friend. Next, each re-
search participant was asked to read narrative accounts of two situations where one
person betrayed someone else. When reading these accounts, each research partic-
ipant was asked to imagine that he or she was the one who had been betrayed, with
the betrayer being the individual they had been asked to think of. Not all research
participants read the same betrayal narratives, however. Half of the students were
given narrative accounts that involved “high severity” betrayal; the other received
accounts that were “low severity” instances of betrayal.

After the college students had finished reading their pair of betrayal narra-
tives, they filled out a questionnaire that assessed their opinions of how a variety of
“forgiveness concepts” applied to the instances of betrayal they had just considered.
The students’ total scores from the forgiveness instrument became the data that
went into in a ANOVA. The independent variables were defined by the sta-
tus of the imagined betrayer (“close” or “not close”) and by the severity level of the
betrayal (“high” or “low”).

In Excerpt 13.11, we see a graph of the cell means from the study dealing with
betrayal and forgiveness. Most researchers set up their graphs like the one in
Excerpt 13.11 in that (1) the ordinate represents the dependent variable, (2) the
points on the abscissa represent the levels of one of the independent variables, and

2 * 2
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(3) the lines in the graph represent the levels of the other independent variable. In
setting up such a graph, either of the two independent variables can be used to label
the abscissa. For example, the researcher associated with Excerpt 13.11 could have
put the factor Betrayal Severity and its two levels (Low and High) on the baseline
with the lines in the graph representing the two levels (Close and Not Close) of the
Relational Closeness factor.

Notice how the graph in Excerpt 13.11 allows us to see whether an interac-
tion exists. First recall that the absence of interaction means that the difference be-
tween the levels of one factor remains constant as we move from one level to
another level of the other factor. Now look at Excerpt 13.11. In the graph, there is
about a 13-point difference between the mean scores which define the left ends of
the two lines. However, things change when we consider the right end points of
these lines. Here, there is more than a 41-point difference between the two means.
Considered as a whole, this graph suggests that people like this study’s research par-
ticipants extend the notion of forgiveness about as much to “betrayers” who are
close or not close, so long as the betrayal issue is low in severity. However, if the

EXCERPT 13.11 • The Graph of a Significant Interaction
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FIGURE 1 The Effects of the Interaction between Betrayal Severity and
Relational Closeness on the Conceptualization of Forgiveness Score
Source: Dixon, L. J. (2009). The effects of betrayal characteristics on laypeople’s ratings of
betrayal severity and conceptualization of forgiveness. Unpublished doctoral dissertation,
University of Tennessee, Knoxville.
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issue is high in severity, forgiveness is extended much more readily to those who
are close friends rather than mere acquaintances.7

The graph of an interaction can be and often is set up such that vertical bars
(rather than dots above the baseline) represent the cell means. I have created such
a graph using the data from the betrayal and forgiveness study, and it appears in
Figure 13.2. The amount of interaction shown in this figure, of course, is exactly
the same as that shown in Excerpt 13.11. Both graphs do a nice job of showing that
the variable of “closeness” makes a greater difference to the amount of forgiveness
that is extended when the nature of the betrayal is severe.

Another strategy used by researchers to help understand the nature of a sig-
nificant interaction is a statistical comparison of cell means. Such comparisons are
usually performed in one of two ways. Sometimes, all of the cell means will be com-
pared simultaneously in a pairwise fashion using one of the test procedures dis-
cussed in Chapter 12. In other studies, cell means are compared in a pairwise
fashion one row or one column at a time using a post hoc strategy referred to as a
simple main effects analysis. In the following five paragraphs, excerpts from actual
studies are used to illustrate each of these post hoc strategies.

When a researcher probes a statistically significant interaction via tests of
simple main effects, the various levels of one factor are compared in such a way

7Notice that the two lines in Excerpt 13.16 are not parallel. If the interaction F turns out to be significant, this
is because the lines in the graph are nonparallel to a degree that is greater than what one expects by chance.
For this reason, some authors define interaction as a departure from parallelism.
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that the other factor is held constant. This is accomplished by comparing the cell
means that reside in individual rows or in individual columns of the two-dimensional
arrangement of cell means. This strategy of making tests of simple main effects is
illustrated in Excerpt 13.12.

EXCERPT 13.12 • Tests of Simple Main Effects

The mean proportions of correct prospective memory responses [went] into a
between-participants ANOVA. This analysis revealed a significant

main effect of task [but] this main effect was qualified by a significant age by condi-
tion interaction. . . . Tests of simple main effects showed that age effects were signif-
icant in the activity-based, and
the time-based conditions,
but not in the event-based condition,

Follow-up [Tukey] post hoc tests indicated that in the activity-based condi-
tion performance of young and young-old participants did not reliably differ from each
other but young were reliably better than old-old participants 
Although young-old participants were numerically better than old-old par-
ticipants this difference was marginally significant In contrast,
in the time-based condition young participants were reliably better than both young-
old and old-old participants (both ps ) who did not differ from each other

Source: Kvavilashvili, L., Kornbrot, D. E., Mash, V., Cockburn, J., & Milne, A. (2009). Dif-
ferential effects of age on prospective and retrospective memory tasks in young, young-old,
and old-old adults. Memory, 17(2), 180–196.

1p = .242.
6 .0001

1p = .052.1M = .662,
1M = .852

1p = .0022.1p = .242

h2 = .019.
F12, 2142 = 2.12, MSE = .112, p = .12,

F12, 2142 = 16.14, MSE = .112, p 6 .0001, h2 = .13,
F12, 2142 = 4.87, MSE = .112, p = .009, h2 = .04,

3 1age2 * 3 1task2

The first thing to note about Excerpt 13.12 is that we’re being given the results
of a ANOVA. One of the factors was called age, and its levels were called
young, young-old, and old-old. The other factor is initially referred to as task, but
thereafter this same factor is referred to as condition. The levels of this second factor
were the activity-based condition, the time-based condition, and the event-based con-
dition. You must use these “discoveries” to create a picture of the study. In my picture,
I have a square with three rows (for age) and three columns (for condition). Finally,
in looking at your picture, you must realize that there was a group of individuals in-
side each of the nine cells, with each person providing a memory response score.

Because the interaction between age and condition was significant, the re-
searchers conducted tests of simple main effects. As you can see, they did this by
comparing, within each level of condition, the cell means for the three age groups.
In my picture, this amounts to comparing the three means in the left column, then
comparing the three means in the middle column, and finally comparing the three
means in the right column. My picture helps me understand what was being com-
pared in each of the three tests of simple main effects.

3 * 3
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Each of the three tests of simple main effects conducted in Excerpt 13.12 is
highly analogous to a one-way ANOVA F-test. The results of these three tests are
reported in the third sentence of the excerpt, two of which yielded a significant re-
sult. Because each of these significant simple effect comparisons involved three
means, the researchers conducted a post hoc investigation to probe each significant
simple effect (just as a post hoc investigation typically is applied following a sig-
nificant finding from a one-way ANOVA involving three or more means). The re-
sults of the Tukey tests that compared, in a pairwise fashion, the means of the three
age groups in the activity-based condition are presented first. Then, in the last sen-
tence, we see what was discovered when the time-based means were compared.

In Excerpt 13.12, the tests of simple main effects (and subsequent Tukey tests)
compared the three age groups within each condition. If the researchers had wanted
to, they could have conducted their tests of simple main effects to compare the three
conditions within each age group. Researchers usually choose to run their tests of
simple main effects in the direction that makes most sense to them after consider-
ing their research questions. Occasionally (but not often), researchers conduct tests
of simple main effects going both directions.

A third strategy exists for statistically comparing cell means after the interac-
tion null hypothesis has been rejected. Instead of comparing the means that reside
within individual rows or columns of the two-dimensional layout of a two-way
ANOVA, some researchers conduct all possible pairwise comparisons among the
cell means. In Excerpt 13.13, we see an example in which this approach was taken.

EXCERPT 13.13 • Pairwise Comparison of All Cell Means

[Cell means were compared] to identify whether the differences of the pairs were
statistically significant. The analyses involved [six comparisons]: the various unique
combinations of field dependent/independent and type of preset learning goal. The
greatest difference was for field dependence, specific preset learning goal versus
field dependence general preset learning goal, which was statistically significant:

There were statistically significant results for field
dependence general preset learning goal versus field independence specific preset
learning goal: and for field dependence, general
preset learning goal versus field independence, general preset learning goal:

Three statistically insignificant values were also
reported. These were field dependence, specific preset learning goal versus field in-
dependence, specific preset learning goal: field dependence,
specific preset learning goal, versus field independence, general preset learning goal:

and field independence, specific preset learning goal, versus
field independence, general preset learning goal:

Source: Ku, D. T., & Soulier, J. S. (2009). The effects of learning goals on learning perfor-
mance of field-dependent and field-independent late adolescents in a hypertext environment.
Adolescence, 44, 651–664.

t1882 = .30, p =  .76.
t1882 = .81, p = .42:

t1882 = .52, p = .60;

t1882 = -2.72, p = .00, d = .57.

t1882 = -3.25, p = .00, d = .69

t1882 = 4.06, p = .00, d = .86.
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There were four cells involved in this study (because it was a ANOVA), cre-
ated by the combination of two levels of the learning-style factor (field-dependence
and field-independence) and two levels of the preset learning goal factor (general
and specific). Each of these cell means was compared in a pairwise fashion with
each of the other three cell means, producing six tests.

Planned Comparisons

In Chapter 12, we saw several cases in which planned comparisons were used in-
stead of or in addition to a one-way ANOVA. (See Excerpts 12.16, 12.17, and
12.18.) It should come as no surprise that such comparisons can also be used in con-
junction with (or instead of) two-way ANOVAs. Not many researchers do this, but
there are some who do. Consider, for example, a recent study involving spiders.

In the study associated with Excerpt 13.14, the researchers had two factors,
each of which had two levels. Thus, they could have conducted a standard 
ANOVA that would have produced two main effect Fs and one interaction F. In-
stead of conducting those three tests, the researchers performed a single planned
comparison. If you read the excerpt closely, you see that this planned comparison
involved all four cells. The mean from one of the four cells was compared against
the mean of the other three cells combined. In the excerpt’s final sentence, the re-
searchers provide all four cell means. However, the final three of these cell means

2 * 2

2 * 2

EXCERPT 13.14 • A Planned Comparison Instead of a Two-Way ANOVA

The study employed a design with spider fear (low versus high) and spider prime
(spider present in testing room versus no spider) as the between-subject variables, cre-
ating four groups (low fear – spider: low fear spider: high fear –
spider: high fear spider: ). . . . [This] design can best be thought
of as including one experimental group (high fear spider) and three control groups
(low fear – spider, low fear spider, and high fear – spider) that vary the presence of
the spider prime and level of predisposing spider fear, the two elements hypothesized to
be necessary for expression of the memory bias. . . . To test the central hypothesis of
preferential recall of spider words, a [preplanned] contrast was run to examine the mean
number of spider words recalled by the high fear � spider group (contrast weight �

) when compared to the other three groups (contrast weights ). As
predicted, the high fear spider group recalled significantly more spider words than
the other groups (high fear spider: high fear � spider:

low fear spider: low fear � spider:

Source: Smith-Janik, S. B., & Teachman, B. A. (2008). Impact of priming on explicit mem-
ory in spider fear. Cognitive Therapy & Research, 32(1), 291–302.

M = 5.32 ; 1.872, F11, 1002 = 8.81, P = .004, f = .30.
M = 5.32 ; 1.28;+M = 5.30 ; 1.66;

M = 6.39 ; 1.66;+
+

= -1, -1, -1+ 3

+
+

N = 28+N = 26;
N = 29;+N = 28;

2 * 2
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were combined into a single mean. Note the first of the F-test’s two df values. If all
four of the separate cell means had been compared, that df would have been 3. It is
1 because only two things were being compared: the mean of high-fear spider
cell versus the mean of the data in the other three cells.

The researchers associated with Excerpt 13.14 deserve enormous credit for
having specific plans in mind when they designed their study and when they ana-
lyzed their data. Their research question guided their statistical analysis, and their
analysis did not follow the conventional rules for making statistical comparisons in
a two-way ANOVA. Far too many applied researchers erroneously think that (1) 
F-tests for main and interaction effects must be computed and (2) comparisons of
cell means can be made only if the interaction is significant. This is unfortunate for
several reasons, the main one being that planned comparisons of cell means can
sometimes produce interesting findings that would remain undetected by the stan-
dard F-tests of a two-way ANOVA.

Assumptions Associated with a Two-Way ANOVA

The assumptions associated with a two-way ANOVA are the same as those associ-
ated with a one-way ANOVA: randomness, independence, normality, and homo-
geneity of variance. As I hope you recall from the discussion of assumptions
contained in Chapter 11, randomness and independence are methodological con-
cerns; they are dealt with (or should be dealt with) when a study is set up, when
data are collected, and when results are generalized beyond the participants and
conditions of the researcher’s investigation. Although the randomness and inde-
pendence assumptions can ruin a study if they are violated, there is no way to use
the study’s sample data to test the validity of these prerequisite conditions.

The assumptions of normality and homogeneity of variance can be tested and
in certain circumstances should be tested. The procedures used to conduct such tests
are the same as those used by researchers to check on the normality and equal vari-
ance assumptions when conducting t-tests or one-way ANOVAs. Two-way ANOVAs
are also similar to t-tests and one-way ANOVAs in that (1) violations of the normal-
ity assumption usually do not reduce the validity of the results, and (2) violations of
the equal variance assumption are more problematic when the sample sizes differ.

Because violations of the normality and equal variance assumptions are less
disruptive to the F-tests of a two-way ANOVA when the ns are large and equal,
many researchers make an effort to set up the studies with equal cell sizes. Fre-
quently, however, it is impossible to achieve this goal. On occasion, a researcher be-
gins with equal cell sizes but ends up with cell ns that vary because of equipment
failure, subject dropout, or unusable answer sheets. On other occasions, the re-
searcher has varying sample sizes at the beginning of the study but does not want
to discard any data so as to create equal ns because such a strategy would lead to a
loss of statistical power. For either of these reasons, a researcher may end up with

+
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cell sizes that vary. In such situations, researchers frequently concern themselves
with the normality and homogeneity of variance assumptions.

In Excerpts 13.15 and 13.16, we see examples where the normality as-
sumption and the equal variance assumption were tested. In the first of these ex-
cerpts, the Kolmogorov and Levene tests were utilized to check on these
assumptions. In Excerpt 13.16, we see two other procedures—Lilliefors test and
Bartlett’s test—being used. In these and other cases where assumptions are tested,
researchers usually hope that the assumption’s null hypothesis will not be rejected.
When this is the case, they can proceed directly from these preliminary tests to their
study’s main tests.

EXCERPTS 13.15–13.16 • The Normality and Equal Variance Assumptions

Each set of data was analyzed first with the Kolmogorov-Smirnov to test for nor-
mality and then with Levene’s test for homogeneity of variances. Differences among
means were then analyzed by two-way analysis of variance.

Source: Zalups, R. K., & Bridges, C. C. (2010). Seventy-five percent nephrectomy and the dis-
position of inorganic mercury in 2, 3-dimercaptopropanesulfonic acid-treated rats lacking
functional multidrug-resistance protein 2. Journal of Pharmacology and Experimental Thera-
peutics, 332(3), 866–875.

Normality and homogeneity of the variance were studied with the Lilliefors and
Bartlett tests, respectively, at 5% probability. [Acceptable] data were submitted to
two-way analysis of variance and the means were compared by the Tukey test at 5%
probability.

Source: Manfroi, L., Silva, P. H. A., Rizzon, L. A., Sabaini, P. S., & Glória, M. B. A. (2009).
Influence of alcoholic and malolactic starter cultures on bioactive amines in Merlot wines.
Food Chemistry, 116(1), 208–213.

As indicated in Chapter 11, researchers have several options when it becomes
apparent that their data sets are characterized by extreme nonnormality or hetero-
geneity of variance. One option is to apply a data transformation before testing
any null hypotheses involving the main effect or cell means. In Excerpt 13.17, we
see a case where this was done using a log transformation after the Cochran test in-
dicated heterogeneity of variance. In other research reports, you are likely to see
different kinds of transformations used (e.g., the square root transformation, the arc-
sine transformation). Different kinds of transformations are available because non-
normality or heterogeneity of variance can exist in different forms. It is the
researcher’s job, of course, to choose an appropriate transformation that accom-
plishes the desired objective of bringing the data into greater agreement with the
normality and equal variance assumptions.
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Instead of using data transformations, researchers can deal with untenable as-
sumptions in other ways. One procedure is to have equal ns in the various cells, either
by setting up the study like that or by discarding data randomly from those cells with
larger ns. A two-way ANOVA with equal cells sizes is robust, meaning that the main
effect and interaction F-tests operate as intended even if the assumptions are violated.
A second strategy is to switch from the regular two-way ANOVA to a test procedure
that has less rigorous assumptions. These alternative procedures are often referred to
as nonparametric tests, and we consider some of these procedures in Chapter 18. A
third procedure is to change the way the dependent variable is measured, or to change
the dependent variable itself. Regardless of which procedure is used, well-trained re-
searchers pay attention to the assumptions underlying the F-tests of a two-way ANOVA.

If a researcher conducts a two-way ANOVA but does not say anything at all
about the normality and equal variance assumptions, then you have a right—even
an obligation—to receive the researcher’s end-of-study claims with a big grain of
salt. You have a right to do this, because F-tests can be biased if the assumptions
are violated. That bias can be positive or negative in nature, thus causing the
ANOVA’s F-tests to turn out either too large or too small, respectively. If the for-
mer problem exists, the computed p-value associated with a calculated F-value will
be too small, thereby exaggerating how much the sample data deviate from null ex-
pectations. In this situation, the nominal alpha level understates the probability of
a Type I error. If the bias is negative, the p-values associated with computed F-
values will be too large. This may cause the researcher to not reject one or more
null hypotheses that would have been rejected if evaluated with unbiased ps.

Estimating Effect Size and Conducting Power 
Analyses in Two-Way ANOVAs

As indicated in Chapter 8, various techniques have been developed to help researchers
assess the extent to which their results are significant in a practical sense. It is worth
repeating that such techniques serve a valuable role in quantitative studies wherein

EXCERPT 13.17 • Using a Data Transformation

Significant differences in number of fish detected by the riverwatcher were investi-
gated using a two-way ANOVA using turbidity and number of fish as factors.
Cochran’s test identified heterogeneous variances within the data and a subsequent
log transformation was undertaken.

Source: Baumgartner, L., Bettanin, M., McPherson, J., Jones, M., Zampatti, B., & Beyer, K.
(2010). Assessment of an infrared fish counter (Vaki Riverwatcher) to quantify fish migrations
in the Murray-Darling Basin (Fisheries Final Report Series No. 116). Industry & Investment
NSW, Narrandera, Australia.

1x + 12
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null hypotheses are tested; it is possible for a result to end up being declared statis-
tically significant even though it is totally unimportant from a practical standpoint.
Earlier, we saw how these techniques have been used in conjunction with t-tests and
one-way ANOVAs. We now consider their relevance to two-way ANOVAs.

When researchers use a two-way ANOVA, they can estimate the practical
significance of the main and interaction effects, of post hoc comparisons, or of
planned contrasts. Four of the excerpts we have already considered illustrate the
use of d, eta squared, and f. Take another look at Excerpts 13.9, 13.12, 13.13, and
13.14 to see how these effect size indices were used. As you will discover, d is
relevant only when two means are being compared, whereas eta squared and f can
be used when two or more means are involved. In Excerpt 13.18, we see a case
in which partial eta squared was used in conjunction with a two-way ANOVA.

EXCERPT 13.18 • Assessing Practical Significance

Data were analysed using a two-way between subject ANOVA with a between subject
factor of car (Fiesta and Bentley) and a between subject factor of sex (female and male).
Analysis revealed no main effect of sex [ partial ],
a main effect of car status [ partial ], and impor-
tantly no significant car sex interaction [ partial

].

Source: Dunn, M. J.; Searle, R. (2010). Effect of manipulated prestige-car ownership on both
sex attractiveness ratings. British Journal of Psychology, 101(1), 69–80.

h2 = .001
F11, 562 = 0.1, p 7 .05,*

h2 = .49F11, 562 = 276.5, p 6 .01,
h2 = .001F11, 562 = 1.3, p 7 .05,

Both partial eta squared and eta squared are used frequently by applied re-
searchers. In a one-way ANOVA, they are identical in size, so it does not matter which
one is used. These two measures of effect size, however, usually turn out to be dis-
similar in size in a two-way ANOVA, because eta squared is computed as the vari-
ability associated with an effect (such as a main effect) divided by the total variability
in the ANOVA. In contrast, partial eta squared is computed as the variability asso-
ciated with an effect divided by the sum of that variability and within-group (i.e.,
error) variability. There are differences of opinion as to whether eta squared or partial
eta squared should be used. In a real sense, either one is better than nothing!

When estimating the effect size of an F-ratio or the difference between two sam-
ple means, researchers ought to do more than simply report a numerical value. To be
more specific, researchers ought to discuss and interpret the magnitude of the esti-
mated effect. Unfortunately, you will come across many research reports where this is
not done. Because certain journals now require estimates of effect size to be presented,
some researchers simply “jump through the hoop” to include such estimates when
summarizing their studies. It is sad but true that in some cases these researchers do not
say anything because they have no idea how to interpret their effect size estimates.
They just toss them into their report in an effort to make things look good.
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To make sure that you are not in the dark when it comes to interpreting measures
of effect size computed for two-way ANOVA results, I have put the common standards
for small, medium, and large effect sizes in Table 13.2. The information contained in
this table is not new, because it was presented earlier in Table 10.1. It is helpful to have
these standards handy now, however, because they help when interpreting the five ex-
cerpts of this chapter already seen that contained statements about effect size.

To demonstrate a concern for practical significance, researchers are advised
to conduct an a priori power analysis in conjunction with their two-way ANOVAs.
When this occurs, it is done in the design phase of the study to determine the needed
sample sizes for the two-way ANOVA to function as desired. In Excerpt 13.19, we
see an example of this kind of power analysis. The researchers who conducted this
study deserve to be commended for taking the time to determine how large their
sample sizes needed to be.

TABLE 13.2 Effect Size Criteria for Two-Way ANOVAs

Effect Size Measure Small Medium Large

d .20 .50 .80
Eta .10 .24 .37
Eta Squared .01 .06 .14
Omega Squared .01 .06 .14
Partial Eta Squared .01 .06 .14
Partial Omega Squared .01 .06 .14
Cohen’s f .10 .25 .40

Note. These standards for judging effect size are quite general and should be changed to fit the unique
goals of any given research investigation.

(v2
p)

(h2
p)

(v2)
(h2)

(h)

EXCERPT 13.19 • A Power Analysis to Determine the Needed Sample Size

In order to more systematically determine the sample size needed for Study 2, a
power analysis using G-POWER was conducted. Estimating an effect size of .75,
and a .05 significance level, the analysis indicated that 108 participants were needed
to achieve statistical power of .80. . . . Therefore, a minimum of 18 participants were
needed in each of the six conditions [of the ANOVA].

Source: Aubie, C. D., & Jarry, J. L. (2009). Weight-related teasing increases eating in binge
eaters. Journal of Social & Clinical Psychology, 28(7), 909–936.

2 * 3

In your reading of the research literature, you are likely to encounter many
studies in which a two-way ANOVA functions as the primary data analytic tool. Un-
fortunately, many of the researchers who use this tool formally address only the con-
cept of statistical significance, with the notion of practical significance automatically
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(and incorrectly) superimposed on each and every result that turns out to be statis-
tically significant. Consequently, you must remain vigilant for instances of this un-
justified and dangerous misinterpretation of results.

The Inflated Type I Error Rate in Factorial ANOVAs

When data are subjected to a standard two-way ANOVA, three F-values are
computed—one for each main effect and one for the interaction. If the same level
of significance (e.g., .05) is used in assessing each F-value, you may have been
thinking that the probability of a Type I error occurring somewhere among the three
F-tests is greater than the alpha level used to evaluate each F-value. Accordingly,
you may have been expecting me to point out how conscientious researchers make
some form of adjustment to avoid having an inflated Type I error rate associated
with their two-way ANOVAs.

Although it is clear that the computation of three F-values in a two-way
ANOVA leads to a greater-than-alpha chance that one or more of the three null hy-
potheses will be incorrectly rejected, the vast majority of applied researchers do not
adjust anything in an effort to deal with this problem. This is because most applied
researchers consider each F-test separately rather than look at the three F-tests col-
lectively as a set. When the F-tests are viewed in that manner, the Type I error risk
is not inflated, because the researcher’s alpha level correctly specifies the probabil-
ity that any given F-test causes a true to be rejected.

When a given level of significance is used to evaluate each of the three F-values,
it can be said that the familywise error rate is set equal to the alpha level. Each family
is defined as the set of contrasts represented by an F-test and any post hoc tests that
might be conducted if the F turns out to be statistically significant. The familywise
error rate is equal to the common alpha level employed to evaluate all three F-tests be-
cause the chances of a Type I error, within each family, are equal to the alpha level.

If a researcher analyzes the data from two or more dependent variables with sep-
arate two-way ANOVAs, you may find that the Bonferroni procedure is used to ad-
just the alpha level. In Excerpt 13.20, we see where this was done in a study dealing
with two adhesives used by dentists. Because five two-way ANOVAs were conducted

H0

EXCERPT 13.20 • The Bonferroni Adjustment Used with Multiple 
Two-Way ANOVAs

Two different types of self-etching adhesive bonding agents were evaluated. . . . The
shear bond strength data were analyzed with a two-way ANOVA per adhesive to
evaluate the effect of storage temperature (2 levels) or storage time (3 levels) on
shear bond strength. Additionally, a two-way ANOVA per storage time was used to
analyze the effect of storage temperature (2 levels) or adhesive type (2 levels) on

(continued )
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in this study, the researchers lowered their alpha level from .05 to .01 via the standard
Bonferroni procedure. This adjusted level of significance was then used in evaluating
the two main effect and interaction F-ratios generated by each of the five ANOVAs.

A Few Warnings Concerning Two-Way ANOVAs

Before concluding this chapter, I want to offer a few cautionary comments that I
hope you will tuck away in your memory bank and then bring up to consciousness
whenever you encounter a research report based on a two-way ANOVA. Although
I have touched on some of these issues in previous chapters, your ability to deci-
pher and critique research summaries may well improve if I deliberately reiterate a
few of those earlier concerns.

Evaluate the Worth of the Hypotheses Being Tested

I cannot overemphasize how important it is to critically assess the worth of the
hypotheses being tested within any study based on a two-way ANOVA. No matter
how good the study may be from a statistical perspective and no matter how clear
the research report is, the study cannot possibly make a contribution unless the ques-
tions being dealt with are interesting. In other words, the research questions that
prompt the investigator to select the factors and levels of the two-way ANOVA must
be worth answering and must have no clear answer before the study is conducted. If
these things do not hold true, then the study has a fatal flaw in its foundation that
cannot be overcome by appropriate sample sizes, rigorous alpha levels, high relia-
bility and validity estimates, tests of assumptions, Bonferroni corrections, F-ratios
that are statistically significant, and elaborate post hoc analyses. The old saying that
“You can’t make a silk purse out of a sow’s ear” is as relevant here as anywhere else.

Remember That Two-Way ANOVAs Focus on Means

As with most t-tests and all one-way ANOVAs, the focus of a two-way ANOVA is
on means. The main effect means and the cell means serve as the focal points of the

EXCERPTS 13.20 • (continued)

shear bond strength. Tukey’s post hoc test was used to compare pairwise differences
between mean values. . . . A Bonferroni correction with an level of 0.01 was ap-
plied as a multiple-comparison correction because [five two-way ANOVAs] were
performed simultaneously.

Source: Graham, J. B., & Vandewalle, K. S. (2010). Effect of long-term storage temperatures
on the bond strength of self-etch adhesives. Military Medicine, 175(1), 68–71.

a
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three research questions associated with any two-way ANOVA. When the main ef-
fect and interaction F-tests are discussed, it is essential for you to keep in mind that
conclusions should be tied to means.

I recently read a study (utilizing a two-way ANOVA) that evaluated the im-
pact of an outdoor rock-climbing program on at-risk adolescents. There were two
main dependent variables: alienation and personal control. The researchers asserted,
in the abstract of the research report, that “after experiencing the climbing program,
the experimental group was less alienated than its control counterparts” and
“demonstrated a stronger sense of personal control than did the control group.”
Many people reading those statements would think that everyone in the experi-
mental group scored lower on alienation and higher on personal power than anyone
in the control group. However, the group means and standard deviations included
in the research report—on both measures (alienation and personal power)—make
it absolutely clear that some of the members of the control group had better scores
than did some of the members in the experimental group.

Many researchers fail to note that their statistically significant findings deal
with means, and the literal interpretation of the researchers’ words says that all of
the folks in one group outperformed those in the comparison group(s). If the phrase
on average or some similar wording does not appear in the research report, make
certain that you insert it as you attempt to decipher and understand the statistical
findings. If you do not, you will end up thinking that comparison groups were far
more different from one another than was actually the case.

Remember the Possibility of Type I and Type II Errors

The third warning that I offer is not new. You have encountered it earlier in our con-
sideration of tests on correlations, t-tests, and one-way ANOVAs. Simply stated, I
encourage you to remember that regardless of how the results of a two-way ANOVA
turn out, there is always the possibility of either a Type I or Type II error whenever
a decision is made to reject or fail to reject a null hypothesis.

Based on the words used by many researchers in discussing their results, it
seems to me that the notion of statistical significance is quite often amplified (in-
correctly) into something on the order of a firm discovery—or even proof. Far too
seldom do I see the word inference or the phrase null hypothesis in the technical
write-ups of research investigations wherein the hypothesis testing procedure has
been used. Although you do not have the ability to control what researchers say
when they summarize their investigations, you most certainly do have the freedom
to adjust, in your mind, the research summary to make it more accurate.

Sooner or later, you are bound to encounter a research report wherein a state-
ment is made on the order of (1) “Treatment A works better than Treatment B” or
(2) “Folks who possess characteristic X outperform those who possess characteris-
tic Y.” Such statements come from researchers who temporarily forgot not only the
difference between sample statistics and population parameters but also the 
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ever-present possibility of an inferential error when a finding is declared either sig-
nificant or nonsignificant. You can avoid making the mistake of accepting such
statements as points of fact by remembering that no F-test ever proves anything.

Be Careful When Interpreting Nonsignificant F-tests

In Chapter 7, I pointed out that it is wrong to consider a null hypothesis to be true
simply because the hypothesis testing procedure results in a fail-to-reject decision.
Any of several factors (e.g., small sample sizes, unreliable measuring instruments,
too much within-group variability) can cause the result to be nonsignificant, even if
the null hypothesis being tested is actually false. This is especially true when the
null hypothesis is false by a small amount.

Almost all researchers who engage in hypothesis testing have been taught that
it is improper to conclude that a null hypothesis is true simply because the hypothe-
sis testing procedure leads to a fail-to-reject decision. Nevertheless, many of these
same researchers use language in their research reports suggesting that they have
completely forgotten that a fail-to-reject decision does not logically permit one to
leave a study believing that the tested H0 is true. In your review of studies that utilize
two-way ANOVAs (or, for that matter, any procedure for testing null hypotheses),
remain vigilant for erroneous statements as to what a nonsignificant finding means.

A priori power analysis
Active factor
Assigned factor
Biased F-test
Cell
Cohen’s f
Data transformation
Equal variance assumption
Eta squared
Factor
Familywise error rate
Graph of an interaction
Graph of cell means

Review Terms

Interaction
Level
Main effect F
Main effect mean
Normality assumption
Omega squared
Partial eta squared
Post hoc tests
Power analysis
Robust
Simple main effect
Univariate analysis

The Best Items in the Companion Website

1. An interactive online quiz (with immediate feedback provided) covering
Chapter 13.

2. Nine misconceptions about the content of Chapter 13.
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3. An email message sent from the author to his students entitled “Can One Cell
Create an Interaction?”

4. An interactive online resource entitled “Two-Way ANOVA (a).”
5. One of the best passages from Chapter 13: “You Can’t Make a Silk Purse Out

of a Sow’s Ear.”

To access chapter outlines, practice tests, weblinks, and flashcards, visit the com-
panion website at http://www.ReadingStats.com.

Review Questions and Answers begin on page 531.
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In this chapter, we consider three different ANOVAs that are characterized by re-
peated measures. In particular, the focus here is on one-way ANOVAs with repeated
measures, two-way ANOVAs with repeated measures on both factors, and two-way
ANOVAs with repeated measures on just one factor. Although there are other kinds
of ANOVAs that involve repeated measures (e.g., a four-way ANOVA with repeated
measures on all or some of the factors), the three types considered here are the ones
used most often by applied researchers.

The one-way and two-way ANOVAs examined in this chapter are similar in
many respects to the ANOVAs considered in Chapters 10, 11, and 13. The primary
difference between the ANOVAs of this chapter and those looked at in earlier chap-
ters is that the ANOVAs to which we now turn our attention involve repeated mea-
sures on at least one factor. This means that the research participants are measured
once under each level (or combination of levels) of the factor(s) involved in the
ANOVA.

Perhaps an example will help to distinguish between the ANOVAs consid-
ered in earlier chapters and their repeated measures counterparts examined 
in this chapter. If a researcher has a design characterized by no repeated
measures, each participant in the study can be thought of (1) as being located 
inside one of the six cells of the factorial design and (2) as contributing one score
to the data set. In contrast, if a researcher has a design characterized 
by repeated measures across both factors, each participant can be thought of 
(1) as being in each of the six cells and (2) as contributing six scores to the 
data set.

Before we turn our attention to the specific ANOVAs of this chapter, three
introductory points are worth noting. First, each of the ANOVAs to be considered
here is univariate in nature. Even though participants are measured more than once

2 * 3

2 * 3
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within the same ANOVA, these statistical procedures are univariate in nature—not
multivariate—because each participant provides only one score to the data set for
each level or combination of levels of the factor(s) involved in the study. The
ANOVAs of this chapter could be turned into multivariate ANOVAs if each par-
ticipant were measured repeatedly within each cell of the design, with these
within-cell repeated measurements corresponding to different dependent variables.
Such multivariate repeated measures ANOVAs, however, are not considered in 
this chapter.

Second, it is important to understand the distinction between (1) two or more
separate ANOVAs, each conducted on the data corresponding to a different depen-
dent variable, with all data coming from the same participants; and (2) a single uni-
fied ANOVA in which there are repeated measures across levels of the factor(s) of
the study. In Chapters 10, 11, and 13, you have seen many examples of multiple but
separate ANOVAs being applied to different sets of data, each corresponding to a
unique dependent variable. The ANOVAs to which we now turn our attention are
different from those referred to in the preceding sentence in that the ones consid-
ered here always involve a single, consolidated analysis.

My final introductory point concerns different kinds of repeated measures fac-
tors. To be more specific, I want to distinguish between some of the different cir-
cumstances in a study that can create a within-subjects factor.1 You will likely
encounter three such circumstances as you read technical research reports.

One obvious way for a factor to involve repeated measures is for participants
to be measured at different points in time. For example, a researcher might measure
people before and after an intervention, with the factor being called time and its lev-
els being called pre and post. Or, in a study focused on the acquisition of a new
skill, the factor might be called trials (or trial blocks), with levels simply numbered
1, 2, 3, and so on. A second way for a factor to involve repeated measures is for par-
ticipants to be measured once under each of two or more different treatment condi-
tions. In such studies, the factor might well be called treatments or conditions, with
the factor’s levels labeled to correspond to the specific treatments involved in the
study. A third kind of repeated measures factor shows up when the study’s partici-
pants are asked to rate different things or are measured on different characteristics.
Here, the factor and level names would be chosen to correspond to the different
kinds of data gathered in the study.

In Excerpts 14.1 through 14.3, we see how different kinds of situations can
lead to data being collected from each participant across levels of the repeated mea-
sures factor. Although the factors referred to in these excerpts are all within-subjects
factors, they involve repeated measures for different reasons. In Excerpt 14.1, the
data were collected at different times; in Excerpt 14.2, the data were collected under
different treatment conditions; and in Excerpt 14.3, the data were collected on dif-
ferent variables.

Analyses of Variance with Repeated Measures 313

1The terms repeated-measures factor, within-subjects factor, and within-participants factor are synonymous.
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One-Way Repeated Measures ANOVAs

When researchers use a one-way repeated measures ANOVA, they usually tip
you off that their ANOVA is different from the kind we considered in Chapters
10 and 11 (where no repeated measures are involved). They do this by including
the phrase repeated measures or within-subjects or within-participants as a descrip-
tor of their ANOVA or of their ANOVA’s single factor. Examples of this practice
appear in Excerpts 14.4 and 14.5.

EXCERPTS 14.1–14.3 • Different Kinds of Repeated Measures Factors

[T]o assess senior high school students’ mood changes during their preparation for a
very important academic examination, the Brazilian vestibular . . ., 231 students were
asked to answer the PANAS-X (Positive and Negative Affect Schedule–Expanded
Form) three times: in March (start of the academic year) . . ., in August . . ., and in
late October (15 days before the vestibular).

Source: Peluso, M. A. M., Savalli, C., Cúri, M., Gorenstein, C., & Andrade, L. H. (2010).
Mood changes in the course of preparation for the Brazilian university admission exam—A
longitudinal study. Revista Brasileira de Psiquiatria, 32(1), 30–36.

The aim of this study was to determine the differential effects of three commonly
used [bicycle] crank lengths (170, 172.5 and 175 mm) on performance measures rel-
evant to female cross-country mountain bike athletes of similar stature. All
trials were performed in a single blind and balanced order with a 5- to 7-day period
between trials.

Source: Macdermid, P. W., & Edwards, A. M. (2010). Influence of crank length on cycle
ergometry performance of well-trained female cross-country mountain bike athletes. European
Journal of Applied Physiology, 108(1), 177–182.

The DAP [questionnaire] yields quantitative scores on internal, external, and social con-
text areas of developmental assets for youth aged 11 to 18. . . . [This study] was conducted
to evaluate differences in means among the internal, external, and social context areas.

Source: Chew, W., Osseck, J., Raygor, D., Eldridge-Houser, J., & Cox, C. (2010). Developmen-
tal assets: Profile of youth in a juvenile justice facility. Journal of School Health, 80(2), 66–72.

1n = 72

EXCERPTS 14.4–14.5 • Different Labels for a One-Way Repeated
Measures ANOVA

To examine if participants predicted differences between racial groups on AGIB–Math
scores, we conducted a one-way within-subjects ANOVA. In this analysis, the

(continued )
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Purpose

The purpose of a one-way repeated measures ANOVA is identical to the purpose of
a one-way ANOVA not having repeated measures. In each case, the researcher is in-
terested in seeing whether (or the degree to which) the sample data cast doubt on the
null hypothesis of the ANOVA. That null hypothesis, for the within-subjects case as
well as the between-subjects case, states that the associated with the different lev-
els of the factor do not differ. Because the researcher who uses a one-way within-
subjects ANOVA is probably interested in gaining an insight into how the differ,
post hoc tests are normally used (as in a between-subjects ANOVA) if the overall
null hypothesis is rejected and if three or more levels compose the ANOVA’s factor.

To illustrate, suppose a researcher collects reaction-time data from six people
on three occasions: immediately upon awakening in the morning, one hour after
awakening, and two hours after awakening. Each of the six people is measured three
times, with a total of 18 pieces of data available for analysis. In subjecting the data
to a one-way repeated measures ANOVA, the researcher is asking whether the three
sample means, each based on six scores collected at the same time during the day,
are far enough apart to call into question the null hypothesis that says all three pop-
ulation means are equivalent. In other words, the purpose of the one-way repeated
measures ANOVA in this study is to see if the average reaction time of folks simi-
lar to the six people used in the study varies depending on whether they are tested
0, 60, or 120 minutes after awakening.

It is usually helpful to think of any one-way repeated measures ANOVA in
terms of a two-dimensional matrix. Within this matrix, each row corresponds to a
different person and each column corresponds to a different level of the study’s factor.

ms

ms

EXCERPTS 14.4–14.5 • (continued)

within-subjects factor was racial group (Asian Americans, African Americans, Cau-
casians/Whites, and Hispanics/Latinos) and the dependent variable was predicted
AGIB–Math score

Source: Unzueta, M. M., & Lowery, B. S. (2010). The impact of race-based performance dif-
ferences on perceptions of test legitimacy. Journal of Applied Social Psychology, 40(8),
1948–1968.

To evaluate differences between target toy touch in the neutral attention and negative
emotion trials, a repeated measures ANOVA with trial (neutral attention, negative
emotion) as the within-subjects factor was conducted separately for children at 12,
18, and 24 months.

Source: Nichols, S. R., Svetlova, M., & Brownell, C. A. (2010). Toddlers’ understanding of
peers’ emotions. Journal of Genetic Psychology, 171(1), 35–53.
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A single score is entered into each cell of this matrix, with the scores on any row com-
ing from the same person. Such a matrix, created for our hypothetical reaction-time
study, is presented in Figure 14.1. Such illustrations usually do not appear in research
reports. Therefore, you must create such a picture (in your mind or on a piece of
scratch paper) when trying to decipher the results of a one-way repeated measures
ANOVA. This is usually easy to do because you are given information as to the num-
ber of people involved in the study, the nature of the repeated measures factor, and the
sample means that correspond to the levels of the repeated measures factor.

Presentation of Results

The results of a one-way repeated measures ANOVA are occasionally presented in
an ANOVA summary table. In Table 14.1, I have prepared such a table for our hy-
pothetical study on reaction time. This summary table is similar in some ways to
the one-way ANOVA summary tables contained in Chapter 11, yet it is similar, in
other respects, to the two-way ANOVA summary tables included in Chapter 13.
Table 14.1 is like a one-way ANOVA summary table in that a single F-ratio is con-
tained in the right column of the table. (Note that this F-ratio is computed by di-
viding the MS for the study’s factor by the MS for residual.) It is like a two-way
ANOVA summary table in that (1) the row for people functions, in some respects,
as a second factor of the study, and (2) the numerical values on the row for resid-
ual are computed in the same way as if this were the interaction from a two-way
ANOVA. (Note that the df for residual is computed by multiplying together the first
two df values.) In fact, we could have used the term Hours People to label this
row instead of the term Residual.

*

FIGURE 14.1 Data Setup for the One-Way Repeated Measures ANOVA in the
Hypothetical Reaction-Time Study

Hours Since Awakening

Zero One Two

Person 1 1.6 1.0 1.1

Person 2 2.0 1.5 1.8

Person 3 1.7 0.6 1.5

Person 4 2.9 0.9 1.3

Person 5 1.8 1.5 1.9

Person 6 2.0 0.5 1.4

M  = 2.0 M  = 1.0 M  = 1.5
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Regardless of whether Table 14.1 resembles more closely the summary
table for a one-way ANOVA or a two-way ANOVA, it contains useful informa-
tion for anyone trying to understand the structure and the results of the investi-
gation. First, the title of the table indicates what kind of data were collected.
Second, we can tell from the Source column that the study’s factor was Hours
since awakening. Third, the top two numbers in the df column inform us that the
study involved three levels of the factor and six people

Fourth, the bottom number in the df column indicates that a total
of 18 pieces of data were analyzed Finally, the note beneath the
table reveals that the study’s null hypothesis was rejected, with .01 being one of
three things: (1) the original level of significance used by the researcher, (2) the
revised alpha level that resulted from a Bonferroni adjustment, or (3) the most
rigorous of the three standard alpha levels (i.e., .05, .01, .001) that could be
beaten by the data.

In our hypothetical study on reaction time, Table 14.1 indicates that the null
hypothesis of equal population means is not likely to be true. To gain an insight into
the pattern of the population means, a post hoc investigation would probably be
conducted. Most researchers would set up this follow-up investigation such that
three pairwise contrasts are tested, each involving a different pair of means ( ver-
sus versus and versus ).

In Excerpt 14.6, we see the results of a real study that used a one-way re-
peated-measures ANOVA. The data summarized by this table came from 20 indi-
viduals who each walked four different routes using different navigation devices
(referred to as modes) to help them reach their destinations. The study’s dependent
variable was a “navigation score” based on each walker’s accuracy and confidence
during each of the four tasks. Although the ANOVA summary table contains two F-
values, only the one on the row labeled Mode was of interest to the researchers.
Note that this table contains no SS or MS values; also, the next-to-the-bottom row
is called Error rather than Residual. Despite these differences from the summary
table I created for the hypothetical reaction-time study, you should be able to look
at the table in Excerpt 14.6 and see that the null hypothesis concerning the four nav-
igation devices was rejected.

M2M1M2,M1, M0

M0

117 + 1 = 182.
15 + 1 = 62.

12 + 1 = 32

TABLE 14.1 ANOVA Summary Table for the Reaction-Time Data Contained in
Figure 14.1

Source SS df MS F

Hours since awakening 3.00 2 1.50 10.0*

People 0.99 5
Residual 1.49 10 0.15
Total 5.48 17

*p 6 .001.
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Although it is helpful to be able to look at the ANOVA summary table,
researchers often are unable to include such tables in their reports because of
space considerations. In Excerpt 14.7, we see how the results of a one-way re-
peated measures ANOVA were presented wholly within the text of the report.
Note how a post hoc investigation was conducted by the researchers because 
(1) the omnibus F-test yielded a statistically significant result and (2) more than
two means were being compared. Note also the inclusion of an estimate of the
effect size.

EXCERPT 14.6 • Results of a One-Way Repeated Measures ANOVA
Presented in a Summary Table

TABLE II One-way, repeated measures analysis of variance summary table

Source df F p

Mode 3 4.78* 0.11 0.0049
Subject 19 3.25* 0.46 0.0003
Error 57
Total 79

*

Source: Sohlberg, M. M., Fickas, S., Hung, P.-F., & Fortier, A. (2007). A comparison of four
prompt modes for route finding for community travellers with severe cognitive impairments.
Brain Injury, 21(5), 531–538.

p 6 0.05.

h2

EXCERPT 14.7 • Results of a One-Way Repeated Measures ANOVA
Presented Without a Summary Table

Based on the results of the factor analysis, the 15 homework purpose items were
reduced to three scales [learning-oriented reasons, peer-related reasons, adult-ori-
ented reasons] for use in subsequent analyses. . . . A one-way, within-subjects
ANOVA revealed a statistically significant difference among these three scales,
with a large effect size, An adjusted
Bonferroni post hoc comparison detected specific differences among these factors.
The mean score for learning-oriented reasons was statisti-
cally significantly higher than adult-oriented reasons 
which was, in turn, statistically significantly higher than was peer-oriented reasons

Source: Xu, J. (2010). Homework purposes reported by secondary school students: A multi-
level analysis. Journal of Educational Research, 103(3), 171–182.

1M = 2.31, SD = 0.732.

1M = 2.70, SD = 0.732,
1M = 2.82, SD = 0.612

F12, 17982 = 624.76, p 6 .001, h2 = .410.
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Sometimes researchers apply a one-way repeated measures ANOVA more
than once within the same study. They do this for one of two reasons. On one hand,
each participant in the study may have provided two or more pieces of data at each
level of the repeated measures factor, with each of these scores corresponding to a
different dependent variable. Given this situation, the researcher may utilize a sep-
arate one-way repeated measures ANOVA to analyze the data corresponding to each
dependent variable. On the other hand, the researcher may have two or more groups
of participants, with just one score collected from each of them at each level of the
within-subjects factor. Here, the researcher may decide to subject the data provided
by each group to a separate one-way repeated measures ANOVA.

The Presentation Order of Levels 
of the Within-Subjects Factor

As indicated earlier, the factor in a one-way repeated measures ANOVA can take one
of three basic forms. In some studies, the within-subjects factor corresponds to time,
with the levels of the factor indicating the different points in time at which data are
collected. The second kind of within-subjects factor corresponds to different treat-
ments or conditions given to or created for the participants, with a measurement taken
on each person under each treatment or condition. The third kind of within-subjects
factor is found in studies where each participant is asked to rate different things, take
different tests, or in some other way provide scores on different variables.

If the one-way repeated measures ANOVA involves data collected at different
points in time, there is only one order in which the data can be collected. If, how-
ever, the within-subjects factor corresponds to treatment conditions or different vari-
ables, then there are different ways in which the data can be collected. When an
option exists regarding the order in which the levels of the factor are presented, the
researcher’s decision regarding this aspect of the study should be taken into consid-
eration when you make a decision as to whether to accept the researcher’s findings.

If the various treatment conditions, things to be rated, or tests to be taken are
presented in the same order, then a systematic bias may creep into the study and
function to make it extremely difficult—or impossible—to draw clear conclusions
from the statistical results. The systematic bias might take the form of a practice
effect, with participants performing better as they warm up or learn from what they
have already done; a fatigue effect, with participants performing less well on sub-
sequent tasks simply because they get bored or tired; or confounding, with things
that the participants do or learn outside the study’s setting between the points at
which the study’s data are collected. Whatever its form, such bias can cause differ-
ent treatment conditions (or the different versions of a measuring device) to look
different when they are really alike or to look alike when they are really dissimilar.

To prevent the study from being wrecked by practice effects, fatigue effects,
and confounding due to order effects, a researcher should alter the order in which
the treatment conditions, tasks, questionnaires, rating forms, or whatever are presented
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to participants. This can be done in one of three ways. One design strategy is to ran-
domize the order in which the levels of the within-subjects factor are presented. A
second strategy is to utilize all possible presentation orders, with an equal propor-
tion of the participants assigned randomly to each possible order. The third strategy
involves counterbalancing the order in which the levels of the repeated measures
factor are presented; here, the researchers make sure that each level of the factor ap-
pears equally often in any of the ordered positions.

In Excerpt 14.8, we see an example in which a set of researchers counter-
balanced the order in which this study’s participants played a table soccer game
using three different control devices. The Latin square referred to in this excerpt
is simply an ordering arrangement that made sure that each of the three treatment
conditions occurs equally often in the first, second, and final positions. For exam-
ple, if we let the letters A, B, and C represent the three control devices used in this
study, 10 of the study’s 30 participants would receive them in the order A-B-C. A
different third of the participants would get the treatments in the order B-C-A. The
order for the final third of the participants would be C-A-B.

EXCERPT 14.8 • Counterbalancing the Order of Treatments

A total of 30 undergraduate students participated in this evaluation. . . . The experi-
ment followed a within-subject design. . . . For each control method [head tracking
control, eye tracking control and traditional joystick control], participants had 5 minutes
to play the table soccer game. . . . The order effect was counterbalanced by using a
Latin square.

Source: Zhu, D., Gedeon, T., & Taylor, K. (2010). Natural interaction enhanced remote cam-
era control for teleoperation. Proceedings of the 28th Conference on Human Factors in Com-
puting Systems, ACM, 3229–3234.

Carryover Effects

In studies where the repeated-measures factor is related to different kinds of treat-
ments, the influence of one treatment might interfere with the assessment of how
the next treatment works. If so, such a carryover effect interferes with the com-
parative evaluation of the various treatments. Even if the order of the treatments is
varied, the disruptive influence of carryover effects can make certain treatments ap-
pear to be more or less potent than they really are.

One way researchers can reduce or eliminate the problem of carryover effects
is to delay presenting the second treatment until after the first treatment has “run its
course.” In studies comparing the effectiveness of different pharmaceutical drugs,
there usually is a 48-hour time period between the days on which the different drugs
are administered. These so-called “washout intervals” are designed to allow the effects
of each drug to dissipate totally before another drug is introduced.



Analyses of Variance with Repeated Measures 321

The Sphericity Assumption

In order for a one-way repeated measures ANOVA to yield an F-test that is valid,
an important assumption must hold true. This is called the sphericity assumption,
and it should be considered by every researcher who uses this form of ANOVA.
Even though the same amount of data is collected for each level of the repeated
measures factor, the F-test of a one-way repeated measures ANOVA is not robust
to violations of the sphericity assumption. If this assumption is violated, the F-value
from this ANOVA is positively biased; this means the calculated value will be larger
than it should be, thus increasing the probability of a Type I error above the nomi-
nal alpha level.

The sphericity assumption says that the population variances associated with
the levels of the repeated measures factor, in combination with the population cor-
relations between pairs of levels, must represent one of a set of acceptable patterns.
One of the acceptable patterns is for all the population variances to be identical and
for all the bivariate correlations to be identical. There are, however, other patterns
of variances and correlations that adhere to the requirements of sphericity.

The sample data collected in any one-factor repeated measures investigation
can be used to test the sphericity assumption. This test was developed by J. W.
Mauchly, and researchers now refer to it as the Mauchly sphericity test. If the ap-
plication of Mauchly’s test yields a statistically significant result (thus suggesting
that the condition of sphericity does not exist), there are various things the re-
searcher can do in an effort to help avoid making a Type I error when the one-way
repeated measures ANOVA is used to test the null hypothesis of equal population
means across the levels of the repeated measures factor. The two most popular
strategies both involve using a smaller pair of df values to determine the critical F-
value used to evaluate the calculated F-value. This adjustment results in a larger
critical value and a greater likelihood that a fail-to-reject decision will be made
when the null hypothesis of the one-way repeated measures ANOVA is evaluated.

One of the two ways to adjust the df values is to use a simple procedure de-
veloped by two statisticians, S. Geisser and S. W. Greenhouse. Their procedure in-
volves basing the critical F-value on the df values that would have been appropriate
if there had been just two levels of the repeated measures factor. This creates a dras-
tic reduction in the critical value’s dfs, because it presumes that the sphericity as-
sumption is violated to the maximum extent. Thus the Geisser–Greenhouse
approach to dealing with significant departures from sphericity creates a
conservative F-test (because the true Type I error rate is smaller than that sug-
gested by the level of significance).

The second procedure for adjusting the degrees of freedom involves first using
the sample data to estimate how extensively the sphericity assumption is violated.
This step leads to a fraction that turns out to be smaller than 1.0 to the extent that
the sample data suggest that the sphericity assumption is violated. Then, the “reg-
ular” df values associated with the F-test are multiplied by thus producing ad-
justed df values and a critical value that are tailor-made for the study being

P,

P,
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conducted. When researchers use this second procedure, they often report that they
have used the Huynh–Feldt correction.

In Excerpt 14.9, we see a case in which a team of researchers took corrective
action after the sphericity assumption was tested and found not to be tenable. These
researchers applied the Huynh–Feldt correction. This caused the F-test’s degrees of
freedom (which were originally 2 and 126) to get smaller, thereby making the crit-
ical value larger. This change in the critical value eliminated the positive bias in the
F-test that would have existed (due to a lack of sphericity) if the regular critical
value had been used.

EXCERPT 14.9 • Dealing with the Sphericity Assumption

A [one-way] repeated measures ANOVA was conducted on composite self-reported
scores for each of the three disposition categories. In an examination of the composite
mean scores for disposition 1: professional commitment, Mauchly’s test for sphericity
was found to be significant As such, the degrees of free-
dom were corrected using the Huynh-Feldt correction The results show
significant changes in candidates’ self-perceptions of professional commitment in
each phase of the program 

Source: Rinaldo, V. J., Denig, S. J., Sheeran, T. J., Cramer-Benjamin, R., Vermette, P. J., Foote,
C. J., et al. (2009). Developing the intangible qualities of good teaching: A self-study.
Education, 130(1), 42–52.

F1l.682, 105.9882 = 40.611 p 6 .01.

P = .841.
x2122 = 15.125, p 6 .05].

Regardless of which strategy is used to deal with the sphericity assumption, I
want to reiterate my earlier statement that this is an important assumption for the
ANOVAs being discussed in this chapter. If a researcher conducts a repeated mea-
sures ANOVA and does not say anything at all about the sphericity assumption, the
conclusions drawn from that investigation probably ought to be considered with a
big grain of salt. If the data analysis produces a statistically significant finding when
no test of sphericity is conducted or no adjustment is made to the critical value’s df,
you have the full right to disregard the inferential claims made by the researcher.

Two-Way Repeated Measures ANOVAs

We now turn our attention to ANOVAs that contain two repeated measures factors.
As you will see, there are many similarities between this kind of ANOVA and the
kind we examined in Chapter 13. However, there are important differences between
two-way ANOVAs that do or do not involve repeated measures. For this reason, you
must be able to distinguish between these two kinds of analysis.

If researchers state that they have used a two-way ANOVA but say nothing
about repeated measures, then you should presume that it is the kind of ANOVA we
considered in Chapter 13. However, if researchers use the phrase repeated measures,
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within-subjects, or within-participants when describing each of their ANOVA’s two
factors, then you must remember the things you learn in this section of the book.
Excerpts 14.10 and 14.11 illustrate how researchers usually provide a tip-off that
they used a two-way ANOVA with repeated measures.

EXCERPTS 14.10–14.11 • Different Labels for a Two-Way Repeated
Measures ANOVA

On the basis of the preliminary analysis, the mean RT data were collapsed and ana-
lyzed in a two-way within-subjects ANOVA, with character facing (2) and
orientation (12) as factors.

Source: Kung, E., & Hamm, J. P. (2010). A model of rotated mirror/normal letter discrimina-
tions. Memory & Cognition, 38(2), 206–220.

A repeated measures ANOVA with trial (neutral attention, negative emotion) and toy
(target, distracter) as within-subjects factors was conducted separately for children
at 12, 18, and 24 months.

Source: Nichols, S. R., Svetlova, M., & Brownell, C. A. (2010). Toddlers’ understanding of
peers’ emotions. Journal of Genetic Psychology, 171(1), 35–53.

[2 * 12]

In Excerpt 14.10, it is clear that both of the ANOVA’s factors were of the
within (i.e., repeated measures) variety. The ANOVA referred to in Excerpt 14.11
also had repeated measures on both factors. Sometimes, however, things are not so
clear. I say that because some researchers report that they used a two-way within-
subjects ANOVA when just one of the two factors involved repeated measures. We
consider such ANOVAs later in the chapter. Our focus now is on the type of ANOVA
having two within factors.

Purpose

The purpose of a two-way repeated measures ANOVA is identical to the purpose of
a two-way ANOVA not having repeated measures. In each case, the researcher uses
inferential statistics to help assess three null hypotheses. The first of these null hy-
potheses deals with the main effect of one of the two factors. The second null hy-
pothesis deals with the main effect of the second factor. The third null hypothesis
deals with the interaction between the two factors.

Although two-way ANOVAs with and without repeated measures are identi-
cal in the number and nature of null hypotheses that are evaluated, they differ in two
main respects. In terms of the way data are collected, the kind of two-way ANOVA
considered in Chapter 13 requires that each participant be positioned in a single cell,
with only one score per person going into the data analysis. In contrast, a two-way
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repeated measures ANOVA requires that each participant travel across all cells cre-
ated by the two factors, with each person being measured once within each cell. For
example, in a recent study, eight well-trained male athletes rode a bicycle on two
occasions, each time for 100 miles. During one ride, the outside temperature was
cold during the other ride, it was much warmer One of the study’s
dependent variables was heart rate, with measures taken just before each ride, im-
mediately after each ride, and then again 24 hours after each ride. This study’s two
factors were temperature and time of measurement, and you should be able to imag-
ine how each of the athletes was measured across the study’s six cells.

The second main difference between two-way ANOVAs with and without re-
peated measures involves the ANOVA summary table. We return to this second dif-
ference in the next section when we consider how researchers present the results of
their two-way repeated measures ANOVAs. Now, we must concentrate on the three
null hypotheses dealt with by this kind of ANOVA and the way the necessary data
must be collected.

To help you gain insight into the three null hypotheses of any two-way re-
peated measures ANOVA, let’s consider an imaginary study. This study involves the
game “Simon,” which is a battery-operated device with four colored buttons. After
the player flips the start switch, a sequence of Simon’s buttons lights up, with each
light accompanied by a unique tone. The task of the person playing this game in-
volves (1) watching and listening to what Simon does and then, after Simon stops,
(2) pushing the same sequence of buttons that Simon just illuminated.

Suppose now that you are the player. If the red button on Simon lights up, you
must press the red button. Then, if the red button lights up first followed by the green
button, you must press these same two buttons in this same order to stay in the game.
Every time you successfully mimic what Simon does, you receive a new string of
lighted buttons that is like the previous one, except that the new sequence is one light
longer. At first, it is easy for you to duplicate Simon’s varied but short sequences, but
after the sequences lengthen, it becomes increasingly difficult to mimic Simon.

For my study, imagine that I have each of six people play Simon. The depen-
dent variable is the length of the longest sequence that the player successfully dupli-
cates. (For example, if the player works up to the point where he or she correctly
mimics an eight-light sequence but fails on the ninth light, that person’s score is 8.)
After three practice rounds, I then ask each person to play Simon four times, each
under a different condition defined by my study’s two factors: tones and words. The
two levels of the tones factor are on and off, meaning that the Simon device is set up
either to provide the auditory cues or to be silent while the player plays. The two lev-
els of the word factor are color names or people names. With color names, the player
is instructed to say out loud the color of the lights as Simon presents them in a se-
quence (i.e., red, blue, green, and yellow). With people names, the player is instructed
to say out loud one of these names for each color: Ron for red, Barb for blue, Greg
for green, and Yoko for yellow. Finally, imagine that I randomly arrange the order in
which the four conditions of my study are ordered for each of the six Simon players.

119°C2.10°C2;
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Figure 14.2 contains the scores from my hypothetical study, with the order of
each person’s four scores arranged so as to fit accurately under the column head-
ings. This figure also contains a matrix of the four cell means, with the main
effect means positioned on the right and bottom sides of the cell means.

As indicated earlier, there are three null hypotheses associated with any two-
way repeated measures ANOVA. In our hypothetical study, the null hypothesis for
the main effect of tones states that there is no difference, in the populations associ-
ated with our samples, between the mean performance on the Simon game when
players hear the tone cues as compared to when they do not hear the tone cues. In
a similar fashion, the null hypothesis for the main effect of words states that there
is no difference, in the populations associated with our samples, between the mean
performance on the Simon game when players say color words when trying to
memorize each sequence as compared to when they say people’s names. Finally,
the interaction null hypothesis states the positive (or negative) impact on players of
having the tone cues is the same regardless of whether they must say color names
or people names as Simon’s buttons light up.

2 * 2

Color Names People Names

Tones Tones Tones Tones
on off on off

Player 1 6 8 6 3

Player 2 8 3 2 4

Player 3 7 5 6 6

Player 4 9 6 3 5

Player 5 8 6 6 3

Player 6 10 8 7 3

M = 8 6 5 4

Names (for Simon's Lights)

Colors People

On 8 5 6.5
Tones

Off 6 4 5.0

7.0 4.5

FIGURE 14.2 How the Data from the Simon Study Would Be Arranged
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The lower portion of Figure 14.2 shows the four cell means and the two main
effect means for each of the two factors. The null hypothesis for tones will be re-
jected if the means of 6.5 and 5.0 are found to be further apart from each other
than we would expect by chance. Likewise, the null hypothesis for words will be
rejected if the means of 7.0 and 4.5 are found to be further apart from each other
than would be expected by chance. The interaction null hypothesis is rejected if
the difference between the cell means on the top row varies more
from the difference between the cell means on the bottom row than
would be expected by chance.

Illustrations such as that presented in the upper portion of Figure 14.2 rarely
appear in research reports. However, it is usually quite easy to construct pictures of
cell means and main effect means. This picture-constructing task is easy because
you are almost always given information as to (1) the factors and levels involved in
the study, (2) the nature of the dependent variable, and (3) the sample means. Hav-
ing such a picture is highly important, because a study’s results are inextricably tied
to its table of cell and main effect means.

Presentation of Results

Occasionally, the results of a two-way repeated measures ANOVA are presented using
an ANOVA summary table. Table 14.2 shows such a table for the Simon study.

The summary table shown in Table 14.2 is similar, in some very important
ways, to the two-way ANOVA summary tables contained in Chapter 13. Most im-
portant, it contains three calculated F-values, one for the main effect of words, one
for the main effect of tones, and one for the words-by-tones interaction. These three
F-values speak directly to the null hypotheses discussed in the previous section.

There are two main differences between the summary table shown in Table 14.2
and the summary tables we examined in Chapter 13. First, there are three error
rows in Table 14.2, whereas there is just one such row in the summary table for a two-
way ANOVA without repeated measures. If you look closely at the workings inside

16 - 4 = 22
18 - 5 = 32

TABLE 14.2 ANOVA Summary Table for Performance Scores on Simon

Source SS df MS F

Players 15.5 5 3.1
Words 37.5 1 37.5 19.74*

Error 1 9.5 5 1.9
Tones 13.5 1 13.5 12.27*

Error 2 5.5 5 1.1
1.5 1 1.5 .29

Error 3 25.5 5 5.1
Total 108.5 23

*p 6 0.05.

Words * Tones
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Table 14.2, you see that the MS for error 1 is used to obtain the calculated F-value for
words, that the MS for error 2 is used to obtain the calculated F-value for tones, and
that the MS for error 3 is used to obtain the calculated F-value for the interaction.2

The second difference between Table 14.2 and the ANOVA summary tables
contained in Chapter 13 concerns the meaning of the df for total. As you can see,
this df number is equal to 23. If this were a regular two-way ANOVA, you could
add 1 to in order to figure out how many people were in the study. You can-
not do that here, obviously, because there were only six players in our Simon study,
yet is much larger than this. The problem gets solved completely when you
realize that in all ANOVA summary tables, adding 1 to gives you the total
number of pieces of data that were analyzed. That is true for ANOVAs with and
without repeated measures. If there are no repeated measures, then the number of
pieces of data is the same as the number of people (because each person provides,
in those cases, just one score). When there are repeated measures, however, you
must remember that adding 1 to the df for the top row of the summary table (not
the bottom row) allows you to know how many people were involved.

If you ever encounter a summary table like that presented in Table 14.2, do
not overlook the valuable information sitting in front of you. From such a table, you
can determine how many people were involved in the study what the
dependent variable was (performance on the Simon game), what the two factors
were (tones and words) and how many levels made up each factor ( in
each case), how many total pieces of data were involved in the analysis

and which null hypotheses were rejected.
In Excerpt 14.12, we see how a team of researchers summarized the results of

their two-way repeated measures ANOVA in the text of their report. Note that this

123 + 1 = 242,

1 + 1 = 2

15 + 1 = 62,

dfTotal

dfTotal

dfTotal

2The df numbers for these error rows are all equal to 5, but they were computed differently. Each was found
by multiplying together the df for players and the df for the row immediately above the error being consid-
ered. For example, the df for error 2 was found by multiplying by dfTones.dfPlayers

EXCERPT 14.12 • Results of a Two-Way Repeated Measures ANOVA
Presented without a Summary Table

[The 14 college students] did not know the task condition until they actually moved
the mouse. Participants moved the mouse with right, left, or both hands. That is, we
used six conditions (two visual feedback conditions three hand conditions), and
participants engaged in 30 trials (six conditions five repetitions) arranged in ran-
dom order. ... Analysis of overshooting with a two-way ANOVA revealed significant
main effects for “feedback’’ and “hand condition’’

and for the interaction of “feedback hand condition’’
The simple main effect of “feedback’’ was significant

under the right-hand condition and the simple main effect of “hand1P 6 0.0012,
1F2,26 = 4.18, P 6 0.052.

*1F2,26 = 5.71, P 6 0.012
1F1,13 = 11.7, P 6 0.012

*
*

(continued )
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passage is extremely similar to the textual summary of a two-way ANOVA without
repeated measures. There are two factors (feedback and hand conditions), separate
F-tests of the two main effects and the interaction (all of which turned out to be sig-
nificant), and a p-value associated with each of these three F-tests.

Because the interaction between feedback and hand condition was significant,
the researchers conducted a post hoc investigation that involved two sets of tests of
simple main effects. First, the researchers compared participants’ performance under
the two visual feedback conditions, and they did this separately for each hand con-
dition. Then, they ran their tests of simple main effects the other direction, this time
comparing the three hand conditions separately under each visual feedback condi-
tions. One of these latter tests was significant, so the researchers then used Ryan’s
multiple comparison procedure to make pairwise comparisons of participants’ per-
formance under the three hand conditions when there was no visual feedback.

Although the ANOVA discussed in Excerpt 14.12 resembles, in many ways,
the kind of two-way ANOVA considered in Chapter 13, there is a subtle yet im-
portant difference. The df values for the three F-tests are not the same. The first of
the two df numbers next to each F, of course, are not the same simply because there
were two levels in one factor and three levels in the other factor. However, look at
the second df next to each F. These dfs vary because there were three different val-
ues for involved in this analysis, each of which was used as the denomina-
tor for one of three F-ratios. Had this been a two-way ANOVA without repeated
measures, just one would have been used to get all three of the Fs, thus caus-
ing each F’s second df to be equal to the same value.

The Presentation Order of Different Tasks

Earlier in this chapter, I indicated how a repeated measures factor can take one of
three basic forms: different points in time, different treatment conditions, or differ-
ent measures, tests, or variables. With a two-way repeated measures ANOVA, any
combination of these three kinds of factors is possible. The most popular combina-
tions, however, involve either (1) two factors, each of which is defined by different
versions (i.e., levels) of a treatment, or (2) one treatment factor and one factor that
involves measurements taken at different points in time.

MSError

MSError

EXCERPT 14.12 • (continued)

condition’’ was significant under the no-visual-feedback condition A
post-hoc multiple comparison using Ryan’s method revealed significant differences
between the right-hand and bimanual conditions and between the right- and left-
hand conditions for the no-visual-feedback condition.

Source: Asai, T., Sugimori, E., & Tanno, Y. (2010). Two agents in the brain: Motor control of
unimanual and bimanual reaching movements. PLoS ONE, 5(4), 1–7.

1P 6 0.012

1P 6 0.0012.
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When the levels of one or both factors in a two-way repeated measures ANOVA
correspond with different treatment conditions or different variables, those levels
should not be presented to the research participants in the same order. If they are, cer-
tain problems (e.g., practice effect, fatigue effect) might develop, and if that happens,
the meaning of the F-tests involving the repeated measures factor(s) will be muddied.

The Sphericity Assumption

The calculated F-values computed in a two-way repeated measure ANOVA will
turn out to be too large unless the population variances and correlations that corre-
spond to the sample data conform to one or more acceptable patterns. This is the
case even though the sample variances and correlations in a two-way repeated mea-
sures ANOVA are based on sample sizes that are equal (a condition brought about
by measuring the same people, animals, or things repeatedly). Therefore, it is im-
portant for researchers, when using this kind of ANOVA, to attend to the assump-
tion concerning population variances and correlations. This assumption is popularly
referred to as the sphericity assumption.

Any of three strategies can be used when dealing with sphericity assumption.
As is the case with a one-way repeated measures ANOVA, the researcher can (1)
subject the sample data to Mauchly’s test for sphericity, (2) bypass Mauchly’s test
and instead use the Geisser–Greenhouse conservative dfs for locating the critical
value needed to evaluate the calculated F-values, or (3) utilize the sample data to
compute the index that estimates how badly the sphericity assumption is violated
and then reduce the critical value(s) dfs to the extent indicated by the index.

In the research report from which Excerpt 14.12 was taken, there was no men-
tion of the sphericity assumption. If the researchers had attended to this important
assumption, would it have made a difference? Let’s consider what would have hap-
pened if the researchers had used Geisser–Greenhouse conservative dfs in their
analysis. With this change, the calculated F of 5.71 still would have been signifi-
cant, but with instead of More importantly, application of the
Geisser–Greenhouse adjustment would have caused the feedback hand condition
interaction to change from being significant (with ) to being nonsignificant
(with ).

Practical versus Statistical Significance

Throughout this book, I emphasize repeatedly the important point that statistical
significance may or may not signify practical significance. Stated differently, a
small p does not necessarily indicate that a research discovery is big and important.
In this section, I try to show that well-trained researchers who use two-way repeated
measures ANOVAs do not use the simple six-step version of hypothesis testing.

There are several options available to the researcher who is concerned about
the meaningfulness of his or her findings. These options can be classified into two
categories: a priori and post hoc. In the first category, one option involves conducting

p 7 .05
p 6 .05

*
p 6 .01.p 6 .05

P
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an a priori power analysis for the purpose of determining the proper sample size. A
second option in that category involves checking to see if there is adequate power
for a fixed sample size that already exists. In the post hoc category, the researcher
can use the study’s sample data to estimate effect size.

In Excerpt 14.13, we see a case in which a pair of researchers attended to the
issue of practical significance of the statistically significant results that emerged
from their two-way repeated measures ANOVA. The specific technique used to do
this was the computation of eta squared. In this excerpt, note the p-level associated
with the two main effects that were statistically significant. Also note the way the
researchers evaluated those findings in terms of practical significance.

EXCERPT 14.13 • Assessing Practical Significance

A two-way repeated measures ANOVA was performed. . . . First, the analysis on the
free recall scores revealed no statistically significant interaction between text type
and stuttering frequency, however, a significant main effect of text type was found,

which shows that the percentage of free recall units
was greater for narrative than for expository texts. The effect size for the sig-
nificant main effect of text type [indicated] a moderate practical significance. The
main effect of stuttering frequency associated with free recall was also statistically
significant, The effect size for the significant main ef-
fect of stuttering frequency [indicated] a small practical significance.

Source: Panico, J., & Healey, E. C. (2009). Influence of text type, topic familiarity, and stut-
tering frequency on listener recall, comprehension, and mental effort. Journal of Speech, Lan-
guage, and Hearing Research, 52(2), 534–546.

F13, 562 = 7.41, p 6 .001.

1h22
F11, 562 = 75.77, p 6 .001,

The criteria for judging effect size indices in a two-way repeated measures
ANOVA are the same as the standards for these indices when they are computed for
a two-way ANOVA without any repeated measures. As indicated in Chapter 13, the
criteria for judging equate .01 with a small effect, .06 with a medium effect, and
.14 with a large effect. To see the criteria for judging the magnitude of other ways of
estimating effect size, refer to Table 13.2. Give researchers some bonus points when
they use any of these standardized criteria for assessing practical significance, or when
they discuss the notion of impact in terms of raw (i.e., unstandardized) effect sizes.

Two-Way Mixed ANOVAs

We now turn our attention to the third and final kind of ANOVA to be considered
in this chapter. It is called a two-way mixed ANOVA. The word mixed is included
in its label because one of the two factors is between subjects in nature whereas the
other factor is within subjects.

h2
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Labels for This Kind of ANOVA

Unfortunately, all researchers do not use the same label to describe the kind of
ANOVA that has one between-subjects factor and one within-subjects factor.
Therefore, the first thing you must do relative to two-way mixed ANOVAs is fa-
miliarize yourself with the different ways researchers indicate that they have used
this kind of ANOVA. If you do not do this, you might be looking at a study that in-
volves a two-way mixed ANOVA and not even realize it.

When researchers use a two-way mixed ANOVA, some of them refer to it as
a two-way ANOVA with repeated measures on one factor. Others call it an ANOVA
with one between-subjects factor and one within-subjects factor. Occasionally it is
called a split-plot ANOVA or a two-factor between-within ANOVA. In Excerpts
14.14 through 14.16, we see three different ways researchers chose to describe the
two factor mixed ANOVA that they used.

EXCERPTS 14.14–14.16 • Different Labels for a Two-Way Mixed ANOVA

A (Gender of Participant Recipient of Tease: self vs. other) ANOVA, with
the second variable as a repeated measure, was conducted on the children’s hurt feel-
ings ratings following the eight hypothetical teasing scenarios.

Source: Barnett, M. A., Barlett, N. D., Livengood, J. L., Murphy, D. L., & Brewton, K. E.
(2010). Factors associated with children’s anticipated responses to ambiguous teases. Journal
of Genetic Psychology, 171(1), 54–72.

A job type patient classification mixed ANOVA was performed on the participants’
ratings.

Source: Hughes, A., & Gilmour, N. (2010). Attitudes and perceptions of work safety among
community mental health workers. North American Journal of Psychology, 12(1), 129–144.

The research design was a 3 (evaluation type: teacher, self and peer) (lesson-plan
version: draft and final) factorial design. Evaluation type was a between-subjects vari-
able and lesson-plan version was a within-subjects variable. The primary data analysis
comparing student performance across the three evaluation conditions on the two ver-
sions of the lesson plans was a repeated measures analysis of variance (ANOVA).

Source: Ozogul, G., & Sullivan, H. (2009). Student performance and attitudes under forma-
tive evaluation by teacher, self and peer evaluators. Educational Technology Research & De-
velopment, 57(3), 393–410.

3 * 2

* 2

*

*2 * 2

Data Layout and Purpose

To understand the results of a two-way mixed ANOVA, you must be able to con-
ceptualize the way the data were arranged prior to being analyzed. Whenever you
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deal with this kind of ANOVA, try to think of (or actually draw) a picture similar
to the one displayed in Figure 14.3. This picture is set up for an extremely small-
scale study, but it illustrates how each participant is measured repeatedly across lev-
els of the within-subjects factor but not across levels of the between-subjects factor.
In this picture, of course, the between-subjects factor is gender and the within-sub-
jects factor is time of day. The scores are hypothetical, and they are meant to reflect
the data that might be collected if we asked each of five males and five females to
give us a self-rating of his or her typical energy level (on a 0–10 scale) at each of
three points during the day: 8 A.M., 2 P.M., and 8 P.M.

Although a two-way mixed ANOVA always involves one between-subjects
factor and one within-subjects factor, the number of levels in each factor vary from
study to study. Thus, the dimensions and labeling of Figure 14.3 only match our hy-
pothetical two-way mixed ANOVA in which there is a two-level between-subjects
factor, a three-level within-subjects factor, and five participants per group. Our pic-
ture can easily be adapted to fit any two-way mixed ANOVA because we can change
the number of main rows and columns, the number of mini-rows (to indicate the
number of participants involved), and the terms used to reflect the names of the fac-
tors and levels involved in the study.

The purpose of a two-way mixed ANOVA is identical to that of a completely
between-subjects two-way ANOVA or of a completely within-subjects two-way
ANOVA. In general, that purpose can be described as examining the sample means

FIGURE 14.3 Data Layout for a Mixed ANOVA2 * 3

Male

Gender

Female

Participant 1

Participant 2

Participant 3

Participant 4

Participant 5

Participant 6

Participant 7

Participant 8

Participant 9

Participant 10

8 A.M.

6

7

4

8

5

8

6

8

7

6

2 P.M.

3

6

2

5

4

5

6

4

4

6

8 P.M.

8

8

10

10

9

9

7

8

9

7

Time of Day
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to see if they are further apart than would be expected by chance. Most researchers
take this general purpose and make it more specific by setting up and testing three
null hypotheses. These null hypotheses, of course, focus on the populations relevant
to the investigation, with the three null statements asserting that (1) the main effect
means of the first factor are equal to one another, (2) the main effect means of the
second factor are equal to one another, and (3) the two factors do not interact.

To help you understand these three null hypotheses, I have taken the data from
Figure 14.3, computed main effect means and cell means, and positioned these
means in as shown in following figure:

Time of Day

8 A.M. 2 P.M. 8 P.M.

Male 6 4 9 6.3
Gender

Female 7 5 8 6.7

6.5 4.5 8.5

One of our three research questions concerns the main effect of gender. To an-
swer this question, the mean of 6.3 (based on the 15 scores provided by the five
males) is compared against the mean of 6.7 (based on the 15 scores provided by the
5 females). The second research question, concerning the main effect of time of day,
is addressed through a statistical comparison of the column means of 6.5, 4.5, and
8.5 (each based on scores provided by all 10 participants). The third research ques-
tion, dealing with the interaction between gender and time of day, is dealt with by
focusing on the six cell means (each based on five scores). This interaction ques-
tion asks whether the change in the difference between the male and female
means—which remains the same at 8 A.M. and 2 P.M. but then reverses itself at 
8 P.M.—is greater than would be expected by chance sampling.

Presentation of Results

If the results of a two-way mixed ANOVA are presented in an ANOVA summary
table, three F-values are presented—two for the main effects and one for the inter-
action—just as is the case in the ANOVA summary tables for completely between-
subjects and completely within-subjects ANOVAs. However, the summary table for
mixed ANOVAs is set up differently from those associated with the ANOVAs con-
sidered earlier. To illustrate these differences, I analyzed the energy level data orig-
inally shown in Figure 14.3, and the results of this two-way mixed ANOVA are
found in Table 14.3.

As Table 14.3 shows, the summary table for a mixed ANOVA has an upper
section and a lower section. These two sections are often labeled between subjects
and within subjects, respectively. In the upper section, there are two rows of 
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information, one concerning the main effect of the between-subjects factor and the
other for the error that goes with the between-subjects main effect. In the lower sec-
tion of the summary table, there are three rows of information. The first of these
rows is for the main effect of the within-subjects factor, the second is for the inter-
action between the two factors, and the third provides information for the within-
subjects error term. As you can see from Table 14.3, the MS for the first error was
used as a denominator in computing the F-value in the upper section of the sum-
mary table, whereas the MS for the second error was used as the denominator in
computing the two F-values in the lower section.

Table 14.3 contains information that allows you to understand the structure of
the study that provided the data for the two-way mixed ANOVA. To illustrate how
you can extract this information from the table, pretend that you have not read any-
thing about the study connected with Table 14.3. In other words, imagine that your
first encounter with this study is this ANOVA summary table.

First, the df value for the between-subjects row of the table shows that data were
gathered from individuals. Second, the name of and the df value for the
main effect in the upper portion of the table show that there were two groups in the
study, with gender being the independent variable associated with this main effect.
Third, the name of and df for the main effect in the lower portion of the table show that
each of the 10 individuals was measured on occasions, each being a par-
ticular time of the day. The table’s title gives you a hint as to the kinds of scores used
in this study, because it states that this ANOVA was conducted on energy level data.

Table 14.3, of course, also contains the results of the ANOVA. To interpret
these results, you must look back and forth between the ANOVA summary table and
the table of cell and main effect means that we considered earlier. The first
F-value (0.50) indicates that the two main effect means for males (6.3) and females
(6.7) were not further apart from each other than we could expect by chance. Ac-
cordingly, the null hypothesis for gender was not rejected. The second F-value
(28.17), however, shows that the null hypothesis for time of day was rejected. This

2 * 3

2 + 1 = 3

9 + 1 = 10

TABLE 14.3 ANOVA Summary Table of the Energy Level Data Shown in Figure 14.3

Source SS df MS F

Between Subjects 9
Gender 0.83 1 0.83 0.50
Error (between) 13.34 8 1.67

Within Subjects 20
Time of day 80.00 2 40.00 28.17*

of day 6.67 2 3.33 2.35
Error (within) 22.66 16 1.42

Total 123.50 29

*p 6 0.05.

Gender * Time
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finding came about because the main effect means of the within-subjects factor (6.5,
4.5, and 8.5) were further apart than could be expected by chance. The third F-value
(2.35), for the interaction, was not statistically significant. Even though the differ-
ences between the male and female cell means were not constant across the data
collection points during the day, the three male–female differences ( and

) did not vary enough to call into question the interaction null hypothesis.
Now let’s consider Excerpt 14.17, which comes from a published study that

used a mixed ANOVA. The title of the table in this excerpt makes it clear that
the presentation is for a mixed ANOVA. Even if the word mixed had not been in-
cluded in the table’s title, however, you should be able to tell that this kind of
ANOVA was used by noting the way the first column of information was set up.

2 * 2

+  1
-1, -1,

EXCERPT 14.17 • Summary Table from Two-Way Mixed ANOVA

TABLE 5 Mixed ANOVA Table for Accuracy Scores

Source SS df MS F p

Between Subjects 46
Group 371.05 1 371.05 0.95 0.33 0.02
Error 17,536.12 45 389.69

Within Subject 47
Time 329.01 1 329.01 4.44 0.04 0.09

908.19 1 908.19 12.26 0.001 0.21
Error 3,333.22 45 74.07

Total 22,477.59 93

Source: Hartshorn, K. J., Evans, N. W., Merrill, P. F., Sudweeks, R. R., Strong-Krause, D., &
Answerson, N. J. (2010). Effects of dynamic corrective feedback on ESL writing accuracy.
TESOL Quarterly, 44(1), 84–109.

Time * Group

h2
p

There are four differences between the table in Excerpt 14.17 and the ANOVA
summary table we saw in Table 14.3. First, each of the two error rows in Excerpt
14.17 is simply labeled error. Even though these two rows carry the same label, it
is important to note that they are not interchangeable. The MS associated with the
first of these errors was used as the denominator in computing the F-value that ap-
pears in the upper section of the table; in contrast, the MS associated with the sec-
ond of these error rows was used as the denominator in computing each of the two
F-values that appear in the lower section of the table.3

3As illustrated in Table 14.3 and Excerpt 14.17, different terms are sometimes used to label the two rows that
contain the MS values used as the denominators for the Fs. You are likely to encounter ANOVA summary ta-
bles in which these two rows are labeled error 1 and error 2, error (a) and error (b), or error (b) and error (w).
A few researchers label these error rows as subjects within groups and ______ subjects within groups,
with the blank filled by the name of the within-subjects factor.

*
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The second thing to note about Excerpt 14.17 concerns the column of df val-
ues. The second and third of these numbers are not indented under 46; likewise, the
numbers 1, 1, and 45 are not indented under 47. If you add together the first seven
df numbers, your total does not match the df located in the bottom row. This dis-
crepancy melts away entirely once you realize that the df values of 46 and 47 are
simply headings for the upper and lower portions of the table.

The third and fourth differences between Excerpt 14.17 and Table 14.3 are minor
and major, respectively. The minor difference is that a specific p-value is presented in
Excerpt 14.17 for each F-value, whereas a note beneath Table 14.3 simply says

The major difference between these two ANOVA summary tables is the extra
column of information on the far right in Excerpt 14.17. These estimates of effect size
for each of the F-values provides insight into the practical significance of the results.

Although it is helpful to be able to look at ANOVA summary tables when try-
ing to decipher and critique research reports, such tables usually do not appear in
journal articles. Instead, the results are typically presented strictly within one or
more paragraphs of textual material. To illustrate, consider Excerpt 14.18, wherein
the results of a two-way mixed ANOVA are presented without a summary table.

p 6 .05.

EXCERPT 14.18 • Results of a Two-Way Mixed ANOVA Presented
without a Summary Table

For [the two-way mixed ANOVA] analysis, the within-subject factor was amplifica-
tion with three levels (unaided, RITA, and RITE) and the between-subject factor was
group with two levels (new users and experienced users). . . . Results for the HINT
revealed a significant amplification main effect [ partial ]. Paired
samples t-tests were conducted to further investigate the amplification main effect
controlling for family-wise error rate across the tests at the 0.05 level, using the
Holm’s sequential Bonferroni procedure. Results indicated that unaided scores were
significantly better than both the RITA and RITE scores; however, scores were not
significantly different between the RITA and RITE devices [ and
0.898, respectively].

Source: Alworth, L. N., Plyler, P. N., Reber, M. B., & Johnstone, P. J. (2010). The effects of
receiver placement on probe microphone, performance, and subjective measures with open
canal hearing instruments. Journal of the American Academy of Audiology, 21(4), 249–266.

ps = 0.018, 0.009,

h2 = .165p = .016,

Excerpt 14.18 comes from a study in which two kinds of hearing aids were
compared against the unaided ear among people with a hearing loss. In this excerpt,
RITE and RITA are acronyms for received in the ear and received in the aid, re-
spectively. The HINT—one of the study’s dependent variables—is a test designed to
measure each participant’s ability to hear in noisy conditions. Results of the mixed
ANOVA on the HINT data yield a significant F for the within-subjects main effect,
but nonsignificant Fs for the between-subjects main effect and the interaction.
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Excerpt 14.18 deserves your attention because of the way the post hoc tests
were conducted. Using a popular analytic strategy, the researchers connected with
this hearing aid study compared the main effect means for amplification in a post
hoc investigation because (1) there are more than two means in that main effect and
(2) the interaction is not significant. The post hoc comparisons were conducted in
a pairwise fashion using paired t-tests. However, the alpha level for these three tests
was made more rigorous to head off the inflated Type I error problem. This was
done by means of the Holm’s sequential Bonferroni procedure.

If the regular Bonferroni procedure had been used in Excerpt 14.18, each of
the three pairwise comparisons would have been tested with alpha set at .05/3, or
.0167. With Holm’s-sequential Bonferroni procedure, the comparison yielding the
smallest p (.009) is first compared against the regular Bonferroni alpha level
(.0167). Next, the comparison yielding the second smallest p (.018) is compared
against a slightly more lenient alpha level equal to .05/2, or .025. Finally, the third
and last comparison has its p (.898) compared against an even more lenient com-
puted as .05/1, or .05. As you can see, there is a sequential change in the level of
significance across the various tests, with the beginning point in the sequence being
the regular Bonferroni-adjusted alpha level and the ending point being the unad-
justed alpha level.

Related Issues

Earlier in this chapter, I indicated how the levels of within-subjects factors some-
times can and should be presented to subjects in varying orders. That discussion ap-
plies to mixed ANOVAs as well as to fully repeated measures ANOVAs. Excerpt 14.19
shows how the technique of counterbalancing can be used to avoid the bias that
might exist if the levels of the within-subjects factor are presented in the same order
to all participants. By counterbalancing the order of the spoon-weight factor, the 

a,

EXCERPT 14.19 • Counterbalancing the Levels of the Within-Subjects
Factor

We used a counterbalanced repeated-measures design. Each participant performed
the experimental task using spoons of three different weights: (A) lightweight: 35 g,
(B) control: 85 g, and (C) weighted: 135 g. Each participant was randomly assigned
to one of three experimental sequences (ABC, BCA and CAB) by means of sealed
envelopes. . . . Three (weight condition: lightweight vs. control vs. weighted)
(group: Parkinson’s disease vs. control) mixed analyses of variance (ANOVAs) were
computed on the kinematic scores.

Source: Ma, H. I., Hwang, W. J., Tsai, P. L., & Hsu, Y. W. (2009). The effect of eating utensil
weight on functional arm movement in people with Parkinson’s disease: A controlled clinical
trial. Clinical Rehabilitation, 23(12), 1086–1092.

* 2
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researchers arranged their study’s experiment so that one-third of the members of
each group were assigned to each of the different spoon orders. By doing this, the
researchers made sure that level of the weight condition factor was not confounded
with the three trials of the experiment.

A second issue you should keep in mind when examining the results of two-
way mixed ANOVAs is the important assumption of sphericity. I discussed this as-
sumption earlier when we considered fully repeated measures ANOVAs. It is
relevant to mixed ANOVAs as well—but only the F-tests located in the within-sub-
jects portion of the ANOVA summary are based on the sphericity assumption. Thus,
the F-value for the main effect of the between-subjects factor is unaffected by a lack
of sphericity in the populations connected to the study. In contrast, the F-values for
the main effect of the within-subjects factor and for the interaction are positively
biased (i.e., turn out larger than they ought to) to the extent that the sphericity as-
sumption is violated.

Well-trained researchers do not neglect the sphericity assumption when they
use two-way mixed ANOVAs. Instead, they carefully attend to this assumption. One
option used by many researchers is to adjust the degrees of freedom associated with
the critical values (using the Geisser–Greenhouse or the Huynh–Feldt procedures),
thereby compensating for possible or observed violation of the sphericity assump-
tion. Another option is to apply Mauchly’s test to the sample data to see if the as-
sumption appears to be violated; depending on how this test turns out, the regular
F-tests are or are not examined. In Excerpts 14.20 and 14.21, we see examples
where researchers used these two options. Both sets of researchers deserve high
marks for demonstrating a concern for the sphericity assumption.

EXCERPTS 14.20–14.21 • Options for Dealing with the Sphericity Assumption

A 2 (condition) (time) mixed-model analysis of variance (ANOVA) with 
the IRMA-SF as a dependent variable revealed a significant time effect,

partial and a Condition Time interaction effect,
partial with Huynh-Feldt corrections.

Source: Hillenbrand-Gunn, T. L., Heppner, M. J., Mauch, P. A., & Park, H.-Y. (2010). Men as
allies: The efficacy of a high school rape prevention intervention. Journal of Counseling & De-
velopment, 88(1), 43–51.

Prior to conducting [the two-way mixed] ANOVAs, Mauchley’s test for sphericity was
conducted. In those cases where the Mauchley’s W was significant, the Geisser–Green-
house conservative F-test was interpreted as a safeguard against type I error.

Source: Konnert, C., Dobson, K., & Stelmach, L. (2009). The prevention of depression in nurs-
ing home residents: A randomized clinical trial of cognitive–behavioral therapy. Aging & Men-
tal Health, 13(2), 288–299.

h2 = 0.07,F11.84, 150.582 = 6.10, p 6 .01,
*h2 = 0.09,p 6 .01,150.582 = 8.17

F11.84,
* 3
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A third issue to keep in mind when you encounter the results of two-way
mixed ANOVAs concerns the distinction between statistical significance and prac-
tical significance. I first discussed this distinction in Chapter 7, and I purposely have
brought up this issue as often as possible. I have done this, because far too many
researchers conduct studies that yield one or more findings that have very little prac-
tical significance even though a very low probability level is associated with the cal-
culated value produced by their statistical test(s).

As I indicated earlier in this chapter, the criteria for judging the magnitude of
post hoc estimates of effect size (such as d or ) are the same in a two-way mixed
ANOVA as they are in a two-way ANOVA having no repeated measures. If you must
refresh your memory regarding these criteria, take a look at Table 13.2. Recall, too,
that researchers have the option of discussing practical significance without using
standardized estimates of effect size; instead, they can use their knowledge and ex-
pertise to look at, and assess the worth of, raw-score differences between means.

Many researchers who conduct two-way mixed ANOVAs fail to address the
question of practical significance. However, a growing number of researchers do
this—and they deserve credit for performing a more complete analysis of the
study’s data than is usually the case. We see illustrations of this good practice in
Excerpts 14.17, 14.18, and 14.20.

Three Final Comments

As we near the end of this chapter, I have three final comments. In each case, I argue
that you must be alert as you read or listen to formal summaries of research stud-
ies so you can (1) know for sure what kind of analysis the researcher really used,
and (2) filter out unjustified claims from those that warrant your close attention. If
you do not put yourself in a position to do these two things, you are likely to be
misled by what is contained in the research reports that come your way.

What Kind of ANOVA Was It?

In this chapter, we have considered three different kinds of ANOVAs: a one-way
ANOVA with repeated measures, a two-way ANOVA with repeated measures on
both factors, and a two-way ANOVA having repeated measures on just one factor.
These three ANOVAs are different from each other, and they are also different from
the one-way and two-way ANOVAs focused on in Chapters 10, 11, and 13. Thus,
for you to understand the structure and results of any one-way or two-way ANOVA,
you must know whether it involves repeated measures and, in the case of a two-way
ANOVA having repeated measures, you must know whether one or both of the fac-
tors involved repeated measures.

As indicated earlier, most researchers clarify what kind of one-way or two-
way ANOVA they have used. For example, if repeated measures are involved, they
typically use special terms—such as within-subjects or repeated measures—to 

h2
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describe the factor(s) in the ANOVA, or you may see the term mixed used to de-
scribe the kind of ANOVA considered near the end of this chapter. If no such term
is used, this usually means that no repeated measures were involved.

Unfortunately, not all descriptions of one-way or two-way ANOVAs are clear
as to the nature of its factor(s). At times, you may be told that a one-way ANOVA
was used when in reality it was a one-way ANOVA with repeated measures. Occa-
sionally, this same thing happens with two-way ANOVAs. Or, you may be told that
a two-way repeated measures ANOVA was used, thus causing you to think that
there were two within-subjects factors, which is wrong, because only one of the fac-
tors actually had repeated measures.

Because the presence or absence of repeated measures does not affect the null
hypothesis of a one-way ANOVA or the three null hypotheses of a two-way
ANOVA, someone might argue that it really does not matter whether you can tell
for sure if the factor(s) of the ANOVA had repeated measures. To that person I ask
just one simple question: “Do you know about the sphericity assumption and under
what circumstances this assumption comes into play?”

Practical versus Statistical Significance

At various points in this chapter, I tried to help you understand that statistical sig-
nificance does not always signify practical significance. I did this by means of the
words I have written and the excerpts I have chosen to include. (Estimates of effect
size appear in Excerpts 14.6, 14.7, 14.13, 14.17, 14.18, and 14.20.)

There is a growing trend for researchers to do something in their studies, ei-
ther as they choose their sample sizes or as they go about interpreting their results,
so they and the recipients of their research reports do not make the mistake of think-
ing that statistical significance means big and important. However, you are bound
to come across research claims that are based on the joint use of (1) one or more of
the ANOVAs considered in this chapter and (2) the six-step version of hypothesis
testing. When that happens, I hope you remember two things. First, a very small p
may indicate that nothing big was discovered, only that a big sample can make
molehills look like mountains, and, conversely, a large p may indicate that some-
thing big was left undetected because the sample size was too small. The second
thing to remember is that studies can be planned, using the nine-step version of hy-
pothesis testing, such that neither of those two possible problems is likely to occur.
When this expanded (but better) version of hypothesis testing is not used, results
can be murky, as indicated in Excerpt 14.22.

EXCERPT 14.22 • The Inferential Dilemma When Statistical Power 
Is Inadequate

One of the main limitations of the present study [using a mixed ANOVA] is the small
sample size [that] reduces the power of the statistical tests. Even at medium (.50)

(continued )
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On the one hand, the researchers who penned the three sentences in Excerpt
14.22 deserve credit for realizing that their negative finding may have been a Type
II error. On the other hand, we might legitimately ask the researchers, “Why didn’t
you do a power analysis in the planning stage of your study so as have samples large
enough to detect non-trivial effects, if they exist?”

The Possibility of Inferential Error

Many researchers discuss the results of their studies in such a way that it appears
that they have discovered ultimate truth. Stated differently, the language used in
many research reports suggests strongly that sample statistics and the results of in-
ferential tests are being reified into population parameters and indisputable claims.
At times, such claims are based on the kinds of ANOVA considered in this chapter.

You must remember that the result of any F-test might be a Type I error (if
the null hypothesis is rejected) or a Type II error (if the null hypothesis is retained).
This is true even if the nine-step version of hypothesis testing is used, and even if
attention is paid to all relevant underlying assumptions, and even if the data are col-
lected in an unbiased fashion with valid and reliable measuring instruments from
probability samples characterized by zero attrition, and even if all other good things
are done so the study is sound. Simply stated, inferential error is always possible
whenever a null hypothesis is tested.

EXCERPT 14.22 • (continued)

and large (.80) effect sizes, the power to detect differences between the treatments
in this sample is .32 and .62. Therefore, our null findings (no differences between
the treatments) do not necessarily indicate that the treatments are equally effective.

Blocher, W. G., & Wade, N. G. (2010). Sustained effectiveness of two brief group interven-
tions: Comparing an explicit forgiveness-promoting treatment with a process-oriented treat-
ment. Journal of Mental Health Counseling, 32(1), 58–74.

Between subjects
Bonferroni procedure
Carryover
Confounding
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Counterbalancing
Fatigue effect
Geisser–Greenhouse 
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Split-plot ANOVA
Two-way mixed ANOVA
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In Chapters 10 through 14, we looked at several different kinds of analysis of
variance. We focused our attention on one-way and two-way ANOVAs, with con-
sideration given to the situations where (1) each factor is between subjects in
nature, (2) each factor is within subjects in nature, and (3) both between-subjects
and within-subjects factors are combined in the same study. We closely exam-
ined five different kinds of ANOVAs that are distinguished from one another by
the number and nature of the factors. In this book, these five ANOVAs have been
referred to as a one-way ANOVA, a two-way ANOVA, a one-way repeated mea-
sures ANOVA, a two-way repeated measures ANOVA, and a two-way mixed
ANOVA.

We now turn our attention to an ANOVA-like inferential strategy that can
be used instead of any of the ANOVAs examined or referred to in earlier chap-
ters. This statistical technique, called the analysis of covariance and abbrevi-
ated by the six letters ANCOVA, can be used in any study regardless of the
number of factors involved or the between-versus-within nature of the factor(s).
Accordingly, the analysis of covariance is best thought of as an option to the
analysis of variance. For example, if a researcher’s study involves one between-
subjects factor, data can be collected and analyzed using a one-way ANOVA or
a one-way ANCOVA. The same option exists for any of the other four situations
examined in earlier chapters. Simply stated, there is an ANCOVA counterpart to
any ANOVA.

In Excerpts 15.1 through 15.3, we see how researchers typically indicate that
their data were subjected to an analysis of covariance. Note how these excerpts 
illustrate the way ANCOVA can be used as an option to ANOVA regardless of 
the number of factors involved in the study or the between-versus-within nature of
any factor.

C H A P T E R 15
The Analysis 
of Covariance

343
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The Three Different Variables Involved in Any ANCOVA Study

In any of the ANOVAs considered in earlier chapters, there are just two kinds of
variables: independent variables and dependent variables. The data analyzed in
those ANOVAs, of course, represent the dependent variable; the factors correspond
with the study’s independent variables. We have seen how ANOVAs can involve
more than one factor, factors made up of different numbers of levels, and different
kinds of factors (i.e., between-subjects versus within-subjects factors); nevertheless,
each and every factor in the ANOVAs considered in this book represents an inde-
pendent variable. Thus, such ANOVAs could be said to contain two structural in-
gredients: one or more independent variables and data on one dependent variable.

In any analysis of covariance, three rather than two kinds of variables are in-
volved. Like the ANOVAs we have considered, there will be scores that correspond
with the dependent variable and one or more factors that coincide with the study’s in-
dependent variable(s). In addition, ANCOVAs involve a third variable called a
covariate variable.1 Because the covariate is a variable on which the study’s participants

1The term concomitant variable is synonymous with the term covariate variable.

EXCERPT 15.1–15.3 • The Versatility of the Analysis of Covariance

A one-way ANCOVA was conducted to assess whether the high and low beliefs
groups differed in their degree of rumination about the anagram task.

Source: Moulds, M. L., Yap, C. S. L., Kerr, E., Williams, A. D., & Kandris, E. (2010).
Metacognitive beliefs increase vulnerability to rumination. Applied Cognitive Psychology,
24(3), 351–364.

To determine any differences in comprehension scores between conditions, a 2 (sex)
� 3 (image condition) between subjects ANCOVA was computed.

Source: Good, J. J., Woodzicka, J. A., & Wingfield, L. C. (2010). The effects of gender stereo-
typic and counter-stereotypic textbook images on science performance. Journal of Social 
Psychology, 150(2), 132–147.

The effectiveness of the treatment seminars in promoting forgiveness was explored
with a (Condition: Empathy Forgiveness Seminar, Self-enhancement Forgive-
ness Seminar, wait-list control Time) analysis of covariance (ANCOVA) with
repeated measures.

Source: Sandage, S. J., & Worthington, E. L. (2010). Comparison of two group interventions to
promote forgiveness: Empathy as a mediator of change. Journal of Mental Health Counseling,
32(1), 35–57.

*
3 * 2
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are measured, it is more similar to the study’s dependent variable than to the inde-
pendent variable(s). However, the covariate and dependent variables have entirely
different functions in any ANCOVA study, as the next section makes clear. Before dis-
cussing the covariate’s function, however, let’s consider a few real studies for the pur-
pose of verifying that ANCOVA studies always have three structural ingredients.

Excerpts 15.4 and 15.5 are typical of ANCOVA-related passages in research
reports because each contains a clear indication of the three kinds of variables in-
volved in the ANOVA. In the first of these excerpts, the researchers used a one-way
ANCOVA, so there is one independent variable, one dependent variable, and one
covariate variable. Excerpt 15.5 describes these same three kinds of variables,
except here there are two independent variables because the authors conducted a
two-way ANCOVA. (In the second of these two excerpts, the dependent variable
was a posttest whereas the covariate was a pretest. These two variables were con-
ceptually different and were assessed with different measuring instruments.)

2The qualities of a good covariate are described later in the chapter.

EXCERPTS 15.4–15.5 • The Three Kinds of Variables in Any ANCOVA Study

Then, a one-way analysis of covariance (ANCOVA) was conducted to determine if
there was a statistically significant difference in [students’] absence frequency
between the two sections, with absence as the dependent variable, sections as the
independent variable, and GPA as the covariate.

Source: Traphagan, T., Kucsera, J., & Kishi, K. (2010). Impact of class lecture webcasting on
attendance and learning. Educational Technology Research & Development, 58(1), 19–37.

Then a two-way ANCOVA, taking the “pre-test scores of the summative assessment”
as the covariate, the “post-test scores of the summative assessment” as the depen-
dent variable, and the “different types of Web-based assessment” and the “different
levels of prior knowledge” as the fixed factors, was used to test the [hypotheses].

Source: Wang, T.-H. (2010). Web-based dynamic assessment: Taking assessment as teaching
and learning strategy for improving students’ e-learning effectiveness. Computers & Education,
54(4), 1157–1166.

The Covariate’s Role

Like the analysis of variance, the analysis of covariance allows researchers to make
inferential statements about main and interaction effects. In that sense, these two 
statistical procedures have the same objective. However, an ANCOVA is superior to
its ANOVA counterpart in two distinct respects, so long as a good covariate is used.2
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To understand what is going on in an analysis of covariance, you must understand
this dual role of the covariate.

One role of the covariate is to reduce the probability of a Type II error when
main or interaction effects are tested, or when comparisons are made within planned
or post hoc investigations. As pointed out on repeated occasions in earlier chapters,
this kind of inferential error is committed whenever a false null hypothesis is not
rejected. Because the probability of a Type II error is inversely related to statistical
power, let me restate this first role of the covariate by saying that an ANCOVA is
more powerful than its ANOVA counterpart, presuming that other things are held
constant and that a good covariate has been used within the ANCOVA.

As you have seen, the F-tests associated with a standard ANOVA are com-
puted by dividing the MS for error into the MSs for main and interaction effects. If

can somehow be made smaller, then the calculated Fs are larger, ps are
smaller, and there is a better chance that null hypotheses will be rejected. When a
good covariate is used within a covariance analysis, this is exactly what happens.
Data on the covariate function to explain away a portion of within-group variabil-
ity, resulting in a smaller value for This mean square is often referred to as
“error variance.”

Consider Excerpts 15.6 and 15.7. In the first of these excerpts, the researchers
explain that they decided to use the analysis of covariance because of its ability to
increase power. In Excerpt 15.7, we see results from a different study that illustrate
the impact of this power increase. Comparing the posttest means from the four
groups, the covariance analysis produced an F with an accompanying p of .084,
whereas the ANOVA comparison of those same posttest means generated an F that

MSerror.

MSerror

EXCERPTS 15.6–15.7 • The First Role of the Covariate: Increased
Statistical Power

ANCOVA was selected to reduce the probability of a Type II error [and thus] increase
power by reducing the error variance [of] the SAT-9 MP.

Source: Griffin, C. C., & Jitendra, A. K. (2009). Word problem-solving instruction in inclusive
third-grade mathematics classrooms. Journal of Educational Research, 102(3), 187–202.

[T]here were no significant differences among conditions before instruction,
ns, and interestingly, there were no differences across the condi-

tions after instruction either, ns. However, when running an analy-
sis of covariance (which used the pretest scores as a covariate) on the posttest scores,
there is a marginally significant difference among the four groups,

Source: Hirata,Y., & Kelly, S. D. (2010). Effects of lips and hands on auditory learning of second-
language speech sounds. Journal of Speech, Language & Hearing Research, 53(2), 298–310.

p = .084.
F13, 552 = 2.33,

F13, 562 = 0.87,
F13, 562 = 0.94,
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had a p equal to .46. The ANCOVA p was close to the .05 alpha level and was
referred to by the researchers as being “marginally significant.” In contrast, the
ANOVA p was equal to .46 and reported simply as being ns (“not significant”).

In addition to its power function, the covariate in an analysis of covariance
has another function. This second function can be summed up by the word control.
In fact, some researchers will refer to the covariate of their ANCOVA studies as the
control variable. Excerpt 15.8 illustrates nicely the fact that a covariate is some-
times used because of its control (or corrective) capability. It is worth noting, in this
excerpt, that the covariate was used (to control for pretreatment group differences)
even though the 170 participants were randomly assigned to the study’s three com-
parison groups. (The full research report indicates that statistically significant dif-
ferences were found, at the time of the pretest, on three of the study’s six dependent
variables. Though random assignment is an excellent feature of studies designed to
investigate cause-and-effect relationships, it does not—as illustrated by Excerpt 15.8—
guarantee that comparison groups are identical.)

EXCERPT 15.8 • The Second Role of the Covariate: Control

This study used a randomized-groups pretest–posttest research design [with partic-
ipants] randomly assigned to one of three groups. . . . Pretest data were initially
analyzed for group differences [and] on all of the baseline measures the CG [Control
Group] had the highest means. . . . To reduce sampling error and control for initial
differences, the baseline data were used as covariates when comparing the groups on
the follow-up and retention measures.

Source: Parrott, M. W., Tennant, L. K., Olejnik, S., & Poudevigne, M. S. (2008). Theory of
planned behavior: Implications for an email-based physical activity intervention. Psychology
of Sport and Exercise, 9(4), 511–526.

The logic behind the control feature of ANCOVA is simple. The comparison
groups involved in a study are likely to differ from one another with respect to one or
more variables that the researcher may wish to hold constant. In an attempt to ac-
complish this objective, the researcher could use participants who have identical
scores on the variable(s) where control is desired. That effort, however, usually brings
forth two undesirable outcomes. For one thing, only a portion of the available partic-
ipants are actually used, thus reducing the statistical power of inferential tests. Fur-
thermore, the generalizability of the findings is greatly restricted as compared with
the situation where the analysis is based on a more heterogeneous group of people.

To bring about the desired control, ANCOVA adjusts each group mean on the
dependent variable. Although the precise formulas used to make these adjustments
are somewhat complicated, the rationale behind the adjustment process is easy to
understand. If one of the comparison groups has an above-average mean on the
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control variable (as compared with other comparison groups in the study), then that
group’s mean score on the dependent variable is lowered. In contrast, any group that
has a below-average mean on the covariate has its mean score on the dependent
variable raised. The degree to which any group’s mean score on the dependent vari-
able is adjusted depends on how far above or below average that group stands on
the control variable (and on the correlation between the covariate and the dependent
variable). By adjusting the mean scores on the dependent variable in this fashion,
ANCOVA provides the best estimates of how the comparison groups would have
performed if they had all possessed identical means on the control variable(s).

To illustrate the way ANCOVA adjusts group means on the dependent vari-
able, let’s consider a recent study undertaken to compare two methods of teaching
nursing students. A total of 49 individuals in baccalaureate, accelerated baccalau-
reate, and diploma nursing programs were randomly assigned to work with a human
patient simulator (HPS) or with interactive case studies (ICS). Both prior to and fol-
lowing the short-term educational intervention, each student took an examination
designed by the Health Education Systems, Inc. (HESI). The pretest scores func-
tioned as the covariate in an analysis of covariance that compared the interventions.
In Excerpt 15.9, we see how the two groups performed on the pretest and the
posttest. We also see the ANCOVA-generated adjusted posttest means.

EXCERPT 15.9 • Adjusted Means

Students from each of the three nursing programs were randomly assigned to one of
the two teaching strategy groups: HPS or ICS. . . . The same pretest and posttest were ad-
ministered to all students, regardless of which educational intervention they received. . . .
A one-way, between-subjects analysis of covariance (ANCOVA) was used to compare
HPS and ICS posttest HESI scores. . . . The adjusted mean posttest HESI score for the
HPS group was significantly higher than the adjusted mean posttest HESI
score for the ICS group (Table 2).

1P … .052

TABLE 2 ANCOVA Comparison of Pretest and Posttest HESI Scores by
Educational Intervention

Adjusted
Pretest HESI Scores Posttest HESI Scores Mean  
Mean SD Mean SD Scores

HPS (simulation group) 713.12 153.56 738.00 131.01 750.42a

ICS (case study group) 786.17 184.81 670.08 181.83 657.14a

The HPS group scored significantly higher on the posttest than the ICS group did. a

Source: Howard, V. M., Ross, C., Mitchell, A. M., & Nelson, G. M. (2010). A comparative
analysis of learning outcomes and student perceptions. CIN: Computers, Informatics, Nursing,
28(1), 42–48.

P … .05
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As you can see from Excerpt 15.9, the two groups began the study with dif-
ferent mean scores on the HESI. With the mean pretest score for all 49 students
being 748.90, it is clear that the 24 students in the ICS group started out, on aver-
age, with a higher level of proficiency than did the 25 students in the HPS group.
In a sense, we could say that the ICS group began the study with an advantage over
the HPS group.

If the obtained posttest means on the HESI for the two groups had been di-
rectly compared (e.g., with an independent-samples t-test or F-test), a statistically
significant result would be hard to interpret. This is because part or all of the posttest
difference between the two groups might simply be a reflection of their different
starting points. For this reason, a comparison of the two posttest means is not a fair
comparison.

To acknowledge the existence of the difference between the two groups on the
covariate, ANCOVA adjusted the posttest means. Examine the three sets of means
in Excerpt 15.9 and note the basic logic of this adjustment procedure. The HPS
group had a disadvantage at the outset, because its pretest mean (713.12) was lower
than the grand average of both groups combined (748.90). Therefore, that group’s
posttest mean was adjusted upward (from 738.00 to 750.22). The ICS group, in con-
trast, started out with an advantage, because its pretest mean (786.17) was higher
than the grand average of all pretest scores. Consequently, the ICS group’s posttest
mean was adjusted downward (from 670.08 to 657.14).

In any study, this is exactly how the control feature of ANCOVA works. Any
group with an above-average mean on the covariate has its mean on the dependent
variable adjusted downward, whereas any group with a below-average mean on the
covariate has its mean on the dependent variable adjusted upward. These adjusted
means constitute the best estimates of how groups would have performed on
the dependent variable if they had possessed identical means on the control (i.e.,
covariate) variable used in the study.

Although the logic behind ANCOVA’s adjustment of group means on the
dependent variable is easy to follow, the statistical procedures used to make the
adjustment are quite complicated. The formulas used to accomplish this goal are not
presented here because it is not necessary to understand the intricacies of the ad-
justment formula in order to decipher and critique ANCOVA results. All you must
know is that the adjustment process involves far more than simply (1) determining
how far each group’s covariate mean lies above or below the grand covariate mean
and (2) adding or subtracting that difference to that group’s mean on the dependent
variable. As proof of this, take another look at Excerpt 15.9. Each group’s pretest
mean in that study was about 36 points away from the grand pretest mean. How-
ever, the covariance adjustment caused far less than this amount to be added to or
subtracted from the posttest means.

Note that the two purposes of ANCOVA—increased power, on the one hand,
and control of extraneous variables, on the other hand—occur simultaneously. If a
researcher decides to use this statistical procedure solely to gain the increased power
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that ANCOVA affords, the means on the dependent variable are automatically
adjusted to reflect differences among the group means on the covariate variable. If,
however, the researcher applies ANCOVA solely because of a desire to exert statis-
tical control on a covariate variable, there is an automatic increase in the statistical
power of the inferential tests. In other words, ANCOVA accomplishes two objectives
even though the researcher may have selected it with only one objective in mind.

At the beginning of this section, I stated that ANCOVA allows the researcher
to make inferential statements about main and interaction effects in the populations
of interest. Because you now know how data on the covariate variable(s) make it
possible for the researcher to control one or more extraneous variables, I can now
point out that ANCOVA’s inferential statements are based on the adjusted means.
The data on the covariate and the dependent variable are used to compute the adjusted
means on the dependent variable, with ANCOVA’s focus resting on these adjusted
means whenever a null hypothesis is tested.

Null Hypotheses

As typically used, ANCOVA involves the same number of null hypotheses as is the
case in a comparable ANOVA. Hence, you usually find that there are one and three null
hypotheses associated with ANCOVAs that have one and two factors, respectively. The
nature of these ANCOVA null hypotheses is the same as the null hypotheses I talked
about in earlier chapters when we considered various forms of ANOVA, except that
the in any covariance must be considered to be adjusted means.3

Although null hypotheses rarely appear in research reports that contain 
ANCOVA results, sometimes researchers refer to them. Excerpt 15.10 provides an

H0ms

3In a completely randomized ANCOVA where each factor is active in nature, the adjusted population means
on the dependent variable are logically and mathematically equal to the unadjusted population means.

EXCERPT 15.10 • The Null Hypothesis in ANCOVA

With ANCOVA, the null hypothesis being tested is that the adjusted population mean
[scores] are equal. . . . The observed mean score for the video group on the dialogue
sections of the post-test was 9.76 (out of 16, equaling 61.0%), and the adjusted mean
score was 9.74 (60.8%). The observed score for the audio-only group on the dialogue
sections of the post-test was 8.72 (54.5%), while the adjusted mean score was 8.74
(54.7%). . . . Examination of the [one-way] ANCOVA indicated that the F-value for
the dialogue post-test variable reached significance and the
null hypothesis was rejected.

Source: Wagner, E. (2010). The effect of the use of video texts on ESL listening test-taker per-
formance. Language Testing, 27(3), 1–21.

1F = 5.94, p 6 0.052,
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example of this. Had the null hypothesis in this study been written out symbolically,
it have taken the form where the symbol stands for an adjusted
population mean.

The Focus, Number, and Quality of the Covariate Variable(s)

Suppose two different researchers each conduct a study in which they use the analy-
sis of covariance to analyze their data. Further suppose that these two studies are
conducted at the same point in time, in the same kind of setting, with the same in-
dependent variable(s) [as defined by the factor(s) and levels], and with the same mea-
suring instrument used to collect data on the dependent variable from the same
number and type of research participants. Despite all these similarities, these two
ANCOVA studies might yield entirely different results because of differences in the
focus, number, and quality of the covariate variable(s) used in the two investigations.

Regarding its focus, the covariate in many studies is set up to be simply an in-
dication of each participant’s status on the dependent variable at the beginning of
the investigation. When this is done, the participant’s scores on the covariate are
referred to as their pretest or baseline measures, examples of which can be seen in
Excerpts 15.5, 15.7, 15.8, and 15.9. In one sense, this kind of ANCOVA study is
simpler (but not necessarily of lower quality) because a single measuring instrument
is used to collect data on both the covariate and the dependent variables.

There is no rule, however, that forces researchers to use pretest-type data to
represent the covariate variable. In many studies, the covariate variable is entirely
different from the dependent variable. For example, consider again Excerpt 15.4. In
that study, the dependent variable was student absences from class whereas the
covariate variable was grade point average (GPA).

Regardless of whether the covariate and dependent variables are the same or
different, the adjustment process of ANCOVA is basically the same. First, the mean
covariate score of all subjects in all comparison groups is computed. Next, each
comparison group’s covariate mean is compared against the grand covariate mean
to see (1) if the former is above or below the latter, and (2) how much of a differ-
ence there is between these two means. Finally, each group’s mean on the depen-
dent variable is adjusted up or down (depending on whether the group was below
or above average on the covariate), with larger adjustments made when a group’s
covariate mean is found to deviate further from the grand covariate mean.

The second way in which two ANCOVA studies might differ—even though
they are identical in terms of independent and dependent variables, setting,
and participants—concerns the number of covariate variables involved in the
study. Simply stated, there can be one, two, or more covariate variables included
in any ANCOVA study. Most often, only one covariate variable is incorporated
into the researcher’s study. Of the excerpts we have considered thus far, most
came from studies wherein there was a single covariate variable. In Excerpt 15.11,

m¿H0: m¿video = m¿audio,
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we see a case in which three covariates were used in a ANCOVA. Notice
that data on these covariate variables were incorporated into the analysis even
though the research participants were randomly assigned to the four treatment
conditions.

Although it might seem as if ANCOVA would work better when many covari-
ate variables are involved, the researcher must pay a price for each such variable.
We consider this point later in the chapter. For now, all you need to know is that
most ANCOVAs are conducted with only a small number covariate variables. You
are unlikely to see more than five such variables used in an ANCOVA.

The third way two seemingly similar studies might differ concerns the qual-
ity of the covariate variable. Earlier, we considered the two roles of the covariate:
power and control. Covariate data do not help in either regard if (1) an irrelevant
covariate variable is used or (2) the covariate variable is relevant conceptually but
measured in such a way that the resulting data are invalid or unreliable.

In order for a covariate variable to be conceptually relevant within a given
study, it must be related to the study’s dependent variable. In studies where mea-
surements on the covariate variable are gathered via a pretest, with posttest scores
(from the same measuring instrument) used to represent the dependent variable, the
conceptual relevance of the covariate is clear. When the covariate and dependent
variables are different, it may or may not be the case that the covariate is worthy of
being included in the ANCOVA. Later in this chapter, we return to this issue of
relevant covariate variables.

Even if the covariate variable selected by the researcher is sensible, the
measurement of the variable must be sound. In other words, the data collected 
on the covariate variable must be both reliable and valid. Earlier in this book,
we considered different strategies available for estimating reliability and validity.
Competent researchers use these techniques to assess the quality of their covari-
ate data; moreover, they present evidence of such data checks within their re-
search reports.

2 * 2

EXCERPT 15.11 • ANCOVA with Multiple Covariates

A total of 140 students recruited from undergraduate communication courses par-
ticipated in the experiment in exchange for extra course credit. They were randomly
assigned to one of the four experimental conditions. . . . To test H1 and H2, a full-
factorial analysis of covariance (ANCOVA) was conducted with two independent
variables (Website and Web agent), one dependent variable (amount of systematic
processing), and three covariates (institutional trust, prior familiarity, and task
importance).

Source: Koh, Y. J., & Sundar, S. S. (2010). Heuristic versus systematic processing of spe-
cialist versus generalist sources in online media. Human Communication Research, 36(2),
103–124.
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Presentation of Results

Most researchers present the results of their ANCOVAs within the text of their re-
search reports. Accordingly, we now look at a few passages that have been taken
from recently published articles.

In Excerpt 15.12, we see the results of a one-way analysis of covariance. This
passage is very similar to what you might see when a researcher uses a one-way
ANOVA to compare the means of four groups. We are given information as to the
independent and dependent variables, the calculated F-value, the sample means that
were compared, the decision about the null hypothesis and an effect
size estimate. Moreover, just like a one-way ANOVA, a post hoc investigation was
conducted (using Bonferroni-adjusted LSD tests) to make pairwise comparisons
among the groups.

1p 6 .0012,

EXCERPT 15.12 • Results of a One-Way ANCOVA

A one-way analysis of covariance on postexpectancy ratings, with baseline ex-
pectancy ratings as the covariate, produced a significant main effect for treatment con-
dition, A least significant difference test
on estimated marginal means with a Bonferroni adjustment for the number of statis-
tical comparisons revealed that participants in the no-treatment control condition
(adjusted mean ) expected more pain than those in the hypnotic
analgesia (adjusted mean ), imaginative analgesia (adjusted mean

), and placebo (adjusted mean ) conditions.
All of the other pairwise comparisons were nonsignificant.

Source: Milling, L. S. (2009). Response expectancies: A psychological mechanism of sug-
gested and placebo analgesia. Contemporary Hypnosis, 26(2), 93–110.

= 2.70, SD = 2.99= 3.42, SD = 2.92
= 3.41, SD = 2.83

= 4.80, SD = 2.95

F13,1672 = 15.21, p 6 .001, eta2 = .22.

There are two things about this passage that make it different from textual pre-
sentations of results following a one-way ANOVA. First, note that the four sample
means are referred to as adjusted means. Sample means are never referred to this
way in a one-way ANOVA. Second, note the df numbers next to the F-value. If this
were a one-way ANOVA, you add those numbers together and then add 1 in order
to figure out how many people were involved in the study. Because these results
come from an ANCOVA, you must add 2 to the sum of and not 1.
This is because 1 degree of freedom is used up from the within-groups df for each
covariate variable included in an ANCOVA study. Knowing this, you can determine
that the data for this one-way ANCOVA came from 172 individuals.

Now consider the passage of text in Excerpt 15.13. Here, we can see how a team
of researchers reported the results of their two-way mixed ANCOVA. In the study
associated with this excerpt, 124 male and female high school students experienced

dfwithin,dfbetween
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a three-session program on date-rape prevention. A control group of 88 similar
students was not given this program. Three times—prior to the intervention, im-
mediately after it was over, and then four weeks later—the students in both groups
filled out the IRMA-SF, a questionnaire designed measure one’s acceptance of date-
rape myths. At the beginning of the study, the students also filled out a personality
inventory (the MCSD-C) that assesses one’s tendency to answer questions in a so-
cially desirable manner.

The results shown in Excerpt 15.13 are based on the data provided by the
128 male students (78 in the experimental group, 50 in the control group). The
researchers associated with this study did two things worth noting. One of these good
practices—the estimation of effect size—was done (using partial ) in conjunction
with every F-ratio presented. The other good practice followed by these researchers
is the post-hoc investigation they conducted to probe the significant interaction.

The Statistical Basis for ANCOVA’s Power 
Advantage and Adjustment Feature

In an earlier section of this chapter, you learned that a good covariate variable is
both conceptually related to the dependent variable and measured in such a way as
to provide reliable and valid data. But how can researchers determine whether
existing data (or new data that could be freshly gathered) meet this double criterion?
Every researcher who uses ANCOVA ought to be able to answer this question

h2

EXCERPT 15.13 • Results of a Two-Way Mixed ANCOVA

[F]or male students, a 2 (condition: experimental, control) (time: pretest,
posttest, and follow-up) mixed-model analysis of covariance (ANCOVA) with the
IRMA-SF as the repeated dependent variable and with the MCSD-C as the covariate
revealed a significant condition effect, partial 
and a Condition Time interaction effect, partial

Subsequent analyses on the interaction effect revealed that the IRMA-
SF scores of the experimental group changed significantly across the three phases
[ and 35.46], partial but
those of the control group did not [ and 41.66]. . . . Specifically,
the IRMA-SF scores of the experimental group decreased from pretest to posttest,

partial and were significantly lower than
those of the control group at posttest, and follow-up,

Source: Hillenbrand-Gunn, T. L., Heppner, M. J., Mauch, P. A., & Park, H.-J. (2010). Men as
allies: The efficacy of a high school rape prevention intervention. Journal of Counseling &
Development, 88(1), 43–51.

t11262 = -3.76, p 6 .001.
t11262 = -2.73, p 6 .001,

h2 = 0.09,F11,762 = 7.78, p 6 .001,

Ms = 40.40, 41.30,
h2 = 0.04,F12,1542 = 3.34, p 6 .05,Ms = 39.49, 36.28,

h2 = 0.05. . . .
F12,2502 = 7.19, p 6 .01,*

h2 = 0.06,F11,1252 = 6.60, p 6 .01,

* 3
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whenever one or more covariate variables are incorporated into a study. With bad
covariate variables, nothing of value comes in return for what is given up.

In order for ANCOVA to provide increased power (over a comparable
ANOVA) and to adjust the group means, the covariate variable(s) must be corre-
lated with the dependent variable. Although the correlation(s) can be either positive
or negative in nature, ANCOVA does not achieve its power and adjustment objec-
tives unless at least a moderate relationship exists between each covariate variable
and the dependent variable. Stated differently, nuisance variability within the de-
pendent variable scores can be accounted for to the extent that a strong relationship
exists between the covariate(s) and the dependent variable.4

There are many ways to consider the correlation in ANCOVA, even when data
have been collected on just one covariate variable. Two ways of doing this involve
(1) looking at the correlation between the covariate and dependent variables for all
participants from all comparison groups thrown into one large group, or (2) looking
at the correlation between the covariate and dependent variables separately within
each comparison group. The second of these two ways of considering the correla-
tion is appropriate because ANCOVA makes its adjustments (of individual scores
and of group means) on the basis of the pooled within-groups correlation coefficient.

One final point is worth making about the correlation between the covariate
and dependent variables. Regarding the question of how large the pooled within-
groups r must be before the covariate can make a difference in terms of increasing
power, statistical theory responds by saying that the absolute value of this r should
be at least .20. When r is at least this large, the reduction in the error SS compen-
sates for df that are lost from the error row of the ANCOVA summary table. If r is
lower than however, the effect of having a smaller number of error df with-
out a proportionate decrease in the error SS is to make the error MS larger, not
smaller, a situation that brings about a reduction in power.5

Assumptions

The statistical assumptions of ANCOVA include all the assumptions that are asso-
ciated with ANOVA, plus three that are unique to the situation where data on a
covariate variable are used in an effort to make adjustments and increase power. All
three of these unique-to-ANCOVA assumptions must be met if the analysis is to
function in its intended manner, and the researcher (and you) should consider these
assumptions whenever ANCOVA is used—even in situations where the comparison
groups are equally large. In other words, equal ns do not cause ANCOVA to be
robust to any of the assumptions we now will consider.

; .20,

4When two or more covariate variables are used within the same study, ANCOVA works best when the covari-
ates are unrelated to each other. When the correlations among the covariate variables are low, each such variable
has a chance to account for a different portion of the nuisance variability in the dependent variable.
5Although we use r in this paragraph, it is actually the population parameter ρ that must exceed in order
for ANCOVA to have a power advantage.

; .20
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The Independent Variable Should Not 
Affect the Covariate Variable

The first of these three new assumptions stipulates that the study’s independent vari-
able should not affect the covariate variable. In an experiment (where the indepen-
dent variable is an active factor), this assumption clearly is met if the data on the
covariate variable are collected before the treatments are applied. If the covariate
data are collected after the treatments have been doled out, the situation is far
murkier—and the researcher should provide a logical argument on behalf of the im-
plicit claim that treatments do not affect the covariate. In non-experimental (i.e., de-
scriptive) studies, the situation is even murkier because the independent variable very
likely may have influenced each participant’s status on the covariate variable prior
to the study. We return to this issue—of covariance being used in nonrandomized
studies—in the next major section.

To see an example of how the covariate can be affected by the independent
variable in a randomized experiment, consider Excerpt 15.14. In this study, data on
the covariate variable (time-on-task) were collected after the independent variable
had been applied. In a preliminary analysis, the researchers confirmed what 
you probably are thinking: mean time-on-task was significantly greater for those
participants who saw animated rather than static visuals and who experienced the

EXCERPT 15.14 • The Independent Variable Should Not Affect the
Covariate

The instructional material used in this study consisted of a 2,000-word physiology
unit focusing on the human heart, its parts, locations, and functions during the diastolic
and systolic phases [with] 20 visuals of the human heart, which were designed and
positioned utilizing the principles of instructional consistency and congruency. . . .
This instructional unit was selected to explore the effect of two types of visuals, i.e.,
static versus animated, and three types of instructional strategies, i.e., no strategy,
questions, and questions plus feedback.

Time-on-task was employed as a control variable in [the analysis of covari-
ance portion of] this study. It was defined as the total time students spent studying
the respective treatment material, and was recorded by the computer from the mo-
ment students began the first frame of the instructional material to the moment they
clicked on a button to indicate that they had finished studying the material and were
ready to take the tests. The amount of time was collected in seconds. Time-on-task
was used as a covariate rather than a dependent variable because the study was not
intended to measure the amount of time that each treatment group spent studying the
material and to compare if there was a significant difference.

Source: Lin, H., & Dwyer, F. M. (2010). The effect of static and animated visualization: a
perspective of instructional effectiveness and efficiency. Educational Technology Research &
Development, 58(2), 155–174.
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questions-plus-feedback learning strategy. Clearly, scores on the covariate variable
were affected by the treatment.

Homogeneity of Within-Group Correlations 
(or Regression Slopes)

The second unique assumption associated with ANCOVA stipulates that the corre-
lation between the covariate and dependent variables is the same within each of the
populations involved in the study. This assumption usually is talked about in terms
of regression slopes rather than correlations, and therefore you are likely to come
across ANCOVA research reports that contain references to the assumption of
equal regression slopes or to the homogeneity of regression slope assumption.
The data of a study can be employed to test this assumption—and it should always
be tested when ANCOVA is used. As is the case when testing other assumptions,
the researcher will be happy when the statistical test of the equal slopes assumption
leads to a fail-to-reject decision, an outcome interpreted as a signal that it is per-
missible to analyze the study’s data using ANCOVA procedures.

Consider Excerpt 15.15, which shows how a team of researchers attended to
ANCOVA’s assumption of equal regression slopes. Although this passage is only
two sentences in length, it is a highly important element of the research report. If
the researchers had not provided the results of this preliminary check on their data’s
suitability to go into a covariance analysis, we (and, it is hoped, they too) would
need to be wary of the ANCOVA results.

EXCERPT 15.15 • The Assumption of Equal Regression Slopes

To be valid, ANCOVA assumes homogeneity among within-treatment regressions.
For this analysis, within-treatment regressions were not significantly different from
each other and can therefore be considered homogeneous,
meeting the assumption of ANCOVA.

Source: Marcus, J. M., Hughes, T. M., McElroy, D. M., & Wyatt, R. E. (2010). Engaging first-
year undergraduates in hands-on research experiences: The Upper Green River Barcode of
Life Project. Journal of College Science Teaching, 39(3), 39–45.

1F = 1.34, p = .253582

If the equal-slopes is rejected, there are several options open to the researcher.
In that situation, the data can be transformed and then the assumption can be tested
again using the transformed data. Or, the researcher can turn to one of several more
complicated analyses (e.g., the Johnson–Neyman technique) developed specifically
for the situation where heterogeneous regressions exist. Or, the researcher can
decide to pay no attention to the covariate data and simply use an ANOVA to com-
pare groups on the dependent variable. These various options come into play only

H0
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rarely, either because the equal-slopes assumption is not rejected when tested or
because the researcher wrongfully bypasses testing the assumption.

Linearity

The third assumption connected to ANCOVA (but not ANOVA) stipulates that the
within-group relationship between the covariate and dependent variables should be
linear.6 There are several ways this assumption can be evaluated, some involving a
formal statistical test and some involving visual inspections of scatter plots. (A spe-
cial type of scatter diagram, involving plots of residuals, is used more frequently
than plots of raw scores.) Regardless of how researchers might choose to assess the
linearity assumption, I salute their efforts to examine their data to see if it is legit-
imate to conduct an analysis of covariance.

Consider Excerpt 15.16. First, note what is said in the first two sentences.
Those points apply to any situation in which ANCOVA is used. Next, make sure
you see what the researchers said about their test of linearity and what they did
when the linearity assumption was deemed untenable. These researchers deserve
high praise for attending to ANCOVA’s linearity assumption.

6I first discussed the notion of linearity in Chapter 3; you may want to review that earlier discussion if you
have forgotten what it means to say that two variables have a linear relationship.

EXCERPT 15.16 • The Linearity Assumption

The statistical requirements for ANCOVA are stricter than for ANOVA. In addition
to the requirements of ANOVA, ANCOVA requires that the relationship between the
dependent variable and the covariate be linear (assumption of linearity). . . . In the
current study, GPA violates the linearity assumption, and transformations of the GPA
variable did not resolve the issue. Consequently, ANOVA was used despite its limi-
tations [e.g., lower power] compared to ANCOVA.

Source: Jones, S. H., & Wright, M. E. (2010). The effects of a hypertext learning aid and cog-
nitive style on performance in advanced financial accounting. Issues in Accounting Education,
25(1), 35–58.

Other Standard Assumptions

As indicated earlier, the standard assumptions of ANOVA (e.g., normality, homo-
geneity of variance, sphericity) underlie ANCOVA as well. You should upgrade or
downgrade your evaluation of a study depending on the attention given to these
assumptions in the situations where F-tests are biased because assumptions are
violated. Unfortunately, you are likely to come across many ANCOVA studies in
which there is absolutely no discussion of linearity, equal regression slopes,
normality, or homogeneity of variance.
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ANCOVA When Comparison Groups Are Not Formed Randomly

In a randomized experiment, the various population means on the covariate variable
can be considered identical. This is the case because of the random assignment of
research participants to the comparison groups of the investigation. Granted, the
sample means for the comparison groups on the covariate variable probably vary,
but the corresponding population means are identical.

When ANCOVA is used to compare groups that are formed in a nonrandom-
ized fashion, the population means on the covariate variable cannot be assumed to
be equal. For example, if a study is set up to compare sixth-grade boys with sixth-
grade girls on their ability to solve word problems in mathematics, a researcher
might choose to make the comparison using ANCOVA, with reading ability used as
the covariate variable. In such a study, the population means on reading ability
might well differ between the two gender groups.

Although my concern over the equality or inequality of the covariate popula-
tion means may initially seem silly (because of the adjustment feature of ANCOVA),
this issue is far more important than it might at first appear. I say this because studies
in theoretical statistics have shown that ANCOVA’s adjusted means turn out to be
biased in the situation where the comparison groups differ with respect to popula-
tion means on the covariate variable. In other words, the sample-based adjusted
means on the dependent variable do not turn out to be accurate estimates of the
corresponding adjusted means in the population when the population means on the
covariate variable are dissimilar.

Because ANCOVA produces adjusted means, many applied researchers evidently
think that this statistical procedure was designed to permit nonrandomly formed
groups to be compared. Over the years, I have repeatedly come across research
reports in which the researchers talk as if ANCOVA has the magical power to equate
such groups and thereby allow valid inferences to be drawn from comparisons of
adjusted means. Excerpts 15.17 and 15.18 illustrate this view held by many applied
researchers that ANCOVA works well with nonrandomly formed groups. In the first
of these excerpts, the clear impressive given is that ANCOVA would not have been
used if the groups could have been formed randomly. In Excerpt 15.18, the researchers
claim more directly that ANCOVA can control for initial group differences.

EXCERPTS 15.17–15.18 • Use of ANCOVA with Groups Formed
Nonrandomly

The intervention group received approximately 10 hours per week of
behavioral intervention; the eclectic comparison group received treatment
as usual. . . . To evaluate of effectiveness of behavioral intervention, we used ANCOVA
models. Because the children were not randomly assigned to groups or actively

1n = 142
1n = 112

(continued )
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Besides ANCOVA’s statistical inability to generate unbiased adjusted means
when nonrandomly formed groups are compared, there is a second, logical reason
why you should be on guard whenever you come across a research report in which
ANCOVA was used in an effort to equate groups created without random assign-
ment. Simply stated, the covariate variable(s) used by the researcher may not
address one or more important differences between the comparison groups. Here,
the problem is that a given covariate variable (or set of covariate variables) is limited
in scope. For example, the covariate variable(s) used by the researcher might address
knowledge but not motivation (or vice versa).

Consider, for example, the many studies conducted in schools or colleges in
which one intact group of students receives one form of instruction whereas a differ-
ent intact group receives an alternative form of instruction. In such studies, it is com-
mon practice to compare the two groups’ posttest means via an analysis of covariance,
with the covariate being IQ, GPA, or score on a pretest. In the summaries of these studies,
the researchers may say that they used ANCOVA “to control for initial differences
between the groups.” However, it is debatable whether academic ability is reflected in
any of the three covariates mentioned (or even in all three used jointly). In this and
many other studies, people’s motivation plays no small part in how well they perform.

In summary, be extremely cautious when confronted with research claims
based on the use of ANCOVA with intact groups. If an important covariate variable
was overlooked by those who conducted the study, pay no attention whatsoever
to the conclusions based on the data analysis. Even in the case where data on all
important covariate variables were collected and used, you still should be tentative
in your inclination to buy into the claims made by the researchers.

matched, the intake score for the specific outcome measure was entered as a covari-
ate in each analysis. ANCOVAs were run for IQ and adaptive behavior, including all
sub domains (except for motor skills) and the adaptive composite scores.

Source: Eldevik, S., Jahr, E., Eikeseth, S., Hastings, R. P., & Hughes, C. J. (2010). Cognitive
and adaptive behavior outcomes of behavioral intervention for young children with intellec-
tual disability. Behavior Modification, 34(1) 16–34.

Because of the need to accept pre-grouped sets of children, the experimental and
control [groups] were not necessarily equivalent in terms of ability level. To com-
pensate for this, . . . analyses of covariance were used to control for pre-existing dif-
ferences between the control and experimental groups.

Source: Boakes, N. J. (2009). Origami instruction in the middle school mathematics class-
room: Its impact on spatial visualization and geometry knowledge of students. Research in
Middle Level Education, 32(7), 1–12.

EXCERPTS 15.17–15.18 • (continued)
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Related Issues

Near the beginning of this chapter, I asserted that any ANCOVA is, in several re-
spects, like its ANOVA counterpart. We have already considered many of the ways
in which ANOVA and ANCOVA are similar, such as the way post hoc tests are typ-
ically used to probe significant main effects and interactions. At this point, we ought
to consider three additional ways in which ANCOVA is akin to ANOVA.

As with ANOVA, the Type I error rate is inflated if separate ANCOVAs are
used to analyze the data corresponding to two or more dependent variables. To
deal with this problem, the conscientious researcher implements one of several
available strategies. The most frequently used strategy for keeping the opera-
tional Type I error rate in line with the stated alpha level is the Bonferroni 
adjustment technique, and it can be used with ANCOVA as easily as it can with
ANOVA.

In Excerpt 15.19, we see a case in which the Bonferroni adjustment technique
was used in conjunction with a one-way ANCOVA that was applied seven times.
After dividing their desired study-wide alpha level (of .05) by 7, the researchers
used .007 to evaluate the F-ratio generated by each ANCOVA.

EXCERPT 15.19 • Use of the Bonferroni Adjustment Technique

Correlations and one-way analyses of covariance (ANCOVAs) were conducted. . . .
Because seven ANCOVAs were [run], a Bonferroni adjustment required an alpha
level of .007 (i.e., .05/7) to be used.

Source: Pulido, D. (2009). How involved are American L2 learners of Spanish in lexical input
processing tasks during reading? Studies in Second Language Acquisition, 31(1), 31–58.

The second issue that has a common connection to both ANOVA and AN-
COVA is the important distinction between statistical significance and practical
significance. Because it is possible, in either kind of analysis, for the data to 
produce a finding that is significant in a statistical sense but not in a practical
sense, you should upgrade your evaluation of any ANCOVA study wherein the
researcher conducts an a priori power analysis or estimates the effect size from
the sample data.

Earlier (in Excerpts 15.12 and 15.13), we saw examples in which eta
squared and partial eta squared were used to estimate the practical significance of
ANCOVA results. Now, in Excerpt 15.20, we see a case in which the issue of
practical significance is addressed by means of a different way of estimating
effect size. As you can see, the researchers here used d. This excerpt is especially
nice because it shows the good practice of connecting estimates of effect size to
adjusted means.
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The criteria for judging effect size indices in any ANCOVA study are the same
as the standards for these indices when they are computed for any ANOVA study.
To see the criteria for judging the magnitude of and other ways of estimating
effect size, refer to Table 13.2. Be sure to read the note beneath that table. Also,
remember that certain experienced researchers choose, with justification, to discuss
effect size by focusing on the raw-score difference between means (rather than to
use a standardized estimate of effect size).

In Excerpt 15.21, we see a case in which a research team conducted an a priori
power analysis in conjunction with their ANCOVA study. This was done to determine

d, h2,

EXCERPT 15.20 • Effect Size Estimation in ANCOVA

Three one-way analyses of covariance (ANCOVAs) were employed to examine
between-group differences on the three dependent variables of home literacy practices,
the number of minutes parents read to children, and child emergent literacy skills.
[No] significant differences were found between children with developmental 
disabilities and TD children with regard to home literacy practices,

or the number of minutes
parents read to their children,

, However, for children at the average age and SES of the sample,
parents reported significant differences in child emergent literacy skills, with TD
children outperforming children with disabilities,

Source: Breit-Smith, A., Cabell, S. Q., & Justice, L. M. (2010). Home literacy experiences and
early childhood disability: A descriptive study using the National Household Education Surveys
(NHES) Program database. Language, Speech, & Hearing Services in Schools, 41(1), 96–107.

F11, 9522 = 10.76, p = .001, d = .18.
MD ADJ = 3.45;1MT ADJ = 3.902

d = .07.p = .26
MD ADJ = 22.56; MT ADJ = 23.89; F11, 9522 = 1.28,

MT ADJ = 20.45; F11, 9522 = .32, p = .57, d = .04,
MD ADJ = 20.22;

EXCERPT 15.21 • A Power Analysis to Determine Sample Size

An a priori power analysis was conducted to determine the minimum number of par-
ticipants that would need to be enrolled. The criterion for significance was set at

It was assumed that the analysis of covariance would be non-directional (i.e.,
two-tailed), thus an effect in either direction would be interpreted. A medium effect
size was specified (i.e., as per Cohen 1988). The study included two covari-
ates (age and an expressive communication indicator) that accounted for 80% of the
variance in the dependent variable (i.e., with the dependent variables). Lastly,
power was set to .80, meaning that the study would have an 80% probability of find-
ing differences among the three groups if such differences exist in the population. The
power analysis indicated that the study required a minimum of 13 cases per group for
a total of 39 cases. Actual enrollment was 14 cases per group, for a total of 42 cases.

Source: Mineo, B. A., Ziegler, W., Gill, S., & Salkin, D. (2009). Engagement with electronic
screen media among students with autism spectrum disorders. Journal of Autism & Develop-
mental Disorders, 39(1), 172–187.

r = .90

f = .25,

p = .05.
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how large the study’s sample sizes needed to be. As you can see, the power analysis
indicated that the researchers could utilize a small number of people in each
of the three comparison groups. The main reason for this is the large amount of vari-
ability (80%) in the dependent variable predicted to be associated with the study’s co-
variates. If that ingredient for the power analysis had been lower, the needed sample
size would have been greater. Based on the way the researchers described their power
analysis, it seems that they were not guessing about the effectiveness of their covari-
ates, but rather had firm knowledge that those two variables jointly explained much
of the variability in their study’s dependent variable.

The third point I want to make in this section is simple: Planned comparisons
can be used in ANCOVA studies just as easily as they can be used in ANOVA stud-
ies. In Excerpt 15.22, we see an example of this being done. This excerpt not only
illustrates the use of planned ANCOVA comparisons, it also shows how a study
can be conducted with a two-factor design in which certain of the cells are com-
pletely empty!

1n = 132

EXCERPT 15.22 • ANCOVA and Planned Comparisons

In order to investigate the specific impact of multimodality and interactivity in the con-
text of common media application formats, we developed a partial (interactive,
noninteractive by high, moderate, and low in multimodality) factorial between-
participants follow-up design with four conditions: (a) game (interactive, high
multimodality), (b) game replay (noninteractive, high multimodality), (c) hypertext
(interactive, medium multimodality), and (d) text (noninteractive, low multimodality).
. . . Analysis of covariance (ANCOVA) with a priori contrasts was chosen as the main
analysis approach. To explore the impact of multimodality and interactivity on
educational outcome, two sets of planned contrasts were performed; the first set
used game condition, and the second used text condition as the reference cate-
gory. . . . [R]elative to text condition, replay conditions yielded higher knowledge
gain (especially knowledge gain of definitions) and higher interest in learning. Relative
to game condition, hypertext condition had lower knowledge gain of definition items
in the posttest.

Source: Ritterfeld, U., Shen, C., Wang, H., Nocera, L., & Wong, W. L. (2009). Multimodality
and interactivity: Connecting properties of serious games with educational outcomes.
CyberPsychology & Behavior, 12(6), 691–697.

2 * 3

A Few Warnings

Before concluding our discussion of ANCOVA, I want to offer a few warnings about
deciphering research reports that present results from this form of statistical analy-
sis. As you consider these comments, however, do not forget that ANCOVA legiti-
mately can be thought of as a set of statistical procedures made possible by adding
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covariate data to an ANOVA-type situation. Because of this fact, all the tips and
warnings offered at the conclusions of Chapters 10 through 14 should be kept in
mind when you consider the results from a study that used ANCOVA. In addition
to being aware of the concerns focused on in those earlier chapters, you should also
remain sensitive to the following three unique-to-ANCOVA cautions when consid-
ering research claims based on covariance analyses.

The Statistical Focus: Adjusted Means

In a covariance analysis, all F-tests (other than those concerned with underlying as-
sumptions) deal with adjusted means on the dependent variable, not the unadjusted
means. This holds true for the F-tests contained in the ANCOVA summary table,
the F-tests involved in any planned comparisons, and the F-tests involved in any
post hoc investigation. For this reason, adjusted means should be presented—either
in a table or within the textual discussion—whenever the researcher attempts to ex-
plain the meaning of any F-test result. It is helpful, as we have seen, to have access
to the means on the covariate variable and the unadjusted means on the dependent
variable. However, the adjusted means on the dependent variable constitute the cen-
tral statistical focus of any ANCOVA.

Unfortunately, many researchers fail to present the adjusted means in their
research reports. When this happens, you are boxed into a corner in which you
cannot easily decide for yourself whether a statistically significant finding ought to
be considered significant in a practical sense. Because making this kind of decision
is one of the things consumers of the research literature ought to do on a regular
basis, I must encourage you to downgrade your evaluation of any ANCOVA-based
study that fails to contain the adjusted means that go with the F-test(s) focused on by
the researcher.

The Importance of Underlying Assumptions

ANCOVA’s F-tests that compare adjusted means function as they are supposed to
function only if various underlying assumptions are valid. Moreover, the condition
of equal sample sizes does not bring about a situation where the assumptions are
rendered unimportant. In other words, equal ns do not cause ANCOVA to become
robust to its underlying assumptions.

Whenever you consider research claims based on ANCOVA, check to see
whether the researcher says anything about the statistical assumptions on which the
analysis was based. Upgrade your evaluation of the research report when there is
expressed concern over the assumption of equal regression slopes, the assumption
of a linear relationship between the covariate and dependent variables, and the
assumption that scores on the covariate variable are not influenced by the indepen-
dent variable. If these assumptions are not discussed, you should downgrade your
evaluation of the study.
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If an assumption is tested, give the researchers some bonus credit if they use
a lenient rather than rigorous alpha level in assessing the assumption’s I say this
because researchers deserve credit if they perform statistical tests in such a way that
the “deck is stacked against them” in terms of what they would like to show. Be-
cause the typical researcher who uses ANCOVA wants the linearity and equal-
slopes assumptions to be met, a lenient level of significance (e.g., .10, .15, .20, or
even .25) gives the data more of a chance to reveal an improper situation than would
be the case if alpha is set equal to .05, .01, or .001. When testing assumptions, Type
II errors are generally considered to be more serious than errors of the first kind,
and the level of significance should be set accordingly.

ANCOVA versus ANOVA

My final warning has to do with your general opinion of ANCOVA-based studies
as compared with ANOVA-based studies. Because ANCOVA is more complex
(due to the involvement of a larger number of variables and assumptions), many
consumers of the research literature hold the opinion that data-based claims 
are more trustworthy when they are based on ANCOVA rather than ANOVA. 
I strongly encourage you to refrain from adopting this unjustified point 
of view.

Although ANCOVA (as compared with ANOVA) does, in fact, involve
more complexities in terms of what is involved both on and beneath the surface,
it is an extremely delicate instrument. To provide meaningful results, ANCOVA
must be used very carefully—with attention paid to important assumptions, with
focus directed at the appropriate set of sample means, and with concern over the
correct way to draw inferences from ANCOVA’s F-tests. Because of its com-
plexity, ANCOVA affords its users more opportunities to make mistakes than
does ANOVA.

If used skillfully, ANCOVA can be of great assistance to applied researchers.
If not used carefully, however, ANCOVA can be dangerous. Unfortunately, many
people think of complexity as being an inherent virtue. In statistics, that is often
not the case. As pointed out earlier in the chapter, the interpretation of ANCOVA
F-tests is problematic whenever the groups being compared have been formed 
in a nonrandom fashion—and this statement holds true even if (1) multiple 
covariate variables are involved, and (2) full attention is directed to all underly-
ing assumptions. In contrast, it would be much easier to interpret the results 
generated by the application of ANOVA to the data provided by participants who
have been randomly assigned to comparison groups. Care is required, of course,
whenever you attempt to interpret the outcome of any inferential test. My point
is simply that ANCOVA, because of its complexity as compared to ANOVA,
demands a higher—not lower—level of care on your part when you encounter
its results.

H0.
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In Chapter 3, we considered how bivariate correlation can be used to describe the
relationship between two variables. Then, in Chapter 9, we looked at how bivariate
correlations are dealt with in an inferential manner. In this chapter, our focus is on
a topic closely related to correlation. This topic is called regression.

Three different kinds of regression are considered here: bivariate regression,
multiple regression, and logistic regression. Bivariate regression is similar to
bivariate correlation, because both are designed for situations in which there are just
two variables. Multiple and logistic regression, however, were created for cases in
which there are three or more variables. Although many other kinds of regression
procedures have been developed, the three considered here are by far the ones used
most frequently by applied researchers.

The three regression procedures considered in this chapter are like correlation
in that they are concerned with relationships among variables. Because of this, you
may be tempted to think that regression is simply another way of talking about, or
measuring, correlation. Resist that temptation, because these two statistical proce-
dures differ in three important respects: their purpose, the way variables are labeled,
and the kinds of inferential tests applied to the data.

The first difference between correlation and regression concerns the purpose
of each technique. As indicated in Chapter 3, bivariate correlation is designed to
illuminate the relationship, or connection, between two variables. The computed
correlation coefficient may suggest that the relationship being focused on is direct
and strong, or indirect and moderate, or so weak that it would be unfair to think of
the relationship as being either direct or indirect. Regardless of how things turn out,
each of the two variables is equally responsible for the nature and strength of the
link between the two variables.

C H A P T E R 16
Bivariate, Multiple,
and Logistic Regression

367
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Whereas correlation concentrates on the relationship, or link, that exists
between variables, regression focuses on the variable(s) that exist on one or the
other ends of the link. Depending on which end is focused on, regression tries to
accomplish one or the other of two goals: prediction or explanation.

In some studies, regression is utilized to predict scores on one variable based
on information regarding the other variable(s). For example, a college might use
regression in an effort to predict how well applicants will handle its academic cur-
riculum. Each applicant’s college grade point average (GPA) might be the main
focus of the regression, with predictions made on the basis of available data on other
variables (e.g., an entrance exam, the applicant’s essay, and the recommendations
written by high school teachers). If used in this manner, regression’s focus would
be on the one variable toward which predictions are made: college GPA.

In other investigations, regression is used in an effort to explain why the study’s
people, animals, or things score differently on a particular variable of interest. For
example, a researcher might be interested in why people differ in the degree to which
they seem satisfied with life. If such a study were to be conducted, a questionnaire
might be administered to a large group of individuals for the purpose of measuring life
satisfaction. Those same individuals would also be measured on several other variables
that might explain why some people are quite content with what life has thrown at them
whereas others seem to grumble incessantly because they think life has been cruel and
unfair to them. Such variables might include health status, relationships with others,
and job enjoyment. If used in this manner, regression’s focus would be on the variables
that potentially explain why people differ in their levels of life satisfaction.

Excerpts 16.1 and 16.2 illustrate the two different purposes of regression. In
the first of these excerpts, the clear objective was to use regression analyses to help
predict people’s adjustment to living in a nursing home. In Excerpt 16.2, the goal

EXCERPTS 16.1–16.2 • The Two Purposes of Regression: Prediction 
and Explanation

Relocation to a nursing home is regarded as one of the most stressful events a person
can experience. . . . The purpose of this study was to identify predictors of nursing
home adjustment for elderly residents using a direct measure of nursing home adjust-
ment. . . . Descriptive analysis was used and multiple linear regression was performed
to identify the predictors of adjustment for nursing home residents.

Source: Lee, G. E. (2010). Predictors of adjustment to nursing home life of elderly residents:
A cross-sectional survey. International Journal of Nursing Studies, 47(6), 1–8.

Need for recovery (NFR) after work is an indicator for work-related fatigue. . . .
This study aims to establish the prevalence of high work-related fatigue [and]
explain group differences categorized by gender, age, and education. The study

(continued )
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was explanation, not prediction. Here, the researchers wanted to know which
factors explain why some people are afflicted by work-related fatigue whereas
others are not. The focus was primarily on women workers, a trait called need for
recovery after a day’s work, and demographic variables.

The second difference between regression and correlation concerns the labels
attached to the variables. This difference can be seen most easily in the case in which
data on just two variables have been collected. Let’s call these variables A and B. In
a correlation analysis, variables A and B have no special names; they are simply the
study’s two variables. With no distinction made between them, their location in
verbal descriptions or in pictorial representations can be switched without changing
what is being focused on. For example, once r becomes available, it can be described
as the correlation between A and B or it can be referred to as the correlation between
B and A. Likewise, if a scatter diagram is used to show the relationship between the
two variables, it does not matter which variable is positioned on the abscissa.

In a regression analysis involving A and B, an important distinction between
the two variables must be made. In regression, one of the two variables needs to be
identified as the dependent variable and the other variable must be seen as the
independent variable.1 This distinction is important because (1) the scatter dia-
gram in bivariate regression always is set up such that the vertical axis corresponds
with the dependent variable whereas the horizontal axis represents the independent
variable, and (2) the names of the two variables cannot be interchanged in verbal
descriptions of the regression. For example, the regression of A on B is not the same
as the regression of B on A.2

Excerpts 16.3 and 16.4 come from two studies that were quite different. In
the first study, only two variables were involved in the single regression that was

1The terms criterion variable, outcome variable, and response variable are synonymous with the term
dependent variable, whereas the terms predictor variable or explanatory variable mean the same thing as
independent variable.
2When the phrase “regression of ______ on ______” is used, the variable appearing in the first blank is the
dependent variable whereas the variable appearing in the second blank is the independent variable.

particularly aims to clarify prevalence and explanatory factors in highly educated
women. [Our regression] analyses give an indication of the factors that may explain
the difference in the prevalence of high NFR between the compared groups, and of
the degree to which the combination of [several] demographic, health, and work-
related factors can explain the difference in the prevalence of high NFR.

Source: Verdonk, P., Hooftman, W. E., van Veldhoven, M. J. P. M., Boelens, L. R. M., &
Koppes, L. L. J. (2010). Work-related fatigue: The specific case of highly educated women 
in the Netherlands. International Archives of Occupational and Environmental Health, 83(3),
309–321.

EXCERPTS 16.1–16.2 • (continued)
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conducted. In the second excerpt, there was one dependent variable and four inde-
pendent variables. Despite these differences, notice how the researchers associated
with each excerpt clearly designate the status of each variable as being a dependent
variable or an independent variable.

The third difference between correlation and regression concerns the focus of
inferential tests and confidence intervals. With correlation, there is just one thing
that can be focused on: the sample correlation coefficient. With regression, how-
ever, inferences focus on the correlation coefficient, the regression coefficient(s),
the intercept, the change in the regression coefficient, and something called the odds
ratio. We consider these different inferential procedures as we look at bivariate
regression, multiple regression, and logistic regression.

Although correlation and regression are not the same, correlational concepts
serve as some (but not all) of regression’s building blocks. With that being the case,
you may wonder why this chapter is positioned here rather than immediately after
Chapter 9. If this question has popped into your head, there is a simple answer. This
chapter is located here because certain concepts from the analysis of variance and
the analysis of covariance also serve as building blocks in some regression analyses.
For example, researchers sometimes base their regression predictions (or expla-
nations) on the interactions between independent variables. Also, regressions are
sometimes conducted with one or more covariate variables controlled or held
constant. Without knowing about interactions and covariates, you would be unable
to understand these particular components of regression analyses.

EXCERPTS 16.3–16.4 • Dependent and Independent Variables

Stress reactions to uncertainty were measured [via] the Physicians’ Reactions to 
Uncertainty Scale (PRUS). . . . Epistemology was measured using the Physicians’
Belief Scale (PBS). . . . Our primary hypothesis was tested [by means of] a simple
bivariate regression with PRUS scores as the dependent variable and PBS scores as
the independent variable.

Source: Evans, L., & Trotter, D. R. M. (2009). Epistemology and uncertainty in primary care:
An exploratory study. Family Medicine, 41(5), 319–326.

To assess the extent to which students’ perceptions of parenting style predicted eval-
uations of their parents’ preferred music we performed a multiple regression analysis
using the mean rating score of parent music (ratings given to only those pieces indi-
cated as a favorite by a student’s parent) as the dependent variable and scores on the
caring and the autonomy dimensions of the PBI, as well as students’ age and gender,
as independent variables.

Source: Serbun, S. J., & DeBono, K. G. (2010). On appreciating the music of our parents: The
role of the parent–child bond. North American Journal of Psychology, 12(1), 93–102.



Bivariate, Multiple, and Logistic Regression 371

We now turn our attention to the simplest kind of regression used by applied
researchers. Take good mental notes as you study this material, for the concepts you
now encounter provide a foundation for the other two kinds of regression to be con-
sidered later in the chapter.

Bivariate Regression

The simplest kind of regression analysis is called bivariate regression. First, we
must clarify the purpose of and the data needed for this kind of regression. Then,
we consider scatter diagrams, lines of best fit, and prediction equations. Finally, we
discuss inferential procedures associated with bivariate regression.

Purpose and Data

As you would suspect based on its name, bivariate regression involves just two vari-
ables. One of the variables serves as the dependent variable whereas the other func-
tions as the independent variable. The purpose of this kind of regression can be
either prediction or explanation; however, bivariate regression is used most fre-
quently to see how well scores on the dependent variable can be predicted from data
on the independent variable.

To illustrate how bivariate regression can be used in a predictive manner,
imagine that Sam, a 41-year-old tennis player, has been plagued by a knee injury
that for months has failed to respond to nonsurgical treatment. Consequently,
arthroscopic surgery is scheduled to repair Sam’s bad knee. Even though he knows
that arthroscopic procedures usually permit a rapid return to usual activity, Sam
would like to know how long he will be out of commission following surgery. His
presurgery question to the doctor is short and sweet: “When will I be able to play
again?” Clearly, Sam wants his doctor to make a prediction.

Although Sam’s doctor might be inclined to answer this question concerning
down-time by telling Sam about the average length of convalescence for tennis
players following arthroscopic knee surgery, that is really not what Sam wants to
know. Obviously, some people bounce back from surgery more quickly than do oth-
ers. Therefore, Sam wants the doctor to consider his (i.e., Sam’s) individual case
and make a prediction about how long he will have to interrupt his on-court activ-
ity. If Sam’s doctor is aware of what has happened with other tennis players who
have had arthroscopic knee surgery, and if the doctor has a computer program that
can perform a bivariate regression, he could provide Sam with a better-than-average
answer to the question about postsurgical down time.

In the study conducted with people like Sam, imagine that there are 12 tennis
players who had one of their knees repaired via arthroscopic surgery. Also imagine
that data exist on each person regarding two variables: age and number of postsur-
gical days of down-time. Table 16.1 shows the data on these two variables.
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Scatter Diagrams, Regression Lines,
and Regression Equations

The component parts and functioning of regression can best be understood by ex-
amining a scatter diagram. In Figure 16.1, such a picture has been generated using
the data from Table 16.1. There are 12 dots in this “picture,” each positioned so as
to reveal the age and postsurgical convalescent time for one of the tennis players.

D
o

w
n

-T
im

e 
(D

ay
s)

7

4

6

5

3

Age of Player
15 20 25 30 35 40 45 50

FIGURE 16.1 Scatter Plot with Regression Line

TABLE 16.1 Data for Bivariate Regression Example

Post-Surgical Down-Time and Age for 12 Adult 
Tennis Players

Player Age Down-Time (days)

Kathy 41 7
Alex 47 6
Nancy 36 5
David 29 5
Pat 41 6
Andrew 22 3
Allison 21 4
Gary 38 6
Emily 19 5
Candace 31 4
Ted 32 6
Barbara 24 4
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3Because we are dealing with regression (and not correlation), it would be improper to switch the two vari-
ables in the scatter diagram. The dependent variable always goes on the ordinate; the independent variable
always goes on the abscissa.
4The least squares principle simply means that when the squared vertical distances of the data points from
the regression line are added together, they yield a smaller sum than would be the case for any other straight
line that could be drawn through the scatter diagram’s data points.

The scatter diagram in Figure 16.1 was set up with days of convalescence on
the ordinate and age on the abscissa. These two axes of the scatter diagram were
labeled like this because it makes sense to treat convalescence as the dependent vari-
able. It is the variable toward which predictions will eventually be made for Sam and
other tennis players who are similar to those who supplied the data we are currently
considering. Age, however, is positioned on the abscissa because it is the indepen-
dent variable. It is the variable that “supplies” data used to make the predictions.3

As you can see, a slanted line passes through the data points of the scatter
diagram. This line is called the regression line or the line of best fit, and it func-
tions as the tool our hypothetical doctor will use in order to predict how long Sam
will have to refrain from playing tennis. As should be apparent, the regression line
is positioned so as to be as close as possible to all of the dots. A special formula
determines the precise location of this line; however, you do not need to know any-
thing about that formula except that it is based on a statistical concept called least
squares.4

Let’s make a prediction for Sam, pretending now that we are his doctor. All
we must do is turn to the scatter diagram and take a little trip with our index finger
or our eyes. Our trip begins on the abscissa at a point equal to Sam’s age. (Re-
member, Sam is 41 years old.) We move vertically from that point up into the scat-
ter diagram until we reach the regression line. Finally, we travel horizontally (to the
left) from that point on the regression line until reaching the ordinate. Wherever this
little trip causes us to end up on the ordinate becomes our prediction for Sam’s down
time. According to our information, our prediction is that Sam will be out of com-
mission for approximately six days.

Notice that our prediction of Sam’s down time would have been shorter if he
had been younger and longer if he had been older. For example, we would have pre-
dicted about four days if he had been 21 years old, or five days if he had been 31.
These alternative predictions for a younger Sam are brought about by the tilt of the
regression line. Because there is a positive correlation between the independent and
dependent variables, the regression line tilts from lower left to upper right.

Although it is instructive to see how predictions are made by means of a re-
gression line that passes through the data points of a scatter diagram, the exact same
objective can be achieved more quickly and more scientifically by means of some-
thing called the regression equation. In bivariate, linear regression, this equation
always has the following form:

Y¿ =  a + b # X
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where stands for the predicted score on the dependent variable, a is a constant,
b is the regression coefficient, and X is the known score on the independent
variable. This equation is simply the technical way of describing the regression line.
For the data shown in Table 16.1 (and Figure 16.1), the regression equation turns
out like this:

To make a prediction for Sam by using the regression equation, we simply
substitute Sam’s age for X and then work out the simple math. Because the num-
bers in the regression equation are so close to being whole numbers, let’s round
things off a bit and rewrite the regression equation as We now
have a simple prediction model that says to add 2 to one-tenth of person’s age, with
the result being a guess as to that individual’s down-time. When we do this for Sam,

If we don't round off, Y' � 5.996. The fact that these values are very sim-
ilar to what we predicted from the scatter diagram should not be at all surprising.
This is because the regression equation is nothing more than a precise mechanism
for telling us where we should end up if, in a scatter diagram, we first move verti-
cally from some point on the abscissa up to the regression line and then move hor-
izontally from the regression line to the ordinate.

Whereas scatter diagrams with regression lines appear only rarely in
research reports, regression equations show up more frequently. We will see an
example shortly; first, however, let’s consider the study that was conducted. In
this investigation, the researchers collected data from 67 individuals with multiple
sclerosis (MS) who had been on a home-based self-medication program. First,
the researcher asked each patient to estimate the percentage of self-injections
that had been missed during the previous two months. Then, self-medication
adherence was electronically monitored during the next two-month period.
These data were used to see if retrospective self-reports could predict prospective
(i.e., future) adherence.

The data assessing self-medication adherence during the second half of the
study did not come from patients’ self-reports. Instead, the researchers provided
patients with special containers into which they put their disposable needles after
they were used. These containers—called MEMS (Medication Event Monitoring
System)—had been designed to record electronically the precise date and time any
needle was put into the container. At the end of the full four-month period of the
study, the researchers performed a regression analysis in which retrospective self-
report of adherence served as the independent (predictor) variable and the electronic
MEMS-based measure of adherence was the dependent (criterion) variable.

In Excerpt 16.5, we see the regression equation that appeared in the research
report that summarized the self-medication study. As indicated in the excerpt, the
data used to create this regression equation came from all research participants
except four who reported very poor adherence over the first two-month period of
the study.

Y¿ = 6.1.

Y¿ = 2 + 10.102X.

Y¿ = 1.978 + 0.098 # X

Y¿
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It should be noted that there are two kinds of regression equations that can be
created in any bivariate regression analysis. One of these is called an
unstandardized regression equation. This is the kind we have considered thus far,
and it has the form The other kind of regression equation (that can
be generated using the same data) is called a standardized regression equation. A
standardized regression equation has the form These two kinds of
regression equations differ in three respects. First, a standardized regression equa-
tion involves z-scores on both the independent and the dependent variables, not raw
scores. Second, the standardized regression equation does not have a constant (i.e.,
a term for a). Finally, the symbol (called a beta weight) is used in place of the
regression coefficient, b.

Interpreting a, b, r, and in Bivariate Regression

When used for predictive purposes, the regression equation has the form
Now that you understand how this equation works, let’s take a

closer look at its two main ingredients, a and b. In addition, let’s now pin down the
regression meaning of r and 

Earlier, I referred to a as the constant. Alternatively, this component of the
regression equation is called the intercept. Simply stated, a indicates where the
regression line in the scatter diagram would, if extended to the left, intersect the
ordinate. It indicates, therefore, the value of for the case where In many
studies, it may be quite unrealistic (or downright impossible) for there to be a case
where nonetheless, when 

Earlier, we considered data concerning the post-surgical down-time of 12
adult tennis players. In the regression equation based on those data, the constant
was equal to 1.978. That is not a very realistic number, for it indicates the predicted
number of down-time days for a tennis player whose age is 0! Clearly, a may be
totally devoid of meaning within the context of a study’s independent and dependent
variables. Nevertheless, it has an unambiguous and not-so-nonsensical meaning

X = 0.Y¿ = aX = 0;

X = 0.Y¿

r2.

Y¿ = a + b # X.

r2

b

z¿Y = b # zX.

Y¿ = a + b # X.

EXCERPT 16.5 • The Regression Equation in Bivariate Regression

[We assessed] the relationship between self-reported retrospective adherence and
prospective electronic monitoring among [63] patients who did not report poor ad-
herence at the outset of the study. The data fit the regression line 
( retrospective self-report and MEMS % days missed), suggesting that the
prediction estimates of poor objective prospective adherence may be achieved by
doubling patient reports of retrospective missed doses.

Source: Bruce, J. M., Hancock, L. M., & Lynch, S. G. (2010). Objective adherence monitoring
in multiple sclerosis: Initial validation and association with self-report. Multiple Sclerosis,
16(1), 112–120.

y =x =
y = 2.00x + 0.42
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within a scatter diagram, because a indicates the point where the regression line
intercepts the ordinate.

The other main component of the regression is b, the regression coefficient.
When the regression line has been positioned within the data points of a scatter
diagram, b simply indicates the slope of that line. As you probably recall from your
high school math courses, slope means “rise over run.” In other words, the value of
b signifies how many predicted units of change (either up or down) in the depen-
dent variable there are for any one unit increase in the independent variable. In
Figure 16.1, the regression equation has a slope equal to .098. This means that the
predicted down time for our hypothetical patient Sam would be about one-tenth of
a day longer if the surgery is put off a year (assuming Sam’s knee problem, health
status, and fitness level do not change).

When researchers use bivariate regression, they sometimes will focus on either
b or more than anything else. Consider, for example, Excerpt 16.6. In the study
associated with this excerpt, several college-age men and women were measured on
several traits, one of which was aggression. In addition, the research participants had
their pain tolerance measured via a device that sent increasing levels of electrical cur-
rent into their non-dominant hands. After collecting the data, the researchers did a
bivariate regression within each gender group to investigate the connection between
trait aggression and pain tolerance. Notice how the researchers focused their atten-
tion on the beta weights when comparing the men versus the women.

b

EXCERPT 16.6 • Focusing on the Regression Coefficient

A sample of 195 collegiate men and women completed trait measures and a labora-
tory assessment of pain tolerance. . . . To determine whether the relationship between
pain tolerance and aggression differed by sex of participant, we . . . computed simple
regression coefficients of pain tolerance and trait aggression for men and women.
Analyses indicated that while there was no relationship between pain tolerance and
trait aggression for women there was a significant positive relation-
ship for men Pain tolerance was significantly and positively related
to trait aggression in men, but in women the relation between pain tolerance and trait
aggression was nil and nonsignificant.

Source: Reidy, D. E., Dimmick, K., MacDonald, K., & Zeichner, A. (2009). The relationship
between pain tolerance and trait aggression: Effects of sex and gender role. Aggressive Behavior,
35(5), 422–429.

[b = .31]. . . .
[b = - .02],

When summarizing the results of a regression analysis, researchers will normally
indicate the value of r (the correlation between the independent and dependent vari-
ables) or You already know, of course, that such values for r and measure the
strength of the relationship between the independent and dependent variables. How-
ever, each has a special meaning, within the regression context, that is worth learning.

r2r2.
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As you might expect, the value of r is high to the extent that the scatter dia-
gram’s data points are located close to the regression line. Although that is undeni-
ably true, there is a more precise way to conceptualize the regression meaning of r.
Once the regression equation has been generated, that equation could be used to pre-
dict Y for each person who provided the scores used to develop the equation. In one
sense, that would be a very silly thing to do, because predicted scores are unneces-
sary in light of the fact that actual scores on the dependent variable are available for
these people. However, by comparing the predicted scores for these people against
their actual scores (both on the dependent variable), we would be able to see how
well the regression equation works. The value of r does exactly this. It quantifies the
degree to which the predicted scores correlate, or match up with, the actual scores.

Just as r has an interpretation in regression that focuses on the dependent vari-
able, so it is with Simply stated, the coefficient of determination indicates the
proportion of variability in the dependent variable that is explained by the inde-
pendent variable. As illustrated in Excerpt 16.7, is usually turned into a percent-
age when it is reported in research reports.

r2

r2.

EXCERPT 16.7 • Variability in the Dependent Variable Explained 
by Variability in the Independent Variable

Bivariate regression analyses [revealed] MLSS [running speed at maximal lactate
steady state] as the strongest individual predictor for 2-mile
running performance. [This predictor] explained . . . 87% of the variance in running
performance.

Source: Tolfrey, K., Hansen, S. A., Dutton, K., McKee, T., & Jones, A. M. (2009). Physiological
correlates of 2-mile run performance as determined using a novel on-demand treadmill.
Applied Physiology, Nutrition & Metabolism, 34(4), 763–772.

[r = 0.93, r2 = 0.87]

Inferential Tests in Bivariate Regression

The data used to generate the regression line or the regression equation are typically
considered to have come from a sample, not a population. Thus the component parts
of a regression analysis—a, b, and r—are usually viewed as sample statistics, not
population parameters. Accordingly, it should not come as a surprise that re-
searchers conduct one or more inferential tests whenever they perform a regression
analysis.

In bivariate regression, a test on r is mathematically equivalent to a test on b
or Therefore, you are unlikely to see a case where both r and b (or r and ) are
tested, because such tests would be fully redundant with each other. Researchers
have the freedom to have their test focus on r or b or If r is tested, try to
remember the things we considered in Chapter 9. In particular, keep in mind that
the null hypothesis in such a test will probably be set up to say that the correlation

b.

bb.
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in the population is equal to 0.00. Also keep in mind that a test of this null hypoth-
esis operates properly only if certain assumptions (e.g., linearity) are met.

When bivariate regression is involved in a study, you are likely to see a test of
significance on either b or rather than r. The null hypothesis in this alternative
(but equivalent) kind of test says that the population value of the regression or beta
weight is 0. Stated differently, the null hypothesis in such tests is that the regression
line has no tilt, thus meaning that the independent variable provides no assistance
in predicting scores on the dependent variable. In Excerpt 16.8, we see a case where
such a test was applied. This excerpt is worth considering for two reasons. First, can
you tell which of the two variables was the dependent variable? Second, do you
agree the researchers deserve a pat on the back for presenting what they did imme-
diately after they cite the test’s p-level?

b

5Recall that the dependent variable (Y) is sometimes referred to as the criterion, outcome, or response variable,
whereas the independent variable (X) is sometimes referred to as the predictor or explanatory variable.

EXCERPT 16.8 • Testing a Regression Coefficient

The aim of this study, part of a cross-sectional blood pressure survey, was to study
the influence of ambient temperature on blood pressure in a rural West African adult
population. . . . Blood pressure, anthropometric, time of blood pressure and room
temperature measurements were taken in 574 adult males and females. . . . Linear
regression analysis showed that SBP [systolic blood pressure] was significantly and
inversely related to ambient temperature ( 95% confidence
interval: to ).

Source: Kunutsor, S. K., & Powles, J. W. (2010). The effect of ambient temperature on blood
pressure in a rural West African adult population: A cross-sectional study. Cardiovascular
Journal of Africa, 21(1), 17–20.

-0.11-1.19
b = -0.98, p = 0.02,

Multiple Regression

We now turn our attention to the most popular regression procedure of all, multiple
regression. This form of regression involves, like bivariate regression, a single
dependent variable. In multiple regression, however, there are two or more inde-
pendent variables. Stated differently, multiple regression involves just one Y variable
but two, three, or more X variables.5

In three important respects, multiple regression is identical to bivariate re-
gression. First, a researcher’s reason for using multiple regression is the same as the
reason for using bivariate regression, either prediction (with a focus on the depen-
dent variable) or explanation (with a focus on the independent variables). Second,
a regression equation is involved in both of these regression procedures. Third, both
bivariate and multiple regression almost always involve inferential tests and a
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measure of the extent to which variability among the scores on the dependent vari-
able has been explained or accounted for.

Although multiple regression and bivariate regression are identical in some
respects, they also differ in three extremely important ways. As you will see, mul-
tiple regression can be done in different ways that lead to different results, it can be
set up to accommodate covariates that the researcher wishes to control, and it can
involve (as predictor variables) one or more interactions between independent vari-
ables. Bivariate regression has none of these characteristics.

In upcoming sections, these three unique features of multiple regression are
discussed. We begin, however, with a consideration of the regression equation that
comes from the analysis of data on one dependent variable and multiple independent
variables. This equation functions as the most important stepping stone between the
raw scores collected in a study and the findings extracted from the investigation.

The Regression Equation

When a regression analysis involves one dependent variable and two independent
variables, the regression equation takes the form

where stands for the predicted score on the dependent variable, a stands for
the constant, and are regression coefficients, and and represent the two
independent variables. As indicated previously, multiple regression can accommo-
date more than two independent variables. In such cases, the regression equation is
simply extended to the right, with an extra term (made up of a new b multiplied by
the new X) added for each additional independent variable. The presence of these
extra terms, of course, does not alter the fact that the regression equation contains
only one term (located on the left side of the equation) and only one a term
(located on the right side of the equation).

In Excerpts 16.9 and 16.10, we see regression equations that were created for
the situations where there were two or three independent variables, respectively. In

Y¿

X2X1b2b1

Y¿

Y¿ = a + b1X1 + b2X2

EXCERPTS 16.9–16.10 • Regression Equations with Different Numbers 
of Independent Variables

Multiple regression analysis was conducted to evaluate how well overall contact
conditions predicted post-test scores on the MGUDS-S. . . . The raw coefficients for
the predictive equation were as follows:

Source: Seaman, J., Beightol, J., Shirilla, P., & Crawford, B. (2010). Contact theory as a frame-
work for experiential activities as diversity education: An exploratory study. Journal of Expe-
riential Education, 32(3), 207–225.

MGUDS-S post-test score = 24.09 + .671MGUDS-S pretest2 + 1.081SICS total2.

(continued )
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these regression equations, note that the numerical values of 24.09 (in Excerpt 16.9)
and 4.10 (in Excerpt 16.10) represent a (i.e., the constants). The other numerical
values in each equation are the bs (i.e., the regression coefficients), each of which
is paired with a particular independent variable.

In each of the regression equations shown in Excerpts 16.9 and 16.10, the
algebraic sign between any two adjacent terms on the right side of the equation is
positive, meaning that the sign of every regression coefficient was positive. In some
multiple regression equations, one of more of the bs ends up being negative. The sign
of a regression coefficient simply indicates the nature of the relationship between that
particular X variable and the dependent variable. Thus, if the nurses in the study that
gave us Excerpt 16.10 had also been measured on how extensively they feel inde-
pendently in control of their own lives, this predictor variable’s regression coefficient
would likely have a negative sign in front of it, thereby implying an inverse rela-
tionship between feeling independently powerful and level of spiritual intelligence.

Regardless of whether the multiple regression is being conducted for predic-
tive or explanatory purposes, the researcher is usually interested in comparing the in-
dependent variables to see the extent to which each one helps the regression analysis
achieve its objective. In other words, there is usually interest in finding out the
degree to which each independent variable contributes to successful predictions or valid
explanations. Although you (as well as a fair number of researchers) may be tempted
to look at the bs in order to find out how well each independent variable works, this
should not be done because each regression coefficient is presented in the units of
measurement used to measure its corresponding X. Thus, if one of the independent
variables in a multiple regression is height, its b will differ in size depending on
whether height measurements are made in centimeters, inches, feet, or miles.

To determine the relative importance of the different independent variables,
the researcher must look at something other than an unstandardized regression
equation like those we have seen thus far. Instead, a standardized regression equa-
tion can be examined. This kind of regression equation, for the case of three inde-
pendent variables, takes the form

z¿Y = b1zX1
+ b2zX2

+ b3zX3

Results showed that social systems did have an impact on nurses’ spiritual intelli-
gence. . . . In general, the study yielded a regression equation associated with inde-
pendent variables as follows: spiritual intelligence (childhood
spirituality) (social system) (age).

Source: Yang, K-P., & Wu, X. J. (2009). Spiritual intelligence of nurses in two Chinese social
systems: A cross-sectional comparison study. Journal of Nursing Research, 17(3), 189–198.

+ .03+ 1.01
= 4.10 + 3.32

EXCERPTS 16.9–16.10 • (continued)
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Note that this equation presents the dependent and independent variables in
terms of z, it has no constant term, and it uses the symbol instead of b. These 
are like standardized regression coefficients, and they are called beta weights.

Although standardized regression equations are rarely included in research
reports, researchers often extract the beta weights from such equations and present
the numerical values of these In Excerpt 16.11, we see an instance in which this
was done. Notice that the beta weights in this excerpt were compared, with the
researchers pointing out that the first beta weight was more than twice as large as
the second beta, and more than three times as large as the third. Unstandardized
regression coefficients cannot be compared like this.

bs.

bsb

EXCERPT 16.11 • Beta Weights

The betas from regression model were used to determine the relative weights of each
factor. [Results indicated that] attitude toward the behavior had the most substantial
impact on teachers’ intentions to use computers to create and deliver
lessons, producing a change of 0.569 units in behavioral intention for each unit
change in attitude. This influence on intention is more than twice that of subjective
norm and more than three times that of perceived behavioral control

Source: Lee, J., Cerreto, F. A., & Lee, J. (2010). Theory of planned behavior and teachers’
decisions regarding use of educational technology. Journal of Educational Technology & Society,
13(1), 152–164.

1b = 0.1442.
1b = 0.2292

1b = 0.5692

Before concluding our discussion of regression equations, three important
points must be made. First, one or more of the independent variables in a regres-
sion analysis can be categorical in nature. For example, gender is often used in
multiple regression to help accomplish the researcher’s predictive or explanatory
objectives. As you see the technique of multiple regression used in different stud-
ies, you are likely to see a wide variety of categorical independent variables
included, such as marital status (single, married, divorced), highest educational
degree (high school diploma, bachelor’s degree, Master’s degree, Ph.D.), and race
(Black, White, Hispanic). Such variables are sometimes referred to as dummy
variables.

Second, researchers often include a term in the regression equation that rep-
resents the interaction between two independent variables. Just as two independent
variables in a two-way ANOVA can be examined to see if they interact, so too can
the interaction of independent variables be assessed in regression contexts. We con-
sider this feature of multiple regression later in the chapter; for now, all I want to
do is alert you to the fact that interactions are often used as independent variables
in multiple regression analyses.



382 Chapter 16

My third and final comment about regression equations is an important warning.
Simply stated, be aware that the regression coefficients (or beta weights) associated
with the independent variables can change dramatically if the analysis is repeated with
one of the independent variables discarded or another independent variable added.
Thus, regression coefficients (or beta weights) do not provide a pure and absolute
assessment of any independent variable’s worth. Instead, they are context dependent.

Three Kinds of Multiple Regression

Different kinds of multiple regression exist because there are different orders in
which data on the independent variables can be entered into the analysis. In this sec-
tion, we consider the three most popular versions of multiple regression: simulta-
neous multiple regression, stepwise multiple regression, and hierarchical multiple
regression.

In simultaneous multiple regression, the data associated with all indepen-
dent variables are considered at the same time. This kind of multiple regression is
analogous to the process used in preparing vegetable soup where all ingredients are
thrown into the pot at the same time, stirred, and then cooked together. In Excerpt 16.12,
we see an example of simultaneous multiple regression.

EXCERPT 16.12 • Simultaneous Multiple Regression

A series of [bivariate] linear regression analyses was conducted and analyses indi-
cated that all of the predictor variables independently predicted rebuilding the mar-
riage relationship [i.e., mid-life marital satisfaction]. . . . A simultaneous multiple
regression analysis was then conducted with adaptive appraisal, social support, and
compensating experiences as predictor variables and rebuilding the marriage rela-
tionship as the criterion variable 

Source: Huber, C. H., Navarro, R. L., Womble, M. W., & Mumme, F. L. (2010). Family resilience
and midlife marital satisfaction. The Family Journal: Counseling and Therapy for Couples and
Families, 18(2), 136–145.

1n = 4762.

Stepwise multiple regression analysis is analogous to the process of prepar-
ing a soup in which the ingredients are tossed into the pot based on the amount of
each ingredient. Here the stock goes in first (because there is more of that than any-
thing else), followed by the vegetables, the meat, and finally the seasoning. Each of
these different ingredients is meant to represent an independent variable, with
“amount of ingredient” equated, somewhat, to the size of the bivariate correlation
between a given independent variable and the dependent variable. Here, in stepwise
multiple regression, the computer determines the order in which the independent
variables become a part of the regression equation. In Excerpt 16.13, we see an
example of this kind of multiple regression.
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Instead of preparing our vegetable soup by simply tossing everything into the
pot at once or by letting the amount of an ingredient dictate its order of entry, we
could put things into the pot on the basis of concerns regarding flavor and tender-
ness. If we wanted garlic to flavor everything else, we would put it in first, even
though there is only a small amount of it required by the recipe. Similarly, we would
hold back some of the vegetables (and not put them in with the others) if they are
tender to begin with and we want to avoid overcooking them. Hierarchical multiple
regression is like cooking the soup in this manner, for in this form of regression the
independent variables are entered into the analysis in stages. Often, as illustrated in
Excerpt 16.14, the independent variables that are entered first correspond with
things the researcher wishes to control. After these control variables are allowed
to explain as much variability in the dependent variable as they can, then the other
variables are entered to see if they can contribute above and beyond the indepen-
dent variables that went in first.

EXCERPT 16.13 • Stepwise Multiple Regression

Patients completed a symptom-limited exercise treadmill test. . . . Exercise test time
(ETT) was recorded in seconds and taken as a measure of exercise capacity. . . . Step-
wise multiple regression analysis was performed to examine predictors of exercise test
time in our cohort. Variables entered into the model included traditional cardiovascu-
lar risk factors (age, sex, presence/absence of hypertension, diabetes, hyperlipidemia,
family history of cardiovascular disease (CVD), and BMI), BAD, FMD and NMD.

Source: Heffernan, H. S., Karas, R. H., Patvardhan, E. A., & Kuvin, J. T. (2010). Endothelium-
dependent vasodilation is associated with exercise capacity in smokers and non-smokers.
Vascular Medicine, 15(2), 119–125.

EXCERPT 16.14 • Hierarchical Multiple Regression

Hierarchical multiple regression was used to analyze the relative importance of
personal and peer attitudes supporting sexual aggression in predicting men’s will-
ingness to intervene against sexual aggression. We included several demographic
variables that were potentially or theoretically related to our variables of interest
[year in school, race, fraternity membership, sports team membership, and sexual
orientation]. These demographic control variables were entered on the first step of the
multiple regression. MCSDS scores were entered on the second step to control for
social desirability. Personal and peer attitudes supporting sexual aggression were
entered simultaneously on the third step.

Source: Brown, A. L., & Messman-Moore, T. L. (2009). Personal and perceived peer attitudes
supporting sexual aggression as predictors of male college students’ willingness to intervene
against sexual aggression. Journal of Interpersonal Violence, 25(3), 503–517.
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Adjusted and in Multiple Regression

In multiple regression studies, the extent to which the regression analysis achieves
its objective is usually quantified by means of or adjusted Sometimes two
of these will be presented, and occasionally you will see all three reported for the
same regression analysis. These elements of a multiple regression analysis are not
superficial and optional add-ons; instead, they are as central to a regression analy-
sis as the regression equation itself.

In bivariate regression, r provides an indication of how well the regression
equation works. It does that by quantifying the degree to which the predicted scores
match up with the actual scores (on the dependent variable) for the group of indi-
viduals used to develop the regression equation. The R of multiple regression can
be interpreted in precisely the same way. Multiple R is what we get if we compute
Pearson’s r between Y and scores for the individuals who provided scores on the
independent and dependent variables.

Although the value of R sometimes appears when the results of a multiple
regression are reported, researchers are far more likely to report the value of or
to report the percentage equivalent of By so doing, the success of the regression
analysis is quantified by reporting the proportion or percentage of the variability in
the dependent variable that has been accounted for or explained by the study’s
independent variables. Excerpt 16.15 illustrates the way researchers use in an
explained-variance manner.

R2

R2.
R2

Y¿

R2.R, R2,

sr2R2,R, R2, ¢R2,

EXCERPT 16.15 • as an Index of Explained VarianceR2

The correlation coefficient resulting from the [multiple regression] analysis shows
that there is a relatively strong correlation between the four relationship
dimensions and giving history. The coefficient of determination is relatively strong

and shows moderate strength in predicting past giving. Thus, 62% of the
variance in the number of years the participants have donated to the organization is
explained by the four relationship dimensions.

Source: Waters, R. D. (2010). Increasing fundraising efficiency through evaluation: Applying
communication theory to the nonprofit organization–donor relationship. Nonprofit and Volun-
tary Sector Quarterly, in press.

1R2 = .622

1R = .792

When a multiple regression analysis is conducted with the data from all
independent variables considered simultaneously, only one can be computed. In
stepwise and hierarchical regression, however, several values can be computed,
one for each stage of the analysis wherein individual independent variables or sets
of independent variables are added. These values get larger at each stage, and the
increase from stage to stage is referred to as change. Another label for the R2

R2

R2
R2
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increment in that’s observed as more and more independent variables are used
as predictors is where the symbol stands for the two-word phrase change in.

Excerpt 16.16 illustrates nicely the concept of In the first step of the hi-
erarchical multiple regression, the control variables of SES and gender were entered
into the regression model, producing an of .06. In the second step of the regres-
sion analysis, two more independent variables (reading score and reading self-
efficacy) entered the model, and they explained an additional 21 percent of
variability in the students’ English grades. In the last step of the regression analysis,
the researcher entered the main variable he was concerned about, a measure of each
child’s “confidence to manage learning.” As indicated in the excerpt, this final in-
dependent variable explained an additional eight percent of variability above and
beyond what already had been explained by the first four variables.

R2

¢R2.
¢¢R2

R2

6The size of the adjustment is also influenced by the number of independent variables. With more independent
variables, the adjustment is larger.

EXCERPT 16.16 • in Stepwise or Hierarchical Multiple Regression¢R2

[We conducted] hierarchical multiple regression for the LD and NLD groups, with
end-of-term English grade as the dependent variable. Control variables of SES (par-
ent education level) and sex were entered at Step 1, followed by reading score and
reading self-efficacy at Step 2, and finally SESRL at Step 3. For the LD group, the
entry of the control variables at Step 1 did not significantly predict English grade

The entry of reading score and reading self-efficacy at Step 2 signifi-
cantly increased explained variance as did the entry on the final step
of SESRL with a final of .35.

Source: Klassen, R. M. (2010). Confidence to manage learning: The self-efficacy for self-
regulated learning of early adolescents with learning disabilities. Learning Disability Quarterly,
33(1), 19–30.

R21¢R2 = .082,
1¢R2 = .212,

[R2 = .06].

Either in place of or in addition to something called adjusted is often
reported in conjunction with a multiple regression analysis. If reported, adjusted 
takes the form of a proportion or a percentage. It is interpreted just like because
it indicates the degree to which variability in the dependent variable is explained
by the set of independent variables included in the analysis. The conceptual differ-
ence between and adjusted is related to the fact that the former, being based
on sample data, always yields an overestimate of the corresponding population
value of 

Adjusted removes the bias associated with by reducing its value. Thus,
this adjustment anticipates the amount of so-called shrinkage that would be
observed if the study were to be replicated with a much larger sample. As you might
expect, the size of this adjustment is inversely related to study’s sample size.6

R2R2
R2.

R2R2

R2,
R2

R2R2,
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When reporting the results of their multiple regression analyses, some re-
searchers (who probably do not realize that provides an exaggerated index of pre-
dictive success) report just Of those who are aware of the positive bias
associated with some include only adjusted in their reports whereas others
include both and adjusted 

In addition to assessing the effectiveness of the full regression model, many
researchers evaluate the worth of each independent variable. Beta weights can help
in this regard, but they do not indicate how much variability in the dependent vari-
able is explained uniquely by each independent variable. To accomplish this goal,
the square of the semi-partial correlation, symbolized is computed for each vari-
able used to help predict (or explain) variability in the dependent variable. In a very
real sense, is analogous to with the former index focused on a single pre-
dictor, whereas the latter is based on the full set of predictors. Excerpt 16.17 shows
how can help in the interpretation of results.sr2

R2,sr2

sr2,

R2.R2
R2R2,

R2.
R2

EXCERPT 6.17 • Assessing the Worth of Individual Independent
Variables with sr2

The value of the square of the coefficient of semi-partial correlation for each
independent variable was also calculated, which allowed us to assess the unique
contribution of this variable relative to in the set of variables included in the
model. . . . The regression model found is significant, allowing explanation of
33.9% of the variance in the anxiety/depression symptoms. The only variable with
a significant predictive value is the “negative reactivity” temperament dimension,
which, once the variance explained by the remainder is controlled, is responsible
for 19.5% of the variance.

Source: Lima, L., Guerra, M. P., & de Lemos, M. S. (2010). The psychological adjustments
of children with asthma: Study of associated variables. Spanish Journal of Psychology, 13(1),
353–363.

R2

1sr22

Inferential Tests in Multiple Regression

Researchers can apply several different kinds of inferential tests when they perform
a multiple regression. The three most frequently seen tests focus on and 
Let’s consider what each of these tests does and then look at an excerpt in which
all three of these tests are used.

When the beta weight for a particular independent variable is tested, the null
hypothesis says that the parameter value is equal to 0. If this were true, that particu-
lar independent variable would be contributing nothing to the predictive or explana-
tory objective of the multiple regression. Because of this, researchers frequently test
each of the betas in an effort to decide (1) which independent variables should be 
included in the regression equation being built, or (2) which independent variables

¢R2.b, R2,
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7The df for this kind of t-test is equal to the sample size minus one more than the number of independent variables.
8The first df for this kind of F-test is equal to the number of independent variables; the second df value is
equal to the sample size minus one more than the number of independent variables.
9The df for this kind of F-test is equal to (1) the number of new independent variables and (2) the sample size
minus one more than the total number of old and new independent variables.

included in an already-developed regression equation turned out to be helpful. Beta
weights are usually tested with two-tailed t-tests.7

When is tested, the null hypothesis says that none of the variance in the de-
pendent variable is explained by the collection of independent variables. (This 
of course, has reference to the study’s population, not its sample.) This null hy-
pothesis normally is evaluated via an F-test. In most studies, the researcher hopes
that this will be rejected.8

When is tested, the null hypothesis says that any new independent vari-
ables added to an existing regression equation are totally worthless in helping to ex-
plain variability in the dependent variable. As with the null hypotheses associated
with tests on beta weights and this particular has reference to the study’s pop-
ulation, not its sample. A special F-test is used to evaluate this null hypothesis. This
kind of test, of course, logically fits into the procedures of stepwise and hierarchi-
cal multiple regression; however, it is never used within the context of a simultane-
ous multiple regression.9

Consider now Excerpt 16.18 which comes from a study involving a hierar-
chical multiple regression. Take the time to look at this excerpt closely, because it

H0R2,

¢R2
H0

H0,
R2

EXCERPT 16.18 • Inferential Tests in Multiple Regression

Medication adherence was negatively associated with extreme violence 
as well as with substance coping Hierarchical

multiple regression was used to assess the predictive ability of extreme violence and
substance coping on medication adherence for the total sample, after controlling for
both gender and time since diagnosis. Gender and time since diagnosis, which was
calculated in months, were entered at Step 1, explaining 3% of the variance in medica-
tion adherence. After entry of extreme violence and substance use coping at Step 2,
the total variance explained by the model as a whole was 18%,

The two measures accounted for an additional 15% of the variance in ad-
herence, after controlling for gender and time since diagnosis, change
change In the final model, both extreme violence and
substance use coping were statistically significant, with extreme violence recording
a higher beta value than substance use coping

Source: Lopez, E. J., Jones, D. L., Villar-Loubet, O. M., Arheart, K. L., & Weis, S. M. (2010).
Violence, coping, and consistent medication adherence in HIV-positive couples. AIDS Educa-
tion & Prevention, 22(1), 61–68.

1beta = -0.20, p = 0.0502.
1beta = -0.29, p = .0052

12, 852 = 7.56, p = .001.
= .15, FR2

p = .002.
F14, 852 = 4.54,

1r = -0.20, p = - .0122.p = .012
1r = - .21,
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contains—in the second step of the analysis—tests of and the beta weights
for the two key independent variables.

Two additional features of Excerpt 16.18 are worth noting. First, the initial
sentence contains the bivariate correlations between each of the primary indepen-
dent variables and the dependent variable. Each of those rs has a negative sign,
which is why the two betas, presented in the excerpt’s final sentence, turned out to
be negative rather than positive. The second thing to notice about Excerpt 16.18 is
the fact that the value of increased dramatically from step 1 to step 2. Clearly,
variation in medication adherence is associated with violence and substance abuse,
even after gender and time since diagnosis are controlled.

Moderated and Mediated Multiple Regression

Researchers sometimes report that they have conducted a moderated multiple
regression or a mediated multiple regression. Despite the similar-sounding names,
these two kinds of regression are quite different. Let’s briefly consider the goals and
the procedure of these two special cases of multiple regression.

When researchers conduct a moderated multiple regression, their goal is to
see if the findings of the multiple regression are the same (or perhaps different) for
different subgroups of people or different settings. For example, suppose data are
collected from several young adults on a variety of independent variables that might
explain variability in the study’s dependent variable: level of satisfaction with a first
date. In this situation, the researcher might choose to do a moderated multiple
regression due to the thought that men and women could have different reasons for
thinking that a first date was a terrific or terrible experience (or anywhere between
these extremes).

In Excerpt 16.19, we see an example of a moderated multiple regression con-
ducted in a business setting with data gathered from a large number of employees.
The researchers wanted to see if employee commitment to an organization was
related to the employee’s perception of fit between him or her and the company he

R2

R2, ¢R2,

EXCERPT 16.19 • Moderated Multiple Regression

A moderated hierarchical multiple regression analysis was computed to predict orga-
nizational commitment (H1). In Step 1, strategy fit and job alternatives were entered,
and in Step 2, the product of strategy fit and job alternatives was entered. The results
are presented in Table 2 [not shown here]. Step 1, which includes both main effects
(strategy fit and job alternatives), was statistically significant, with
strategy fit as the significant predictor, The change in when
the product term was entered in Step 2 was also statistically significant

Therefore, the results suggest that job alternatives moderate
the relation between strategy fit and organizational commitment. . . . [I]f respondents
1¢R2 = .02, p 6 .052.

R2b = .32, p 6 .01.
R2 = .11, p 6 .01,

(continued )
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or she worked for. The researchers also wanted to see if the strength of that rela-
tionship varies depending on whether other job opportunities exist for the employee.
To answer these questions, a moderated multiple regression was conducted. The
dependent variable was organizational commitment, with the analytic approach
being hierarchical in nature. In step 1, the independent variables were strategy fit
and job opportunities. Then in step 2, the researchers added a term to the regression
model: the interaction between fit and other opportunities. It was this interaction
term that caused the regression analysis to be of the moderated variety. Carefully
read the material in Excerpt 16.19 and you get a good feel for the goal and proce-
dures of a moderated multiple regression.

With a mediated multiple regression, a researcher’s goal is to see whether the
apparent causal influence of one variable on a second variable is attributable—
totally, partially, or not at all—to the first variable having an influence through some
other third variable. To illustrate, let’s consider the plight of graduate students who
are on teaching assistantships. These individuals probably feel varying levels of job
stress because they are pressured to do three important things in the university
setting: (1) earn high grades in the graduate courses they take, (2) perform well
as instructors in the undergraduate courses they teach, and (3) get research papers
published so they can be competitive in the job market once they complete their
graduate degree programs.

We might hypothesize that the graduate students’ levels of stress will impact
their physical health, with those with more stress being more susceptible to colds,
the flu, allergies, and other ailments. At this point in our example, we have an
independent variable (job stress) that may have a causal impact on the dependent
variable (illness). We could investigate this hypothesized relationship in a simple
way by measuring a large group of graduate students on these two variables and then
correlating the two sets of scores. By itself, a statistically significant positive cor-
relation from our data would not prove that job stress causes illness; nevertheless,
it would constitute a helpful piece of information.

perceive that there are numerous job alternatives, then the correlation between strategy
fit and organizational commitment is positive. . . . However, when respondents perceive
that there are few job alternatives, then there is no relationship between strategy fit and
organizational commitment. When employees do not feel that they have other job al-
ternatives, then their commitment to their organization is the same regardless of
whether there is a fit or misfit in strategy. Therefore, as predicted in H1, job alterna-
tives moderate the relation between strategy fit and organizational commitment.

Source: Da Silva, N., Hutcheson, J., & Wahl, G. D. (2010). Organizational strategy and employee
outcomes: A person–organization fit perspective. Journal of Psychology, 144(2), 145–161.

EXCERPT 16.19 • (continued)
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Continuing our stress-and-illness example, suppose we now add a third vari-
able to our causal model: faculty advisor mentoring. The quality of faculty men-
toring varies, of course, with some graduate students having faculty advisors who
are better than others at handling job stress, more willing to talk with their advisees
about the difficulty of being a graduate teaching assistant, and more knowledgeable
about the early-warning signals of impending illness. We might hypothesize that the
level of job stress felt by graduate students is mediated by the quality of their men-
tors. In other words, we might conjecture that at least a portion of a graduate stu-
dent’s job stress flows through the relationship he or she has with his or her faculty
advisor, with a good advisor functioning to lessen the stress (and ultimately lessen
the likelihood of illness), whereas a not-so-good advisor would do little or nothing
to mediate the causal impact of stress on illness.

A visual depiction of our example appears in Figure 16.2. The three lines are
meant to represent the paths of the causal influence. Line a represents the direct
effect of job stress on illness, whereas lines b and c represent the path of mediation.
As Figure 16.2 illustrates, the effect of job stress may flow through, and may well
be reduced by, the quality of mentoring provided by the graduate faculty advisor.
Any reduction in the causal impact of the independent variable on the dependent
variable is called the indirect effect.

To assess the worthiness of a mediated model, researchers do more than just
draw diagrams with directional arrows between variable names. To test their
hypotheses, they collect and analyze data. The usual data analytic strategy involves
a four-step set of regression analyses. The sequence of tests and the needed results
to establish mediation are shown in Excerpt 16.20. This excerpt comes from a study

Mentoring by
Faculty Advisor

Job Stress
a

b c

Illness

FIGURE 16.2 Diagram of Three-Variable Mediation Model

EXCERPT 16.20 • Mediated Multiple Regression

To explore whether altruism had an indirect effect on intention we conducted medi-
ation analyses. [M]ediation can be said to occur when four conditions are satisfied:
(1) variation in the independent measure (e.g. altruism) accounts for significant vari-
ance in the dependent measure (e.g. intention); (2) variation in the independent mea-
sure accounts for significant variance in the mediator (e.g. moral norm); (3) variation
in the mediator accounts for variance in the dependent measure while controlling for
the influence of independent measure; and (4) the significant effect of the independent

(continued )
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involving 687 Dutch residents who had never donated blood, even though they
were eligible to do so. The researchers hypothesized that their participants’ level of
intention to donate was influenced by their sense of altruism. However, they also
hypothesized that the variable of norms (i.e., the degree to which family members
and friends donate blood and encourage others to do so) would functioned as a
mediator. Examine this excerpt carefully to see the typical approach to a mediated
multiple regression.

In the last sentence of Excerpt 16.20, reference is made to the Sobel test, one
option for seeing if the reduction in the two involved regression coefficients is
statistically significant. Another option for making this kind of test is bootstrapping,
a procedure that can be used in many statistical situations. If bootstrapping is applied
in this regression context, a computer is used to develop a sampling distribution (to
evaluate the drop in the regression coefficient) by extracting many, many samples
from the available data used in the study. This computer-based procedure is con-
sidered by some to be superior to the Sobel test.

Logistic Regression

The final kind of regression considered in this chapter is called logistic regression.
Originally, only researchers from medical disciplines (especially epidemiology)
used this form of regression. More recently, however, logistic regression has been
discovered by those who conduct empirical investigations in a wide array of disci-
plines. Its popularity continues to grow at such a rate that it may soon overtake mul-
tiple regression and become the most frequently used regression tool of all.

Before considering how logistic regression differs from the forms of regression
already considered, let’s look at their similarities. First, logistic regression deals with
relationships among variables (not mean differences), with one variable being the

measure on the dependent measure is significantly reduced after controlling for the
effects of the mediator. . . . Regression analyses showed (1) an effect of altruism on
intention, (2) an effect of altruism on moral
norm, (3) an effect of moral norm on intention,

and (4), the effect of altruism on intention
was no longer significant (85% reduction), after
including moral norm as additional predictor. This mediation effect was statistically
significant, Sobel’s 

Source: Lemmens, K. P. H., Abraham, C., Ruiter, R. A. C., Veldhuizen, I. J. T., Dehing, C. J.
G., Bos, A. E. R., et al. (2009). Modelling antecedents of blood donation motivation among
non-donors of varying age and education. British Journal of Psychology, 100(1), 71–90.

Z = 5.63, p 6 .001.

B = 0.03, t16772 = 0.43, p = .67,
B = 0.44, t16772 = 13.13, p 6 .001,

B = 0.42, t16772 = 6.26, p 6 .001,
B = 0.21, t16772 = 3.22, p 6 .001,

EXCERPT 16.20 • (continued)
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dependent (i.e., outcome or response) variable whereas the others are the independent
(predictor or explanatory) variables. Second, the independent variables can be con-
tinuous or categorical in nature. Third, the purpose of logistic regression can be either
prediction or explanation. Fourth, tests of significance can be and usually are con-
ducted, with these tests targeted either at each individual independent variable or at the
combined effectiveness of the full set of independent variables. Finally, logistic regres-
sion can be conducted in a simultaneous, stepwise, or hierarchical manner depending
on the timing of and reasons for independent variables entering the equation.

There are, of course, important differences between logistic regression, on the
one hand, and either bivariate or multiple regression, on the other hand. These differ-
ences are made clear in the next three sections. Logistic regression revolves around a
core concept called the odds ratio that was not considered earlier in the chapter
because it is not a feature of either bivariate or multiple regression. Before looking 
at this new concept, we must focus our attention on the kinds of data that go into a
logistic regression and also the general reasons for using this kind of statistical tool.

Variables

As does any bivariate or multiple regression, logistic regression always involves two
main kinds of variables. These are the study’s dependent and independent variables.
In the typical logistic regression (as in some applications of multiple regression), a
subset of the independent variables is included for control purposes, with the label
control (or covariate) designating any such variable. Data on these three variables
constitute the only ingredients that go into the normal logistic regression, and the
results of such analyses are inextricably tied, on a conceptual level, to these three
kinds of variables. For these reasons, it is important for us to begin with a careful
consideration of the logistic regression’s constituent parts.

In any logistic regression, as in any bivariate or multiple regression, there is
one and only one dependent variable. Here, however, the dependent variable is cat-
egorical. Although the dependent variable can have three or more categories, thus
making the logistic regression multinomial in nature, we consider here only situa-
tions where the dependent variable is dichotomous. Examples of such variables
used in recent studies include whether or not a person survives open heart surgery,
whether an elderly and ill married person considers his or her spouse to be the pri-
mary caregiver, whether a young child chronically suffers from nightly episodes of
coughing, and whether an adolescent drinks at least eight ounces of milk a day. As
illustrated by these examples, dichotomous dependent variables in logistic regres-
sions can represent either true or artificial dichotomies. Either way, our focus is on
what sometimes is referred to as binary logistic regression.

In addition to the dependent variable, at least one independent variable is
involved in any logistic regression. Almost always, two or more such variables are
involved. As in multiple regression, these variables can be either quantitative or
qualitative in nature. If of the former variety, scores on the independent variable are



Bivariate, Multiple, and Logistic Regression 393

construed to represent points along a numerical continuum. With qualitative inde-
pendent variables, however, scores carry no numerical meaning and only serve the
purpose of indicating group membership. In any given logistic regression, the inde-
pendent variables can be all quantitative, all qualitative, or some of each. Moreover,
independent variables can be used individually or jointly as an interaction.

When using logistic regression, applied researchers usually collect data on
several independent variables, not just one. In the study alluded to earlier in which
the dependent variable dealt with nighttime coughing among preschool children,
the independent variables dealt with the child’s sex and birth weight, the possible
presence of pets and dampness problems in the home, whether the parents smoked
or had asthma, and whether the child attended a day care center. It is not unusual to
see this many independent variables utilized within logistic regression studies.

As indicated previously, some of the independent variables in a typical logis-
tic regression are control variables. Such variables are included so the researcher
can assess the “pure” relationship between the remaining independent variable(s)
and the dependent variable. In a very real sense, control variables are included
because of suspected confounding that would muddy the water if the connection
between the independent and dependent variables were examined directly.

In any given logistic regression wherein control is being exercised by means
of the inclusion of covariate variables, it may be that only one such variable is in-
volved, or that two or three are used, or that all but one of the independent variables
are covariates. It all depends, of course, on the study’s purpose and the researcher’s
ability to identify and measure potentially confounding variables. In the study con-
cerned with preschoolers and chronic coughing at night, all but one of the inde-
pendent variables were included for control purposes; by so doing, the researchers
considered themselves better able to examine the direct influence of day care
versus home care on respiratory symptoms.

In Excerpt 16.21, we see a case in which the three kinds of variables of a typical
logistic regression are clearly identified. It is worth the time to read this excerpt closely
with an eye toward noting the nature and number of these three kinds of variables.

EXCERPT 16.21 • Dependent, Independent, and Control Variables

Logistic regression was used to test the effects of the independent variables while con-
trolling for relevant covariates. . . . The dependent variable [was] whether women
completed the 30-day residential treatment program. . . . The independent variables
were material and emotional support [from family and friends]. The following cate-
gorical demographic variables were included as control variables: marital status,
education, drug treatment history, drug use in the past 30 days, ethnicity, and having
children.

Source: Lewandowski, C. A., & Hill, T. J. (2009). The impact of emotional and material social
support on women’s drug treatment completion. Health & Social Work, 34(3), 213–221.
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Many logistic regression studies are like the one associated with Excerpt 16.21
in that they involve one dichotomous dependent variable, multiple independent vari-
ables, and multiple control variables. In some logistic regression studies, there are
multiple independent variables and a single control variable. Or, there might be a sin-
gle independent variable combined with several control variables. It all depends on
the goals of the investigation and the researcher’s ability to collect data on indepen-
dent and control variables that are logically related to the dependent variable.

Objectives of a Logistic Regression

Earlier in this chapter, I pointed out that researchers use bivariate and multiple re-
gression in order to achieve one of two main objectives: explanation or prediction.
So it is with logistic regression. In many studies, the focus is on the noncontrol
independent variables, with the goal being to identify the extent to which each one
plays a role in explaining why people have the status they do on the dichotomous
dependent variable. In other studies, the focus is primarily on the dependent vari-
able and how to predict whether people end up in one or the other of the two cate-
gories of that outcome variable.

In Excerpt 16.22, we see a case in which logistic regression was used for
predictive purposes. In the final sentence of this excerpt, the researchers point out
which of their independent variables helped predict relapses among patients afflicted
with schizophrenia.

EXCERPT 16.22 • Logistic Regression and Prediction

Schizophrenia is a severe and chronic mental illness characterized by recurring 
relapses. . . . To determine predictors of relapse during the 1-year study period, a
stepwise logistic regression analyses was conducted. . . . [T]his study identified a
small set of variables that help predict subsequent relapse in the usual treatment of
schizophrenia, demonstrating the predictive value of prior relapse as a robust marker,
along with prior medication nonadherence, younger age at illness onset, having
health insurance, and poorer level of functioning.

Source: Ascher-Svanum, H., Baojin, Z., Faries, D. E., Salkever, D., Slade, E. P., Xiaomei, P.,
et al. (2010). The cost of relapse and the predictors of relapse in the treatment of schizophrenia.
BMC Psychiatry, 10, 1–7.

Odds, Odds Ratios, and Adjusted Odds Ratios

Because the concept of odds is so important to logistic regression, let’s consider a
simple example that illustrates what this word does (and does not) mean. Suppose
you have a pair of dice that are known to be fair and not loaded. If you were to roll
these two little cubes and then look to see if you rolled a pair (two of the same
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TV Program Being Watched

Program A Program B

Male 200 100
Gender

Female 50 150

FIGURE 16.3 Hypothetical Data Showing Gender Preferences for Two TV Programs

number), the answer is either yes or no. Altogether, there are 36 combinations of
how the dice might end up, with six of these being pairs. On any roll, therefore, the
probability of getting a pair is 6/36, or .167. (Naturally, the probability of not get-
ting a pair is .833.) Clearly, it is more likely that you will fail than succeed in your
effort to roll a pair. However, we can be even more precise than that. We could say
that the odds are 5 to 1 against you, meaning that you are five times more likely to
roll a nonpair than a pair.

Most researchers utilize logistic regression so they can discuss the explana-
tory or predictive power of each independent variable using the concept of odds.
They want to be able to say, for example, that people are twice as likely to end up
one way on the dependent variable if they have a particular standing on the inde-
pendent variable being considered. For example, in a hypothetical study focused on
the possible impact of car color on auto accidents, the researchers might summa-
rize their findings by saying that “Red cars are three times as likely to be involved
in an accident than white cars.” Or, in a different study dealing with exercise and
injuries, the research report might include a sentence saying that “Adults who
stretched before exercising were found to be one-half as likely to incur a muscle
cramp as compared with those who did not stretch.”

After performing a logistic regression, researchers often cite the odds ratio
for each independent variable, or at least for the independent variable(s) not being
used for control purposes. The odds ratio is sometimes reported as OR, and it is
analogous to in that it measures the strength of association between the indepen-
dent variable and the study’s dependent variable. However, the odds ratio is con-
sidered by many people to be a more user-friendly concept than the Pearson-based
coefficient of determination. Because the odds ratio is so central to logistic regres-
sion, let’s pause for a moment to consider what this index means.

Imagine that two very popular TV programs end up going head-to-head
against each other in the same time slot on a particular evening. For the sake of our
discussion, let’s call these programs A and B. Also imagine that we conduct a sur-
vey of folks in the middle of this time slot in which we ask each person two ques-
tions: (1) What TV show are you now watching? and (2) Are you a male or a
female? After eliminating people who either were not watching TV or were watch-
ing something other than program A or B, let’s suppose we end up with data like
that shown in Figure 16.3.

r2
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As you can see, both TV programs were equally popular among the 500 peo-
ple involved in our study. Each was being watched by 250 of the people we called.
Let’s now look at how each gender group spread itself out between the two pro-
grams. To do this, we will arbitrarily select Program A and then calculate, first for
males and then for females, the odds of watching Program A. For males, the odds
of watching Program A are (or 2 to 1); for females, the odds of watch-
ing this same program are (or 1 to 3). If we now take these odds and
divide the one for males by the one for females, we obtain the ratio of the odds for
gender relative to Program A. This OR is equal to or 6. This
result tells us that among our sampled individuals, males are six times more likely
to be watching Program A than women. Stated differently, gender (our indepen-
dent variable) appears to be highly related to which program is watched (our
dependent variable).

In our example involving gender and the two TV programs, the odds ratio was
easy to compute because there were only two variables involved. As we have seen,
however, logistic regression is typically used in situations where there are more than
two independent variables. When multiple independent variables are involved, the
procedures for computing the odds ratio become quite complex; however, the basic
idea of the odds ratio stays the same.

Consider Excerpts 16.23 and 16.24. Notice the phrase “about 30% lower” in
the first of these excerpts, and the phrases “four times as likely” and “nearly three
times as likely” in the second excerpt. Most people can understand conclusions such
as these even though they are unfamiliar with the statistical formulas needed to gen-
erate an odds ratio type of conclusion. In addition, I suspect you can see, without
difficulty, that whether an odds ratio ends up being greater than 1 or less than 1 is

12 , 12 , 11 , 32,

50 , 150
200 , 100

EXCERPTS 16.23–16.24 • Odds Ratio and Adjusted Odds Ratio

The odds of graduation for Hispanics are about 30% lower compared to Whites [odds
ratio ].

Source: Jones, M. T., Barlow, A. E. L, & Villarejo, M. (2010). Importance of undergraduate
research for minority persistence and achievement in biology. Journal of Higher Education,
81(1), 82–115.

There were two important predictors of Emotional Cue Eating in this study: women
were four times as likely to be emotional eaters, and those whose
families offered food to comfort were nearly three times as likely to
be emotional eaters.

Source: Brown, S. L., Schiraldi, G. R., & Wrobleski, P. P. (2009). Association of eating 
behaviors and obesity with psychosocial and familial influences. American Journal of Health
Education, 40(2), 80–89.

1AOR = 2.62
[AOR = 4.0]

= 0.66
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quite arbitrary. It all depends on the way the sentence is structured. For example,
the researchers who gave us Excerpt 16.23 would have presented an OR of 1.52
in the final sentence (and they would have said “about 50% higher”) if the position
of the words Hispanics and Whites had been reversed.

When the odds ratio is computed for a variable without considering the other
independent variables involved in the study, it can be conceptualized as having
come from a bivariate analysis. Such an OR is said to be a crude or unadjusted odds
ratio. If, as is usually the case, the OR for a particular variable is computed in such
a way that it takes into consideration the other independent variable(s), then it is
referred to as an adjusted odds ratio. By considering all independent variables
jointly so as to assess their connections to the dependent variable, researchers often
say that they are performing a multivariate analysis.

To see an example of an adjusted odds ratio, consider once again Excerpt
16.24. Notice that the letters AOR, the abbreviation for this kind of odds ratio,
appears twice in the excerpt. This study’s other predictor variables (besides gender
and whether a family offered food to comfort) do not appear in this excerpt, but
there were many. These included ethnicity, a variety of personality variables, and
several family characteristics.

Tests of Significance

When using logistic regression, researchers usually conduct tests of significance.
As in multiple regression, such tests can be focused on the odds ratios (which are
like regression coefficients) associated with individual independent variables or
on the full regression equation. Whereas tests on the full regression equation
typically represent the most important test in multiple regression, tests on the
odds ratios in logistic regression are considered to be the most critical tests the
researcher can perform.

When the odds ratio or adjusted odds ratio associated with an independent
variable is tested, the null hypothesis says that the population counterpart to the
sample-based OR is equal to 1. If the null hypothesis were true (with ), it
means that membership in the two different categories of the dependent variable is
unrelated to the independent variable under consideration. For this null hypothesis
to be rejected, the sample value of OR must deviate from 1 further than would be
expected by chance.

Researchers typically use one of two approaches when they want to test an
odds ratio or an adjusted odds ratio. One approach involves setting up a null
hypothesis, selecting a level of significance, and then evaluating the either by
comparing a test statistic against a critical value or by comparing the data-based p
against The second way a researcher can test an odds ratio is through the use of
a confidence interval (CI). The CI rule-of-thumb for deciding whether to reject or
retain the null hypothesis is the same as when CIs are used to test means, rs, the
difference between means, or anything else. If the confidence interval overlaps the

a.

H0

OR = 1
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Notice in Excerpt 16.25 that a Wald test was used to see if the odds ratio was
statistically significant. This test is highly analogous to the t-test in multiple regres-
sion that is used to see if a beta weight is statistically significant. These two tests
are only analogous, however, for they differ not only in terms of the null hypothesis
but also in the kinds of calculated and critical values used to test the As illustrated
in Excerpt 16.25, the Wald test is tied to a theoretical distribution symbolized by 
rather than t. (This is the chi-square distribution.)

Excerpt 16.26 illustrates how a CI can be used to test an odds ratio. Take the
time to look closely at this excerpt’s CI, note its ends, and then recall that the pin-
point number in the null hypothesis being tested is 1.0. I hope that you see why the
researchers’ AOR of 1.47 was reported to reflect “significantly increased odds of
SAB” for one of the study’s comparison groups.

As indicated previously, it is possible in logistic regression to assess whether
the collection of independent and control variables do a better-than-chance job of
accounting for the status of people on the dependent variable. Three popular pro-
cedures exist for doing this. One approach involves setting up and testing a single
null hypothesis concerning the full equation, with a data-based p-level compared

x2
H0.

EXCERPTS 16.25–16.26 • Testing an OR or an AOR for significance

Logistic regression was also used to explore what baseline variables could predict
psychological distress at six months (predictive model). . . . Stroke severity
(Wald’s ) was a significant predictor of psychological distress

Source: Hilari, K., Northcott, S., Roy, P., Marshall, J., Wiggins, R. D., Chataway, J., et al.
(2010). Psychological distress after stroke and aphasia: The first six months. Clinical Reha-
bilitation, 24(2), 181–190.

The goal of this study was to determine whether residential exposure to vehicular
traffic was associated with SAB [spontaneous abortion]. . . . SAB was examined in
relation to the traffic exposure measures using logistic regression adjusting for a
number of demographic and lifestyle variables. ... Among women who were non-
smokers, significantly increased odds of SAB were observed in the highest traffic
exposure group ( 95% CI, 1.07–2.04).

Source: Green, R. S., Malig, B., Windham, G. C., Fenster, L., Ostro, B., & Swan, S. (2009).
Residential exposure to traffic and spontaneous abortion. Environmental Health Perspectives,
117(12), 1939–1944.

AOR = 1.47;

[OR = 1.24].
x2 = 7.95, P 6 0.01

pinpoint number in the null hypothesis, the null hypothesis is retained; otherwise,
is rejected. Excerpts 16.25 and 16.26 illustrate these two ways to test an odds

ratio or an adjusted odds ratio.
H0
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10Nagelkerke’s sometimes is referred to as an approximate or pseudo-measure of explained variability
because of the way it is computed. (It begins with the Cox and Snell’s measure of which itself is only an
approximation, and then rescales that measure so it has minimum and maximum values of 0 and 1, respectively.)

R2,
R2

against an alpha level to see if the independent variables, as a unified set, are linked
to the dependent variable. A second approach involves computing Nagelkerke’s ,
an index that is highly analogous to the used in multiple regression.10 A third
approach involves determining the hit rate to see how successful the set of inde-
pendent variables are at correctly classifying individuals into the categories of the
dependent variable. Some researchers use one of these approaches, others use two,
and a few, as illustrated in Excerpt 16.27, use all three.

R2
R2

EXCERPT 16.27 • Evaluating the Full Logistic Regression Model

The final logistic regression model was significant,
indicating that combined performance on the three tasks distinguished

adults with SLI from those with TL. The model explained 75% (Nagelkerke’s ) of
the variance in language status (i.e., affected or unaffected) and correctly classified
87% of cases, with a sensitivity of 85% and a specificity of 89% where cases with a
.50 or greater predicted probability were classified as affected.

Source: Poll, G. H., Betz, S. K., & Miller, C. A. (2010). Identification of clinical markers of
specific language impairment in adults. Journal of Speech, Language, and Hearing Research,
53(2), 414–429.

R2
p 6 .001,

x213, N = 312 = 25.48,

Excerpt 16.27 contains two new technical terms: sensitivity and specificity.
Sensitivity is the hit rate for correctly classifying people as being in the first cat-
egory—usually the category that has a disease or ailment—of the dependent vari-
able, whereas specificity is the hit rate for correctly classifying people into the
other category. Both sensitivity and specificity are based on the data used to build
the logistic regression model, with each index computed as the percentage of peo-
ple actually in a given category who are correctly classified as being members of
that category.

Final Comments

As we conclude this chapter, we must consider four additional regression-related
issues: assumptions, control, practical significance, and the inflated Type I error
risk. If you keep these issues in mind as you encounter research reports based on
bivariate, multiple, and logistic regression, you will be in a far better position to
both decipher and critique such reports.
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All three forms of regression considered in this chapter carry with them
underlying assumptions. If these assumptions are violated, regression results can be
misleading. Therefore, give credit to researchers who indicate that they attended to
their regression’s assumptions before analyzing their data to get answers to their
research questions. Excerpt 16.28 illustrates this good practice.

EXCERPT 16.28 • Concern for Assumptions

The assumptions of multiple regression were examined using a series of diagnostic
graphs and tests for outliers, normality of residuals, homoscedasticity, multicollinear-
ity, linearity, model specification, and independence. . . . The regression models pro-
vided an acceptable description of the data because no violations of the assumptions
were observed.

Source: Cowley, P. M., Ploutz-Snyder, L. L., Baynard, T., Heffernan, K., Jae, S. Y., Hsu, S.,
et al. (2010). Physical fitness predicts functional tasks in individuals with Down Syndrome.
Medicine and Science in Sports and Exercise, 42(2), 388–393.

Two important terms in Excerpt 16.28 have not been discussed previously in
this book: multicollinearity and model specification. Multicollinearity exists if
two or more independent variables are too highly correlated with each other. This
undesirable situation causes inferences about individual predictor variables to be
untrustworthy. Accordingly, regression assumes that multicollinearity does not exist.
Model specification is concerned with the researcher’s decision regarding which
variables to include in the regression model. If important variables are overlooked
or if irrelevant variables are included, the regression model is said to be misspecified.
Understandably, the assumption here is that the model has been specified properly,
thereby avoiding the problem of misspecification.

In the discussions of both hierarchical multiple regression and logistic
regression, we saw that researchers often incorporate control or covariate variables
into their analyses. Try to remember that such control is very likely to be less than
optimal for three reasons: First, one or more important confounding variables might
be overlooked. Second, potential confounding variables that are measured are likely
to be measured with instruments possessing less than perfect reliability. Finally,
recall that the analysis of covariance undercorrects when used with nonrandom
groups that come from populations that differ on the covariate variable(s). Regres-
sion suffers from this same undesirable characteristic.

My next concern relates to the distinction between statistical significance and
practical significance. We considered this issue in connection with tests focused on
means and rs, and it is just as relevant to the various inferential tests used by
researchers within regression analyses. In Excerpts 16.29 and 16.30, we see two
cases in which researchers attended to the important distinction between useful and
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trivial findings. The researchers associated with the first excerpt set a good exam-
ple by conducting an a priori power analysis in the planning stage of their investi-
gation. The researchers associated with the second of these excerpts deserve high
praise for realizing (and for warning their readers) that inferential tests can yield re-
sults that are statistically significant without being important in a practical manner.

In many research reports, researchers make a big deal about a finding that
seems small and of little importance. Perhaps such researchers are unaware of the
important distinction between practical and statistical significance, or it may be that
they know about this distinction but prefer not to mention it due to a realization that
their statistically significant results do not matter very much. Either way, it is
important that you keep this distinction in mind whenever you are on the receiving
end of a research report. Remember, you have the right to evaluate a statistical finding
as having little or no meaningfulness after you examine the research report’s sum-
mary statistics, and you can draw such a conclusion even if your opinion is at odds
with those of the researcher’s.

As we have seen in the excerpts of previous chapters, competent researchers
are sensitive to the inflated Type I error risk that occurs if a given level of signifi-
cance, say .05, is used multiple times within the same study when different null
hypotheses are tested. Give credit to researchers when they apply the Bonferroni
adjustment procedure (or some other comparable strategy) within their regression
studies. Excerpt 16.31 provides an example of this.

EXCERPTS 16.29–16.30 • Practical versus Statistical Significance

An a priori power analysis was conducted [so as] to determine the needed sample
size to answer the research questions. For multiple linear regression analysis, with a
significance level of 0.05, 80% power, a total of 15 predictor variables, and an esti-
mated moderate effect size 70 subjects were needed. A conservative

was estimated from a study using the Quality of Life Index – Dialysis version
with persons on hemodialysis, in which the was reported as 0.28.

Source: Kring, D. L., & Crane, P. B. (2009). Factors affecting quality of life in persons on
hemodialysis. Nephrology Nursing Journal, 36(1), 15–55.

A doctoral degree in counselor education was the second [significant] contributor to
the regression equation. Nevertheless, with an [increase in] of .04 when this vari-
able is added, and a resulting effect size similar to that of the equation with just one
predictor variable, it does not contribute to the prediction ability in a highly mean-
ingful way. Thus, it is important to note that a doctoral degree contributes to cogni-
tive complexity, but the relatively small change in the means that it does not have
a high degree of practical significance.

Source: Granello, D. H. (2010). Cognitive complexity among practicing counselors: How
thinking changes with experience. Journal of Counseling & Development, 88(1), 92–100.

R2

R2

R2
R2

1R2 = 0.252,
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EXCERPT 16.31 • The Bonferroni Adjustment Procedure

To adjust for alpha inflation with multiple tests, a Bonferroni correction factor was
applied to the six multiple regressions conducted, and models were only significant
if they reached the level of significance (i.e., ).

Source: McGinley, M., Carlo, G., Crockett, L. J., Raffaelli, M., Torres Stone, R. A., & Iturbide,
M. I. (2010). Stressed and helping: The relations among acculturative stress, gender, and
prosocial tendencies in Mexican Americans. Journal of Social Psychology, 150(1), 34–56.

.05>6 = .008p 6 .008
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In your journey through Chapters 9 through 16, you have examined a variety of in-
ferential techniques that are used when at least one of the researcher’s variables is
quantitative in nature. The bulk of Chapter 9, for example, dealt with inferences
concerning Pearson’s r, a bivariate measure of association designed for use with two
quantitative variables. Beginning in Chapter 10, you saw how inferential techniques
can be used to investigate one or more groups in terms of means (and variances),
with the dependent variable in such situations obviously being quantitative in
nature. In Chapter 16, we considered how inferential procedures can be used with
regression techniques involving at least one quantitative variable.

In this chapter, your journey takes a slight turn, because we now look at an array
of inferential techniques designed for the situation in which none of the researcher’s
variables is quantitative. In other words, the statistical techniques discussed in this
chapter are used when all of a researcher’s variables involve questions concerning
membership in categories. For example, a researcher might wish to use sample data
to help gain insights as to the prevalence of AIDS in the general population. Or, a
pollster might be interested in using sample data to estimate how each of three polit-
ical candidates competing for the same office would fare “if the election were to be
held today.” In these two illustrations as well as in countless real investigations, the
study’s data do not reflect the extent to which each person (or animal) possesses some
characteristic of interest but instead reveal how each research participant has been
classified into one of the categories established by the researcher.

When a study’s data speak to the issue of group membership, the researcher’s
statistical focus is on frequencies, percentages, or proportions. For example, the
hypothetical pollster referred to in the previous paragraph might summarize the
study’s data by reporting, “Of the 1,000 voters who were sampled, 428 stated that
they would vote for candidate A, 381 stated that they would vote for candidate B,

C H A P T E R 17
Inferences on Percentages,
Proportions, and Frequencies
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and 191 reported that they would vote for candidate C.” Instead of providing us with
frequencies (i.e., the number of people in each response category), the same data
could be summarized through percentages. With this approach, the researcher
would report that “candidates A, B, and C received 42.8 percent, 38.1 percent, and
19.1 percent of the votes, respectively.” Or, the data could be converted into
proportions, with the researcher asserting that “the proportionate popularity of
candidates A, B, and C turned out to be .428, .381, and .191, respectively.” The same
information, of course, is communicated through each of these three ways of sum-
marizing the data.

Regardless of whether the data concerning group membership are summa-
rized through frequencies, percentages, or proportions, it can be said that the level
of measurement used within this kind of study is nominal (rather than ordinal,
interval, or ratio). As I pointed out in Chapter 3, a researcher’s data can be nominal
in nature. In focusing on inferential techniques appropriate for means, r, R, and 
we spent the last several chapters dealing with procedures that are useful when the
researcher’s data are interval or ratio in nature. In this chapter, however, we restrict
our consideration to statistical inferences appropriate for nominal data.

Although a multitude of inferential procedures have been developed for use
with nominal-level data, we consider here only six of these procedures that permit
researchers to evaluate null hypotheses. These procedures are the sign test, the
binomial test, Fisher’s Exact Test, the chi-square test, McNemar’s test, and Cochran’s
test. These are the most frequently used of the test procedures designed for nominal-
level data, and a knowledge of these procedures puts you in a fairly good position
to understand researchers’ results when their data take the form of frequencies,
percentages, or proportions.

In this chapter, I illustrate how z-tests can be used, in certain situations, to an-
swer the same kinds of research questions as those posed by some of the six basic
test procedures we will examine. Moreover, I show how the Bonferroni technique
can be used with any of these test procedures to control against an inflated Type I
error rate. The distinction between statistical significance and practical significance
is also considered. Finally, I point out how important it is to consider the null hypoth-
esis when judging the worth of claims based on this chapter’s test procedures.

The Sign Test

Of all inferential tests, the sign test is perhaps the simplest and easiest to under-
stand. It requires that the researcher do nothing more than classify the participants
of the study into two categories. Each of the participants put into one of these cat-
egories receives a plus sign (i.e., a ); in contrast, a minus sign (i.e., ) is given
to each participant who falls into the other category. The hypothesis testing proce-
dure is then used to evaluate the null hypothesis that says the full sample of partic-
ipants comes from a population in which there are as many pluses as minuses. 

a -+

R2,
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If the sample is quite lopsided with far more pluses than minuses (or far more mi-
nuses than pluses), the sign test’s is rejected. However, if the frequencies of
pluses and minuses in the sample are equal or nearly equal, the null hypothesis of
the sign test is retained.

The sign test can be used in any of three situations. In one situation, there is
a single group of people, with each person in the group evaluated as to some char-
acteristic (e.g., handedness) and then given or depending on his or her
status on that characteristic. In the second situation, there are two matched groups;
here, the two members of each pair are compared, with given to one member
of each dyad (and given to his or her mate) depending on which one has more
of the characteristic being considered. In the third situation, a single group is mea-
sured twice, with or given to each person depending on whether his or
her second score is larger or smaller than his or her first score.

In Excerpts 17.1 and 17.2, we see two examples of the sign test. In the first of
these excerpts, the sign test is analogous to a one-sample t-test. As you can see, two
of these tests were conducted, with the “split” being 13 to 10 across the two cate-
gories (right/wrong) with the line discrimination task, and 12 to 8 with the circle
discrimination task. In both cases, the split was too close to the null notion of an
equal split, so neither sign test was significant. In Excerpt 17.2, the sign test is anal-
ogous to a pre–post correlated t-test. In this case, 18 of 26 individuals increased
their rating, a result that was beyond the limits of chance sampling. Stated differently,

a -a +

a -
a +

a -a +

H0

EXCERPTS 17.1–17.2 • The Sign Test

Participants indicated which target line [of the two] was longer or which circle [of
the two] was larger, by pointing. . . . For lines, we found that 13 out of 23 people
correctly discriminated length (one-tailed sign test, ). For circles, we
found that 12 out of 20 people correctly discriminated size (one-tailed sign test,

). These results suggest that ability of normal adults to discriminate
objects with a size difference of 0.0357 deg was not reliably better than chance.

Source: Palomares, M., Ogbonna, C., Landau, B., & Egeth, H. (2009). Normal susceptibility
to visual illusions in abnormal development: Evidence from Williams Syndrome. Perception,
38(2), 186–199.

The same subjects were measured under the placebo and oxytocin conditions, with
each person serving as his own control. . . . Oxytocin increased the rankings of attach-
ment security [as] 18 subjects (69%) out of 26 increased in rating “secure attachment,’’
whereas only 8 subjects (31%) decreased ( one-tailed exact sign test).

Source: Buchheim, A., Heinrichs, M., George, C., Pokorny, D., Koops, E., Henningsen, P.,
et al. (2009). Oxytocin enhances the experience of attachment security. Psychoneuroendoc-
rinology, 34(9), 1417–1422.

p = .038,

p = 0.2517

p = 0.3388
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the sign test concluded that this kind of split (18 versus 8) is quite unlikely if the
sample came from a population in which there was a 50–50 split. Accordingly, the
null hypothesis was rejected.

The Binomial Test

The binomial test is similar to the sign test in that (1) the data are nominal in
nature, (2) only two response categories are set up by the researcher, and (3) the
response categories must be mutually exclusive. The binomial test is also like the
sign test in that it can be used with a single group of people who are measured just
once, with a single group of people who are measured twice (e.g., preintervention
and postintervention), or with two groups of people who are matched or are related
in some logical fashion (e.g., husbands and wives). The binomial and sign tests are
even further alike in that both procedures lead to a data-based p-level that comes
from tentatively considering the null hypothesis to be true.

The only difference between the sign test and the binomial test concerns the
flexibility of the null hypothesis. With the sign test, there is no flexibility. This is
because the sign test’s always says that the objects in the population are divided
evenly into the two response categories. With the binomial test, however, researchers
have the flexibility to set up with any proportionate split they wish to test.

In Excerpt 17.3, we see a case that shows the versatility of the binomial test.
In the study associated with this excerpt, 560 pilots were first put into groups based
on the kind of plane they typically flew. Then, within in each group, data were
gathered regarding the gender of the pilots’ offspring. A binomial test then com-
pared, for each group, the gender split of the offspring against the national aver-
age of 51.2 percent males and 48.8 percent females. The E-2 group of pilots had
the most lopsided ratio of male-to-female offspring, with 43.7 percent being males.
However, this ratio and the others were not significant when compared against the
national average.

H0

H0

EXCERPT 17.3 • The Binomial Test

Just as for the overall group, there was no significant sex ratio difference found for
any of the three subgroups when compared to the general population. Although sev-
eral of the values for percent male [e.g., 43.7% and 45.3%] appear impressively dif-
ferent from the national average of 51.2% male, none of the groups reach
significance via the binomial test.

Source: Baczuk, R., Biascan, A., Grossgold, E., Isaacson, A., Spencer, J., & Wisotzky, E.
(2009). Sex ratio shift in offspring of male fixed-wing naval aviation officers. Military Medicine,
174(5), 523–528.



408 Chapter 17

In the study dealing with the pilots and their offspring, had a null value of
51.2 percent, based on information the researchers acquired from the CDC in
Atlanta. If that number from the CDC had been 50 percent, the researchers could
have used either a sign test or a binomial test when analyzing the sample data con-
cerning the pilots. Even though the CDC-supplied number was close to 50, the
researchers did the right thing by using the binomial test.

Fisher’s Exact Test

The sign test and the binomial test, as we have seen, can be used when the resear-
cher has dichotomous data from either a single sample or from two related samples.
However, researchers often conduct studies for the purpose of comparing two
independent samples with respect to a dichotomous dependent variable. In such
situations, Fisher’s Exact Test often serves as the researcher’s inferential tool.1

The null hypothesis of Fisher’s Exact Test is highly analogous to the typical
null hypothesis of an independent-samples t-test. With an independent-samples
t-test, most researchers evaluate a null hypothesis that says (or, alter-
natively, as ). Using the symbols and to stand for the pro-
portion of cases (in the first and second populations, respectively) that fall into one
of the two dichotomous categories of the dependent variable, the null hypothesis
of Fisher’s Exact Test can be expressed as (or, alternatively, as

).
In Excerpt 17.4, we see an example of Fisher’s Exact Test. As this excerpt

makes clear, the raw data of Fisher’s Exact Test are the ns (i.e., frequencies) of the
two groups, not means. To get a feel for what was happening statistically, it is best to
think in terms of percentages (especially when two groups have dissimilar ns, as is the
case here). In the experimental group, about 54 percent of the individuals were very
satisfied with treatment and outcome; in the control group, only about 22 percent were

H0: P1 - P2 = 0
H0: P1 = P2

P2P1H0: m1 - m2 = 0
H0: m1 = m2

H0

1The word exact in the title of this test gives the impression that the Fisher’s test is superior to other test pro-
cedures. This is unfortunate, because many other tests (e.g., the sign test and the binomial test) possess just as
much “exactness” as does Fisher’s test.

EXCERPT 17.4 • Fisher’s Exact Test

The groups were compared [via] Fisher’s exact test. . . . Significantly more patients
in the intervention group were very satisfied with the overall treatment and outcome
compared with the control group (15 of 28 patients versus 7 of 32, ).

Source: Nielsen, P. R., Jørgensen, L. D., Dahl, B., Pedersen, T., & Tønnesen, H. (2010). Pre-
habilitation and early rehabilitation after spinal surgery: Randomized clinical trial. Clinical
Rehabilitation, 24(2), 137–148.

P = 0.02
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that satisfied. Fisher’s Exact Test compared these two percentages and found them to
differ more than could be expected by chance. Hence, the null hypothesis was rejected.

It should be noted that the null hypothesis of Fisher’s Exact Test does not say
that each of the study’s two populations will be divided evenly into the two
dichotomous categories. Rather, it simply says that the split in one population is
the same as the split in the other population. Thus, if 21 of the 28 patients in the
experimental group had been satisfied along with 24 of the 32 individuals in the
control group, each sample would have 75 of its members being satisfied. These two
values, being identical, would cause to be retained even though the percentage
split in each group is not even close to being 50–50.

In research reports, it is not unusual to see the term related or the term
association used to describe the goal or the results of a Fisher’s Exact Test. This way
of talking about Fisher’s Exact Test is legitimate and should not throw you when you
encounter it. If the two sample proportions turn out to be significantly different, then
there is a nonzero relationship (in the sample data) between the dichotomous variable
that creates the two comparison groups and the dichotomous dependent variable. Hence,
the use of Fisher’s Exact Test accomplishes the same basic goal as does a test of sig-
nificance applied to a phi or tetrachoric correlation coefficient.2

Chi-Square Tests: An Introduction

Although inferential tests of frequencies, percentages, or proportions are sometimes
made using the sign test, the binomial test, or Fisher’s Exact Test, the most fre-
quently used statistical tool for making such tests is called chi-square. The chi-
square procedure can be used, in certain circumstances, instead of the sign,
binomial, or Fisher’s tests. In addition, the chi-square procedure can be used to an-
swer research questions that cannot be answered by any of the inferential tech-
niques covered thus far in this chapter. Because the chi-square test is so versatile
and popular, it is important for any reader of the research literature to become thor-
oughly familiar with this inferential technique. For this reason, I feel obliged to con-
sider the chi-square technique in a careful and unhurried fashion.

Different Chi-Square Tests

The term chi-square test technically describes any inferential test that involves a
critical value being pulled from or a data-based p-value being tied to one of the many
chi-square distributions.3 Each such distribution is like the normal and t distributions

H0

2Again we have a parallel between Fisher’s Exact Test and the independent-samples t-test, because the t-test’s
comparison of the two sample means is mathematically equivalent to a test applied to the point-biserial cor-
relation coefficient that assesses the relationship between the dichotomous grouping variable and the depen-
dent variable.
3From a technical standpoint, the term chi squared is more accurate than chi square. However, most applied
researchers use the latter label when referring to this inferential test.
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in that it (1) has one mode, (2) is asymptotic to the baseline, (3) comes from a math-
ematical formula, and (4) helps applied researchers decide whether to reject or fail
to reject null hypotheses. Unlike the normal and t distributions (but like any F dis-
tribution), each chi-square distribution is positively skewed. There are many chi-
square distributions simply because the degree of skewness tapers off as the number
of degrees of freedom increases. In fact, the various chi-square distributions are dis-
tinguished from one another solely by the concept of degrees of freedom.

Certain of the inferential tests that are called chi square (because they utilize
a chi-square distribution) have nothing to do with frequencies, proportions, or per-
centages. For example, a comparison of a single sample’s variance against a hy-
pothesized null value is conducted by means of a chi-square test, and, as we saw in
Chapter 16, certain tests in logistic regression utilize chi-square (see Excerpts 16.25
and 16.27). However, these kinds of chi-square tests are clearly in the minority.
Without a doubt, most chi-square tests do involve the types of data being focused
on throughout this chapter. In other words, it is likely that any chi-square test you
encounter deals with nominal data.

Even when we restrict our consideration of chi square to those cases that in-
volve nominal data, there still are different types of chi-square tests. One type is
called a one-sample chi-square test (or a chi-square goodness-of-fit test), a second
type is called an independent-samples chi-square test (or a chi-square test of
homogeneity of proportions), and the third type is called a chi-square test of inde-
pendence. We consider each of these chi-square tests shortly, and then later in the
chapter we see how a chi-square test can also be used with related samples. Before
we look at any of these chi-square tests, however, it is appropriate first to consider
how to tell that a researcher is presenting results of a chi-square test.

Chi-Square Notation and Language

Excerpts 17.5 through 17.7 illustrate the variation in how applied researchers refer
to the chi-square tests used in their studies. Although the studies from which these
excerpts were taken differ in the number of samples being compared and the num-
ber of nominal categories in the data, it should be noted that each of these studies
had the same statistical focus as all of the other tests considered in this chapter: fre-
quencies, proportions, or percentages.

EXCERPTS 17.5–17.7 • Different Ways of Referring to Chi-Square

The frequency distributions of PSQI scores among the three groups differed signifi-
cantly 

Source: Ko, S.-H., Chang, S.-C., & Chen, C.-H. (2010). A comparative study of sleep quality bet-
ween pregnant and nonpregnant Taiwanese women. Journal of Nursing Scholarship, 42(1), 23–30.

1x2 = 8.69, df = 2, p = .012.

(continued )
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In Excerpt 17.5, we see the Greek symbol for chi square, Excerpt 17.6
contains the written-out name: Finally, in Excerpt 17.7, the phrase Pearson chi
square is used.

The adjective Pearson is the technically correct way to indicate that the chi-
square test has been applied to frequencies (rather than, for example, to variances).
However, very few applied researchers use the phrase Pearson chi square (or the
more formal label, Pearson’s approximation to chi square). Accordingly, it is fairly
safe to presume that any chi-square test you encounter is like those considered in
this chapter, even though the word Pearson does not appear in the test’s label. (Of
course, this would not be a safe bet if the term chi-square test is used within a con-
text in which it is clear that the test’s statistical focus deals with something other
than frequencies, proportions, or percentages.)

Three Main Types of Chi-Square Tests

We now turn our attention to the three main types of chi-square tests used by
applied researchers—the one-sample chi-square test, the independent-samples chi-
square test, and the chi-square test of independence. Although applied researchers
typically refer to all three using the same label (chi-square test), the null hypothe-
ses of these tests differ. Accordingly, you must know which kind of chi-square test
has been used in order to understand what is meant by a statistically significant (or
nonsignificant) finding.

The One-Sample Chi-Square Test

With this kind of chi-square test, the various categories of the nominal variable of
interest are first set up and considered. Second, a null hypothesis is formulated. The

for the one-sample chi-square test is simply a specification of what percentageH0

chi2.
x2.

Despite very careful examination of the animals involved in the second trial, this pro-
portion [of ticks] was not significantly reduced 

Source: Stachurski, F., & Adakal, H. (2010). Exploiting the heterogeneous drop-off rhythm of
Amblyomma variegatum nymphs to reduce pasture infestation by adult ticks. Parasitology,
137(7), 1129–1137.

Pearson’s analysis was applied to assess differences in travel mode by sex.

Source: Voss, C., & Sandercock, G. (2010). Aerobic fitness and mode of travel to school in
English schoolchildren. Medicine and Science in Sports and Exercise, 42(2), 281–287.

x2

126% vs 36%; Chi2 = 2.3, P 7 0.102.

EXCERPTS 17.5–17.7 • (continued)
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of the population being considered falls into each category. Next, the researcher de-
termines what percentage of the sample falls into each of the established categories.
Finally, the hypothesis testing procedure is used to determine whether the discrep-
ancy between the set of sample percentages and those specified in is large
enough to permit to be rejected.

Excerpt 17.8 illustrates the use of a one-sample chi-square test. The single
sample was made up of 62 college students who were near the end of a semester-
long course. They were surveyed to find out which of three different student
identifiers used on the course’s written projects—names, ID numbers, and bar codes
like the ones used in stores—was most fair to students. The null hypothesis said that
the three response options had equal “drawing power,” and this would have been
retained if the percentage of students choosing each option had been about the
same. However, the chi-square test showed that there was more variability among
the three percentages than would be expected by chance. Hence, the null hypothe-
sis was rejected.

H0

H0

H0

EXCERPT 17.8 • One-Sample Chi-Square Test

To implement bar code usage in grading written papers, a class of undergraduate stu-
dents participated in the use of the bar code grading method over one
semester. . . . After the final written projects were graded, the instructor surveyed
their perceptions of fairness in the grading process. The students were asked, “Which
identifier method provides greater anonymity during the grading process?” with the
options of “names, social security number, and bar code.” . . . The chi-square test
was used to examine the null hypothesis: there is no preference among the three
methods. The result shows that the null hypothesis is rejected. There is a strong pref-
erence among the three methods in which 45 students perceived that the use of bar
codes would provide greater anonymity,

Source: Jae, H., & Cowling, J. (2009). Objectivity in grading. College Teaching, 57(1), 51–55.

x212, N = 622 = 44.9, p 6 .01.

1n = 622

If you look again at Excerpt 17.8, you see df presented as the first num-
ber in parentheses following the chi-square symbol. This df is not equal to one less
than the number of people in the sample. Instead, it is equal to one less than the
number of categories. This is the way the df for all one-sample chi-square tests are
computed, because the sample percentages, across the various categories, must add
up to 100. Because of this, you could figure out the final category’s percentage once
you have been given the percentages for all other categories. The final category’s
percentage, therefore, is not free to vary but rather has a value that is known as soon
as the percentages for the other categories are recorded.

There is one additional thing you should know about the one-sample chi-
square test. The null hypothesis concerning the various percentages is usually set

x2’s
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up in a “no difference” fashion, as exemplified by Excerpt 17.8. However, the null
hypothesis can be set up such that these percentages are dissimilar. For example, in
comparing the handedness of pub patrons who play darts, we might set up the 
with the right- and left-handed percentages equal to 90 and 10, respectively. These
numbers come from census figures, and our little study would be asking the simple
question, “Do the census figures seem to hold true for the population of dart throw-
ers represented by the sample used in our study?”

Because the one-sample chi-square test compares the set of observed sample
percentages with the corresponding set of population percentages specified in ,
this kind of chi-square analysis is sometimes referred to as a goodness-of-fit test. If
these two sets of percentages differ by an amount that can be attributable to sampling
error, then there is said to be a good fit between the observed data and what would
be expected if were true. In this situation, is retained. However, if sampling
error cannot adequately explain the discrepancies between the observed and null per-
centages, then a bad fit is said to exist, and is rejected. The researcher’s level of
significance, in conjunction with the data-based p-value, makes it easy to determine
what action should be taken whenever this chi-square goodness-of-fit test is applied.

On occasion, researchers use the chi-square goodness-of-fit test to see if it is
reasonable to presume that the sample data have come from a normally distributed
population. Of course, for researchers to have this concern, their response variable
must be quantitative, not qualitative. If researchers have data that are interval or ratio
in nature and if they want to apply this kind of a test of normality, the baseline
beneath the theoretical normal distribution can be subdivided into segments, with
each segment assigned a percentage to reflect the percentage of cases in a true nor-
mal distribution that would lie within that segment. These percentages are then put
into . Next, the sample is examined to determine what percentage of the observed
cases fall within each of the predetermined segments, or categories. Finally, the chi-
square goodness-of-fit test compares the observed and null percentages across the
various categories to see whether sampling error can account for any discrepancies.4

The Independent-Samples Chi-Square Test

Researchers frequently wish to compare two or more samples on a response vari-
able that is categorical in nature. Because the response variable can be made up of
two or more categories, we can set up four different kinds of situations to which the
independent-samples chi-square test can be applied: (1) two samples compared
on a dichotomous response variable, (2) more than two samples compared on a
dichotomous response variable, (3) two samples compared on a response variable that
has three or more categories, and (4) more than two samples compared on a response

H0

H0

H0H0

H0

H0

4The Kolmogorov-Smirnov one-sample test is another goodness-of-fit procedure that can be used as a check
on normality. It has several properties that make it superior to chi-square in situations where concern rests
with the distributional shape of a continuous variable.
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variable that has three or more categories. As you will see, considering the first and
the fourth of these four situations generates some valuable insights about chi-square
and its relationship with other inferential tests we have covered.

When two independent samples are compared with respect to a dichotomous
dependent variable, the chi-square test can be thought of as analogous to an inde-
pendent-samples t-test. With the t-test, the null hypothesis usually tested is

With the chi-square test, the null hypothesis is with 
and representing the percentage of cases (in the first and second populations) that
fall into one of the two response categories. Thus, the null hypothesis for this form
of the chi-square test simply says that the two populations are identical in the per-
centage split between the two categories of the response variable.

In Excerpt 17.9, we see an example of this first kind of independent-samples
chi-square test. The two groups were Latina and Caucasian women with breast can-
cer. The two categories of the response variable were set up to correspond with yes
and no answers to the question, “Has there been a report of psychiatric illness?”

P2

P1H0: P1 = P2,H0: m1 = m2.

EXCERPT 17.9 • Two-Group Independent-Samples Chi-Square Test 
with a Dichotomous Response Variable

The findings of this study describe differences between Latina and Caucasian breast
cancer survivors in perceived social support, uncertainty, QOL, and selected demo-
graphic variables. . . . [D]ata from 181 Caucasian participants and 97 Latina partic-
ipants were included in the analysis. . . . A significant [difference] was noted [for]
the presence of psychiatric illness Latinas
reported more psychiatric illness than did Caucasians 

Source: Sammarco, A., & Konecny, L. M. (2010). Quality of life, social support, and uncertainty
among Latina and Caucasian breast cancer survivors: A comparative study. Oncology Nursing
Forum, 37(1), 93–99.

1n = 22.1n = 132
1x2 [1, n = 278] = 18.71, p 6 0.0012.

To help you understand the chi-square test that was applied to the data of
Excerpt 17.9, I have constructed a contingency table and present it in Table 17.1.
In such a table, the data of a study are arranged in a matrix for the purpose2 * 2

TABLE 17.1 Contingency Table Containing Raw Data from Excerpt 17.9

Diagnosed as 
Being Psychotic

Yes No

Caucasian 2 179 181

Latina 13 84 97
Group
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of showing how each group split itself up on the dichotomous response variable.
Contingency tables are worth looking at (if they are provided in research reports)
or creating (if they are not provided), because they make it easier to understand
the chi-square null hypothesis and why the data led to the rejection or retention
of 

The null hypothesis associated with Excerpt 17.9 did not specify that each of
the two populations—Caucasian and Latina women with breast cancer—had a
50–50 split between the two categories of the response variable (with half of each
population having some form of psychiatric illness). Instead, said that the two
populations were identical to each other in the percentage (or proportion) of women
falling into each of the response categories. Thus, the null hypothesis of the study
would not have been rejected if about the same percentage of the Caucasian and
Latina women had been diagnosed as being psychotic, regardless of whether that
percentage was close to 30, 10, 80, or any other value.

Because the null hypothesis deals with percentages (or proportions), it is
often helpful to convert each of the cell frequencies of a contingency table into a
percentage (or proportion). I have created such a table for Excerpt 17.9 and pre-
sent it in Table 17.2. As before, the rows and columns correspond to the groups
and the response categories, respectively. Now, however, the cells on either row
indicate the percentage split of that row’s women across the yes and no responses
to the question. This contingency table shows why the chi-square null hypothesis
was rejected, because the two samples clearly differed in their percentages in
either column.

Earlier, I stated that a chi-square test that compares two groups on a dichoto-
mous response variable is analogous to an independent t-test. This kind of chi-square
is even more similar to Fisher’s Exact Test, because these two tests have the same
null hypothesis and also utilize the same kind of data. Because of these similar-
ities, you may have been wondering why some researchers choose to use a
Fisher’s Exact Test whereas others subject their data to an independent-samples
chi-square test. Although I address this question more fully later in the chapter,
suffice it to say that Fisher’s test works better when the researcher has a small
number of subjects.

H0

H0.

TABLE 17.2 Contingency Table Containing Percentages from Excerpt 17.9

Diagnosed as 
Being Psychotic

Yes No

Caucasian 1.1% 98.9% 100%

Latina 13.4% 86.6% 100%
Group
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An independent-samples chi-square test can involve more than two groups or
a response variable that has more than two categories. To illustrate, let’s consider a
study dealing with the game of darts. In this investigation, the research participants
were 100 fifth-graders in Greece who had never played darts before. These boys and
girls were randomly assigned to four different groups prior to the dart-throwing
task. After watching a demonstration of how properly to throw a dart, those in the
first three groups were given a goal to focus on while throwing. Members of one
group were given instructions to think about the process (i.e., their form) when
throwing; those in the second group were told to focus on their performance out-
come (i.e., how well they did); participants in the third group were asked to con-
centrate on both process and performance. Members of the fourth group—the
control group—were simply asked to do their best. After receiving their instruc-
tions, each member of each group performed the dart-throwing task.

After each child missed the bulls-eye on two consecutive throws, he or she
was asked why the previous throw had missed its mark. The children’s answers to
this question were coded into four categories: “Technique,” “Focus,” “Ability,” or
“Don’t Know.” The percentage of children from each group who provided each
of these four reasons (i.e., attributions for missing the bulls-eye) is shown in
Table 17.3.

A chi-square test compared the four groups in terms of the way the group
members explained why they had missed the bulls-eye. The null hypothesis for this
test involved four populations: fifth-graders (like those in the study) who are given
a process goal before throwing darts for the first time, fifth-graders (like those in
the study) who are given a performance goal before throwing darts for the first time,
and so on. This stipulated that each of these populations has the same distributionH0

TABLE 17.3 Contingency Table for Dart-Throwing Investigation

Reason Given (i.e., Attribution) 
for the Dart Missing the Target’s Bulls-eye

Technique Focus Ability Don’t Know

Process Goal 75.9% 13.8% 3.4% 6.9% 100%

Performance 
Goal 

51.7% 27.6% 10.3% 10.3% 100%

Process & Performance 
Goal 

65.6% 17.2% 3.5% 13.8% 100%

Control 23.1% 15.4% 7.7% 53.8% 100%

Notes: Percentages in rows 2 and 3 do not add to 100 due to rounding errors. Data from Kolovelonis, Goudas, and Dermitzaki’s
2010 article (The effect of different goals and self-recording on self-regulation of learning a motor skill in a physical education
setting) that appeared in the journal Learning and Instruction.

(n = 13)

(n = 29)

(n = 29)

(n = 29)

Group
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of attributions across the categories of “Technique,” “Focus,” “Ability,” and “Don’t
Know.” For this null hypothesis to be true, that distribution of percentages could be
even (i.e., 25–25–25–25) or uneven (e.g., 50–30–15–5); however, whatever is the
case for any one population must be the same for the other three populations.
Excerpt 17.10 contains the result of this test. As you can see, the chi-square null
hypothesis was rejected.5

x2

EXCERPT 17.10 • Four-Group Independent-Samples Chi-Square Test
with a Four-Category Response Variable

After the fifth minute of practice, when a student had missed the centre of the target
for two consecutive throws, she or he was asked the single question “Why do you think
you missed the centre of the target in your last throw?”. . . . The 4 (group) (attri-
bution) cross-tabulation analysis showed a significant difference,

[among] the four groups . . . showing that all goal [groups] attributed
more frequently the missing throws to their incorrect technique compared to the control
group.

Source: Kolovelonis, A., Goudas, M., Dermitzaki, I. (2011). The effect of different goals and
self-recording on self-regulation of learning a motor skill in a physical education setting.
Learning and Instruction, in press.

21.80, p 6 .01,
x2 19, N = 1002 =

* 4

In Excerpt 17.10, notice that the number 9 is positioned inside a set of paren-
theses, just to the left of the study’s sample size. This number was the chi-square’s
df. With this or any other contingency table, the df for is determined by multi-
plying 1 less than the number of rows times 1 less than the number of columns. In
this case,

Chi-Square as a Correlational Probe

In many studies, a researcher is interested in whether a nonchance relationship
exists between two nominal variables. In such studies, a single sample of subjects
is measured, with each research participant classified into one of the available cat-
egories of the first variable and then classified once more into one of the categories
of the second variable. After the data are arranged into a contingency table, a chi-
square test can be used to determine whether a statistically significant relationship
exists between the two variables.

In Excerpts 17.11 through 17.13, we see three terms used in conjunction
with chi-square tests that let you know the researchers were using chi-square in a

df = 14 rows - 1214 columns - 12 = 9.

x2

5The term cross-tabulation analysis in Excerpt 17.10 refers to a table that shows the percentage or number of
cases that fall into each cell of a two-dimensional chart.
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correlational manner. The first two of these terms—association and relationship—
are not new; we saw them used in Chapter 3 while considering bivariate correlation.
The third term, however, is new. A chi-square test of independence is simply a
test to see whether a relationship (or association) exists between the study’s two
variables.

When a chi-square test is used as a correlational probe, it does not produce an
index that estimates the strength of the relationship between the two variables that
label the contingency table’s rows and columns. Instead, the chi-square test simply
addresses the question, “In the population of interest, are the two variables related?”
Focusing on the sample data, this question takes the form, “In the contingency table,
is there a nonchance relationship between the two variables?”

To illustrate what I mean by nonchance relationship, imagine that we go out
and ask each of 100 college students to name a relative. (If anyone responds with a
gender-free name like Pat, we then ask the respondent to indicate whether the rel-
ative is a male or a female.) We also keep track of each respondent’s gender. After
collecting these two pieces of information from our 100th student, we might end up
with sample data that look like this:

EXCERPTS 17.11–17.13 • Terms that Indicate Chi-Square Is Used as 
a Correlational Probe

Associations between categorical variables were explored using the chi-square test
of association.

Source: Decloedt, E., Leisegang, R., Blockman, M., & Cohen, K. (2010). Dosage adjustment
in medical patients with renal impairment at Groote Schuur Hospital. South Aftrican Medical
Journal, 100(5), 304–306.

Chi-square statistics were used to examine relationships between categorical variables
or between categorical and ordinal variables.

Source: Harlow, K. C., & Roberts, R. (2010). An exploration of the relationship between social
and psychological factors and being bullied. Children & Schools, 32(1), 15–26.

A chi-square test of independence demonstrated that presences of salamanders
and crayfish were not independent significantly
more salamanders and crayfish co-occurred under the same rocks than expected
by chance.

Source: Pierce, B. A., Christiansen, J. L., Ritzer, A. L., & Jones, T. A. (2010). Ecology of
Georgetown Salamanders (Eurycea naufragia) within the flow of a spring. Southwestern
Naturalist, 55(2), 291–297.

1x2 = 7.46, df = 1, P = 0.0062;
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Gender of
the Relative

Male Female

Gender of Male 30 20

the Student Female 23 27

In the contingency table for our hypothetical study, there is a relation-
ship between the two variables—student’s gender and relative’s gender. More of the
male students responded with the name of a male relative whereas more of the fe-
male students thought of a female relative. (Or, we could say that there was a ten-
dency for male relatives to be thought of by male students whereas female relatives
were thought of by female students.) But is this relationship something other than
what would be expected by chance?

If there were no relationship in the population between the two variables in
our gender study, the population frequencies in all four cells of the contingency
table would be identical. But a sample extracted from that population would not
likely mirror the population perfectly. Instead, sampling error would likely be in the
sample data, thus causing the observed contingency table to have dissimilar cell fre-
quencies. In other words, we would expect a relationship to pop up in the sample
data even if there were no relationship in the population. Such a relationship, in the
sample data, would be due entirely to chance. Although we should expect a null
population (i.e., one in which there is no relationship between the two variables) to
yield sample data in which a relationship does exist between the two variables, such
a relationship ought to be small, or weak. It is possible for a null population to yield
sample data suggesting a strong relationship between the two variables, but this is
not very likely to happen. Stated differently, if researchers end up with a contin-
gency table in which there is a meager relationship, they have only weak evidence
for arguing that the two variables of interest are related in the population. If, in con-
trast, a pronounced relationship shows up in the contingency table built with the
sample data, the researchers possess strong evidence for suggesting that a relation-
ship does, in fact, exist in the population.

Returning to our little gender study, the chi-square test can be used to label the
relationship that shows up in the sample data as being either meager or pronounced.
Using the hypothesis testing procedure in which the level of significance is set equal
to .05, the null hypothesis of no relationship in the population cannot be rejected.
This means that the observed relationship in the contingency table could easily have
come from a sample pulled from a population characterized by 

In addition to using a chi-square test to see if a nonchance relationship exists
in the sample data, researchers can convert their chi-square calculated value into an
index that estimates the strength of the relationship that exists in the population. By

H0.

2 * 2
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making this conversion, the researcher obtains a numerical value that is analogous
to the correlation coefficient generated by Pearson’s or Spearman’s technique. Sev-
eral different conversion procedures have been developed.

The phi coefficient can be used to measure the strength of association in
contingency tables. I discussed this correlational procedure in Chapters 3 and

9 and pointed out in those discussions how phi is appropriate for the case of two di-
chotomous variables. Now, I can extend this discussion of phi by pointing out its
connection to chi-square. If a chi-square test has been applied to a contin-
gency table, the phi index of association can be obtained directly by putting the chi-
square calculated value into this simple formula:

where N stands for the total sample size. Researchers, of course, are the ones who
use this formula in order to convert their chi-square calculated values into phi
coefficients. As illustrated by Excerpt 17.14, you will not have to do this.

phi = A
x2

N

2 * 2

2 * 2

6A variation of C is called the mean square contingency coefficient. This index of relationship uses the same
formula as that presented for phi.

EXCERPT 17.14 • Chi-Square and Phi

A Chi-square test indicated an association between receipt of ancillary medication
and ethnicity Within each ethnicity category, sub-
stantially more participants received ancillary medication than did not receive med-
ication (White: 84% vs. 16%; Black: 58% vs. 42%; and Hispanic: 61% vs. 39%,
respectively). However, a substantially higher proportion of White participants
received ancillary medication compared to other ethnic groups.

Source: Hillhouse, M., Domier, C. P., Chim, D., & Ling, W. (2010). Provision of ancillary
medications during buprenorphine detoxification does not improve treatment outcomes.
Journal of Addictive Diseases, 29(1), 23–29.

1x2 = 9.94, P 6 .01, phi = .282.

For contingency tables that have more than two rows or columns, researchers
can convert their chi-square calculated value into a measure of association called the
contingency coefficient. This index of relationship is symbolized by C, and the con-
nection between C and chi square is made evident by the following formula for C:

In Excerpt 17.15, we see an illustration of how the contingency coefficient can be
computed following a chi-square test of independence.6

C = A
x2

N + x2
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The formula for C shows that this index of association turns out equal to zero
when there is no relationship in the contingency table (because in that case, the cal-
culated value of itself turns out equal to zero) and that it assumes larger values
for larger values of What this formula does not show is that this index usu-
ally cannot achieve a maximum value of 1.00 (as is the case with Pearson’s r, Spear-
man’s rho, and other correlation coefficients). This problem can be circumvented
easily if the researcher computes Cramer’s measure of association, because
Cramer’s index is simply equal to the computed index of relationship, C, divided
by the maximum value that the index could assume, given the contingency table’s
dimensions and marginal totals.

In Excerpt 17.16, we see a case in which Cramer’s measure of association,
symbolized as V, was computed in conjunction with two different contin-
gency tables. Notice that the larger V is paired with the larger x2.

2 * 3

x2.
x2

EXCERPT 17.15 • Chi-Square and the Contingency Coefficient

We categorized participants who had travelled abroad as engaging in heavy episodic
drinking (i.e., HED) or not engaging in heavy episodic drinking (i.e., NHD) for
analyses. . . . Chi square analysis demonstrated that NHD and HED

participants differed significantly in the frequency with which they described
specific motivations or reasons for their alcohol use [cultural experience vs. social
enhancement vs. accessibility due to being of age] (
Contingency Coefficient ).

Source: Smith, G., & Klein, S. (2010) Predicting women’s alcohol risk-taking while abroad.
Women & Health, 50(3), 262–278.

= .39
x212, N = 432 = 7.74, p 6 .05;

1n = 162
1n = 272

EXCERPT 17.16 • Chi-Square and Cramer’s V

With respect to the academic level, we observed no significant differences in rela-
tion to the distribution in the level of motivation [high or low]

(with Cramer’s In
contrast to this finding, the academic level resulted in significant differences in value
[intrinsic or extrinsic], showing that final-level students are more intrinsic (56%)
than intermediate (19%) or initial level students (36%) 

(with Cramer’s ).

Source: Rabanaque, S., & Martínez-Fernández, J. R. (2009). Conception of learning and moti-
vation of Spanish psychology undergraduates in different academic levels. European Journal
of Psychology of Education, 24(4), 513–528.

V = .260; p 6 .00117.486; p 6 .001
x212, N = 2582 =

V = .113; p = .1952. . . .x212, N = 2582 = 3.270; p = .195
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Issues Related to Chi-Square Tests

Before we conclude our discussion of chi-square tests, a few related issues must be
addressed. Unless you are aware of the connection between these issues and the
various chi-square tests we have covered, you will be unable to fully understand and
critique research reports that contain the results of chi-square tests. Accordingly, it
is important for you to be sensitive to the following issues.

Post Hoc Tests

If an independent-samples chi-square test is used to compare two groups, interpre-
tation of the results is straightforward regardless of what decision is made regard-
ing the null hypothesis. If there are three or more comparison groups involved in
the study, the results can be interpreted without difficulty so long as is not
rejected. If, however, the independent-samples chi-square test leads to a rejection
of when more than two groups are contrasted, the situation remains unclear.

When three or more samples are compared, a statistically significant outcome
simply indicates that it is unlikely that all corresponding populations are distributed
in the same way across the categories of the response variable. In other words, a re-
jection of suggests that at least two of the populations differ, but this outcome by
itself does not provide any insight as to which specific populations differ from one
another. To gain such insights, the researcher must conduct a post hoc investigation.

In Excerpt 17.17, we see a case where a post hoc investigation after an om-
nibus chi-square test yielded a statistically significant result. The original chi-square
test involved a arrangement of the data, with three groups (men who had3 * 2

H0

H0

H0

EXCERPT 17.17 • Post Hoc Investigation Following a Significant 
Chi-Square Test

Furthermore, based on a chi-square test, the three groups differed significantly in
reported rates of lifetime STI [sexually transmitted infection],

Based on follow-up tests, men who perpetrated sexual aggression
more than once were significantly more likely than men who had never perpetrated
sexual aggression to have contracted an STI in their lifetime, with 25% of
men who perpetrated multiple acts of sexual aggression reporting a history of STI
and 16% of nonaggressive men reporting a history of STI. Of the men who perpe-
trated sexual aggression only once, 21% reported a history of STI. The group of men
who perpetrated sexual aggression only once did not differ significantly from either
of the other groups in rates of STI.

Source: Peterson, Z. D., Janssen, E. & Heiman, J. R. (2010). The association between sexual
aggression and HIV risk behavior in heterosexual men. Journal of Interpersonal Violence,
25(3), 538–556.

p 6 .05,

6.21, p 6 .05 . . .
x2 12, 11802 =
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perpetrated 0, 1, or sexually aggressive acts) and two categories of STI (either
they had or had not contracted a sexually transmitted infection). After the omnibus

turned out to be significant, the researchers probed their data with three differ-
ent chi-square analyses. In a very real sense, this post hoc investigation had
the same goal as would a set of Tukey pairwise comparisons computed after a one-
way ANOVA yields a significant F.

Whenever two or more separate chi-square tests are performed within a post
hoc investigation, with each incorporating the same level of significance as that
used in the initial (omnibus) chi-square test, the chances of a Type I error being
made somewhere in the post hoc analysis exceeds the nominal level of significance.
This is not a problem in those situations where the researcher judges Type II errors
to be more costly than Type I errors. Be that as it may, the scientific community
seems to encourage researchers to guard against Type I errors.

In Excerpt 17.17, you saw a case in which a post hoc investigation, involving
three pairwise comparisons (each using a reduced contingency table) was
conducted after an omnibus chi-square test yielded a significant result. In the
research report that provided this excerpt, I could not find any indication that the
researchers used the Bonferroni adjustment procedure (or some similar device) to
protect against an inflated Type I error rate in this post hoc investigation. Perhaps
they adjusted their alpha level but just did not report having done so. Or, perhaps
they failed to lower when they conducted their post hoc chi-square tests.

Small Amounts of Sample Data

To work properly, the chi-square tests discussed in this chapter necessitate sam-
ple sizes that are not too small. Actually, it is the expected frequencies that must
be sufficiently large for the chi-square test to function as intended. An expected
frequency exists for each category into which sample objects are classified, and
each one is nothing more than the proportion of the sample data you would ex-
pect in the category if were true and if there were absolutely no sampling error.
For example, if we were to perform a taste test in which each of 20 individuals is
asked to sip four different beverages and then indicate which one is the best, the
expected frequency for each of the four options would be equal to 5 (presuming
that specifies equality among the four beverages). If this same study were to
be conducted with 40 participants, each of the four expected values would be
equal to 10.

If researchers have a small amount of sample data, too many groups, or too
many categories of the response variable, the expected values associated with their
chi-square test will also be small. If the expected values are too small, the chi-
square test should not be used. Various rules of thumb have been offered over the
years to help applied researchers know when they should refrain from using the
chi-square test because of small expected values. The most conservative of these
rules says that none of the expected frequencies should be smaller than 5; the most

H0

H0

a

2 * 2

2 * 2
x2

2+
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liberal rule stipulates that chi-square can be used so long as the average expected
frequency is at least 2.7

The option of turning to Fisher’s Exact Test when the expected frequencies
are too small is available in situations in which the sample data create a con-
tingency table. This option does not exist, however, if their researcher is using
(1) a one-sample chi-square test with three or more categories or (2) chi-square with
a contingency table that has more than two rows or more than two columns. In these
situations, the problem of small expected frequencies can be solved by redefining
the response categories such that two or more of the original categories are col-
lapsed together. For example, if men and women are being compared regarding
their responses to a five-option Likert-type question, the researcher might convert
the five original categories into three new categories by (1) merging together the
“Strongly Agree” and “Agree” categories into a new single category called “Favor-
able Response,” (2) leaving the “Undecided” category unchanged, and (3) merging
together the “Disagree” and “Strongly Disagree” categories into a new single cate-
gory called “Unfavorable Response.” By doing so, the revised contingency table
might not have any expected frequencies that are too small.

In Excerpt 17.18, we see a case where a pair of researchers decided against
using chi-square to analyze their data because of small expected frequencies. They
used the strategy of collapsing categories of the response variable, but they still had
small expected frequencies. They then employed Fisher’s Exact Test. Note the last
six words of this excerpt.

2 * 2

7The contingency table shown earlier in this chapter for the dart throwing study had half of its expected cell
frequencies smaller than 5; however, the mean of all 16 values was 6.25.

EXCERPT 17.18 • Use of Fisher’s Exact Test Rather Than Chi-Square
Because of Small Expected Frequencies

Response categories for self-rated physical and mental health were dichotomized
[and then] Fisher’s exact tests were used to test hypotheses on associations with
these variables due to small expected cell counts.

Source: Berkman, C. S., & Ko, E. (2009). Preferences for disclosure of information about 
serious illness among older Korean American immigrants in New York City. Journal of Pallia-
tive Medicine, 12(4), 351–357.

Yates’ Correction for Discontinuity

When applying a chi-square test to situations where some researchers use
a special formula that yields a slightly smaller calculated value than would be the case
if the regular formula were employed. When this is done, it can be said that the data
are being analyzed using a chi-square test that has been corrected for discontinuity

df = 1,
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(also known as Yates’ correction for discontinuity). This special formula was
developed by a famous statistician named Yates, and occasionally the chi-square
test has Yates’ name attached to it when the special formula is used. Excerpt 17.19
shows that Yates’ correction is used in conjunction with chi-square analyses. It is
not used with any of the other statistical procedures considered in this book.

EXCERPT 17.19 • Yates’ Correction for Discontinuity

Prevalences of symptoms between groups (categorical data) were compared with the
-test with Yates’ correction. . . . Migraine occurred significantly more often in CPAs

[37/200 = 18.5%] than in controls [17/210 = 8.1%] after 3 months.

Source: Stovner, L. J., Schrader, H., Mickevičiene, D., Surkiene, D., & Sand, T. (2009).
Headache after concussion. European Journal of Neurology, 16(1), 112–120.

x2

Statistical authorities are not in agreement as to the need for using Yates’
special formula. Some argue that it should always be used in situations where

because the regular formula leads to calculated values that are too large
(and thus to an inflated probability of a Type I error). Other authorities take the
position that the Yates adjustment causes the pendulum to swing too far in the op-
posite direction because Yates’ correction makes the chi-square test overly con-
servative (thus increasing the chances of a Type II error). Ideally, researchers
should clarify why the Yates formula either was or was not used on the basis of a
judicious consideration of the different risks associated with a Type I or a Type II
error. Realistically, however, you are most likely to see the Yates formula used
only occasionally and, in those cases, used without any explanation as to why it
was employed.

McNemar’s Chi-Square

Earlier in this chapter, we saw how a chi-square test can be used to compare two
independent samples with respect to a dichotomous dependent variable. If the two
samples involved in such a comparison are related rather than independent, chi-
square can still be used to test the homogeneity of proportions null hypothesis.
However, both the formula used by the researchers to analyze their data and the
label attached to the test procedure are slightly different in this situation where
two related samples are compared. Although there is no reason to concern our-
selves here with the unique formula used when correlated data have been col-
lected, it is important that you become familiar with the way researchers refer to
this kind of test.

df = 1
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A chi-square analysis of related samples is usually referred to simply as
McNemar’s test. Sometimes, however, it is called McNemar’s change test, McNemar’s
chi-square test, McNemar’s test of correlated proportions, or McNemar’s test for
paired data. Occasionally, it is referred to symbolically as Excerpt 17.20
illustrate the use of McNemar’s test.

Mcx2.

EXCERPT 17.20 • McNemar’s Chi-Square Test

This pilot-study aimed to examine the feasibility, acceptability, and effectiveness 
of family-based treatment [for anorexia nervosa in adolescent girls] in Brazil. . . .
McNemar’s test was performed in order to compare menstrual status between
assessment points. . . . At first evaluation, eight (89%) of the patients had amenorrhea.
At the end of treatment, four (44%) had regular menses, whereas all of the patients
evaluated had regular menses at the end of follow-up. When McNemar’s test was 
applied, a significant improvement in menstrual status was found when comparing
baseline to the end of follow-up 

Source: Turkiewicz, G., Pinzon, V., Lock, J., & Fleitlich-Bilyk, B. (2010). Feasibility, accept-
ability, and effectiveness of family-based treatment for adolescent anorexia nervosa: An
observational study conducted in Brazil. Revista Brasileira de Psiquiatria, 32(2), 169–172.

1p = 0.0162.

McNemar’s chi-square test is very much like a correlated-samples t-test in
that two sets of data being compared can come either from a single group that is
measured twice (e.g., in a pre/post sense) or from matched samples that are mea-
sured just once. Excerpt 17.20 obviously falls into the first of these categories
because data from a single group are compared at two points in time, at baseline and
then at the end of follow-up. The intervention provided between these two points in
time was designed to help adolescent girls who suffered from anorexia nervosa.

Although the McNemar’s chi-square is similar to a correlated t-test with re-
spect to the kind of sample(s) involved in the comparison, the two tests differ dra-
matically in terms of the null hypothesis. With the t-test, the null hypothesis involves
population means; in contrast, the null hypothesis of McNemar’s chi-square test
is concerned with population percentages. In other words, the null hypothesis of
McNemar’s test always takes the form whereas the t-test’s null hypothe-
sis always involves the symbol (and it usually is set up to say ).

The Cochran Q Test

A test developed by Cochran is appropriate for the situation where the researcher
wishes to compare three or more related samples with respect to a dichotomous de-
pendent variable. This test is called the Cochran Q test, with the letter Q simply
being the arbitrary symbol used by Cochran to label the calculated value produced

H0: m1 = m2m

H0: P1 = P2,
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by putting the sample data into Cochran’s formula. This test just as easily could
have been called Cochran’s chi-square test inasmuch as the calculated value is com-
pared against a chi-square critical value to determine whether the null hypothesis
should be rejected.

The Cochran Q test can be thought of as an extension of McNemar’s chi-
square test, because McNemar’s test is restricted to the situation where just two cor-
related samples of data are compared, whereas Cochran’s test can be used when
there are any number of such samples. Or, the Cochran Q test can be likened to the
one-factor repeated-measures analysis of variance covered in Chapter 14; in each
case, multiple related samples of data are compared. (That ANOVA is quite differ-
ent from the Cochran test; however, because the null hypothesis in the former
focuses on s whereas Cochran’s involves Ps.)

In Excerpt 17.21, we see a case where Cochran’s Q test was used. This ex-
cerpt comes from a study in which nurse trainees used three different kinds of
pumps to administer IVs to mannequins. The researchers wondered whether the dif-
ferent pumps might differentially affect the nurses’ ability to avoid giving a partic-
ular doctor-ordered medicine to the wrong “patient.” Because all nurse trainees used
all three pumps, the Cochran Q test (rather than a regular chi-square test) was used
to compare the pumps.

H0m

EXCERPT 17.21 • The Cochran Q Test

We, therefore, conducted an experimental study to directly compare pump type
[differences] on nurses’ ability to safely deliver IV medications. . . . Cochran 
Q tests were followed by pairwise comparisons (using Bonferroni correction) be-
tween different combinations of pump types using the McNemar test. . . . There
was a significant difference in the resolution of patient ID errors across pumps

The number of nurses (out of 24) who
remedied patient identification errors was significantly higher with the barcode
pump (21 (88%)) than with the traditional pump (11 (46%)) or the smart pump (14
(58%)). The difference between the traditional pump and the smart pump, however,
was not significant.

Source: Trbovich, P. L., Pinkney, S., Cafazzo, J. A., & Easty, A. C. (2010). The impact of 
traditional and smart pump administration performance on nurse medication in a simulated 
infusion technology. Quality and Safety in Health Care, 19, 430–434.

[Cochran Q = 14.36; df = 2; p 6 0.05].

x2

In the study associated with Excerpt 17.21, the null hypothesis for Cochran’s
Q test could be stated as where each P stands for the population
percentage of nurse trainees, using one of the three pumps, who remedied a patient
ID problem. As you can see, the Cochran Q test led to a rejection of this null 
hypothesis. From a statistical point of view, the three sample percentages—88 percent,
46 percent, and 58 percent—were further apart than would be expected by chance.

H0: P1 = P2 = P3,
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When Cochran’s test leads to a rejection of the omnibus null hypothesis, the
researcher will probably conduct a post hoc investigation. Within this follow-up
investigation, researchers most likely will set up and test pairwise comparisons
using McNemar’s test. This is what happened in Excerpt 17.21. Note that the Bon-
ferroni adjustment was used in conjunction with the three McNemar tests that were
conducted.

The Use of z-Tests When Dealing with Proportions

As you may recall from Chapter 10, researchers sometimes use a z-test (rather than
a t-test) when their studies are focused on either the mean of one group or the means
of two comparison groups. It may come as a surprise that researchers sometimes
apply a z-test when dealing with dependent variables that are qualitative rather than
quantitative in nature. Be that as it may, you are likely to come across cases where
a z-test has been used by researchers when their data take the form of proportions,
percentages, or frequencies.

If a researcher has a single group that is measured on a dichotomous depen-
dent variable, the data can be analyzed by a one-sample chi-square test or by a
z-test. The choice here is immaterial, because these two tests are mathematically
equivalent and always lead to the same data-based p-value. The same thing holds
true for the case where a comparison is made between two unrelated samples. Such
a comparison can be made with an independent-samples chi-square test or a z-test;
the p-value of both tests will be the same.

Whereas the z-tests we have just discussed and the chi-square tests covered
earlier (for the cases of a dichotomous dependent variable used with a single sam-
ple or two independent samples) are mathematically equivalent, there is another
z-test that represents a large sample approximation to some of the tests examined
in earlier sections of this chapter. To be more specific, researchers sometimes use a
z-test, if they have large samples, in places where you might expect them to use a
sign test, a binomial test, or a McNemar test. In Excerpts 17.22 and 17.23, we see
two examples of a z-test being used in connection with test procedures considered

EXCERPTS 17.22–17.23 • Use of z-Tests with Percentages

A sign test confirmed that participants cooperated significantly more often when
their partner was displaying an enjoyment smile than when she was displaying a
non-enjoyment smile 

Source: Johnston, L., Miles, L., & Macrae, C. N. (2010). Why are you smiling at me? Social
functions of enjoyment and non-enjoyment smiles. British Journal of Social Psychology,
49(1), 107–127.

1Z = 2.07, p 6 0.052.

(continued )
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in this chapter. In the first of these excerpts, a large-sample approximation to the
sign test was used. In Excerpt 17.23, a large-sample approximation to the binomial
test was used.

A Few Final Thoughts

As you have seen, a wide variety of test procedures have been designed for situa-
tions where data take the form of frequencies, percentages, or proportions. Despite
the differences among these tests (in terms of their names, the number of groups in-
volved, and whether repeated measures are involved), there are many commonali-
ties that cut across the tests we have considered. These commonalities exist because
each of these tests involves the computation of a data-based p-value that is then used
to evaluate a null hypothesis.

In using the procedures considered in this chapter within an applied research
study, a researcher follows the various steps of hypothesis testing. Accordingly,
many of the side issues dealt with in Chapters 7 and 8 are relevant to the proper use
of any and all of the tests we have just considered. In an effort to help you keep
these important concerns in the forefront of your consciousness as you read and
evaluate research reports, I feel obliged to conclude this chapter by considering a
few of these more generic concerns.

My first point is simply a reiteration that the data-based p-value is always
computed on the basis of a tentative belief that the null hypothesis is true. Accord-
ingly, the statistical results of a study are always tied to the null hypothesis. If the
researcher’s null hypothesis is silly or articulates something that no one would de-
fend or expect to be true, then the rejection of regardless of how impressive the
p-value, does not signify an important finding.

If you think that this first point is simply a “straw man” that has no connec-
tion to the real world of actual research, consider this real study that was conducted
not too long ago. In this investigation, chi-square compared three groups of teach-
ers in terms of the types of instructional units they used. Two kinds of data were
collected from the teachers: (1) their theoretical orientation regarding optimal

H0,

For the group comparison of men versus women we used a binomial test procedure.
. . . Because of the large sample size, we used a normal approximation to the binomial
distribution.

Source: Maarsingh, O. R., Dros, J., Schellevis, F. G., van Weert, H. C., Bindels, P. J., & van
der Horst, H. E. (2010). Dizziness reported by elderly patients in family practice: Prevalence,
incidence, and clinical characteristics. BMC Family Practice, 11(2), 1–9.

EXCERPTS 17.22–17.23 • (continued)
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teaching-learning practices and (2) what they actually did when teaching. The
results indicated that skill-based instructional units tended to be used more by
teachers who had a skill-based theoretical orientation, that rule-based instructional
units were used more so by teachers who had a rule-based theoretical orientation,
and that function-based instructional units were utilized to a greater extent by teachers
who possessed a function-based theoretical orientation. Are you surprised that this
study’s data brought forth a rejection of the chi-square null hypothesis of no rela-
tionship between teachers’ theoretical orientation and type of instructional unit
used? Was a study needed to reach this finding?

My second point is that the chances of a Type I error increase above the
researcher’s nominal level of significance in the situation where multiple null hypothe-
ses are evaluated. Although there are alternative ways of dealing with this potential
problem, you are likely to see the Bonferroni technique employed most often to
keep control over Type I errors. In Excerpt 17.21, we saw a case in which the level
of significance was adjusted (and made more rigorous) because the McNemar’s test
was used three times in a post hoc investigation. Keep this good example in mind
as you encounter research reports in which several null hypotheses are evaluated by
means of the test procedures considered in this chapter. If the researchers associ-
ated with such reports give no indication that they attended to the inflated Type I
error-rate problem, accept their claims of statistical significance with a grain of salt.

My third point concerns the distinction between statistical significance and
practical significance. As I hope you recall from our earlier discussions, it is possi-
ble for to be rejected, with an impressive data-based p-value (e.g., ),
even though the computed sample statistic does not deviate much from the value of
the parameter expressed in I also hope you remember my earlier contention that
conscientious researchers either design their studies or conduct a more complete
analysis of their data with an eye toward avoiding the potential error of figuratively
making a mountain out of a molehill.

There are several ways researchers can demonstrate sensitivity to the distinc-
tion between practical significance and statistical significance. In our examination
of t-tests, F-tests, and tests on correlation coefficients, we have seen that these op-
tions include either (1) conducting, in the design phase of the investigation, a power
analysis so as to determine the proper sample size; or (2) calculating, after the data
have been collected, an effect size estimate. These two options are as readily avail-
able to researchers who use the various test procedures covered in this chapter as
they are to those who conduct t-tests, F-tests, or tests involving one or more corre-
lation coefficients.

The main statistical technique discussed in this chapter was chi-square. To
judge whether a computed chi-square-based effect is small, medium, or large, re-
searchers usually convert their computed value of into phi or Cramer’s V. In
Excerpt 17.24, we see a case where V was used to estimate the effect size in the
populations associated with a contingency table. In this study, the research
participants were the characters in coloring books, each being a male or female. The

2 * 3

x2

H0.

p 6 .0001H0
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other variable concerned the activity of each character depicted in the coloring book
(and whether the activity was traditionally feminine, traditionally masculine, or
gender-neutral).

In the final sentence of Excerpt 17.24, the researchers report that the effect
they found was “large.” This comment was not based on p turning out to be
smaller than .001. Instead, the value of V was compared against some widely used
criteria for evaluating the Cramer’s V. For ease of reference, Table 17.4 contains
the standard criteria for judging V as well as two other estimates of effect size:
phi and w.

In Excerpt 17.25, we see an example of an a priori power analysis that was
conducted in conjunction with a study using chi-square. There was a clear advan-
tage of doing this kind of power analysis in the design phase of the ulcer investiga-
tion. By determining the sample sizes after considering several statistical components
of their planned analysis (e.g., level of significance, desired power, and the dividing
point between a trivial versus an important finding), the researchers set up their

TABLE 17.4 Effect Size Criteria for Use with Tests on Frequencies

Effect Size Measure Small Medium Large

Cramer’s V .10 .30 .50
Phi .10 .30 .50
w .10 .30 .50

Note: The standards for judging relationship strength are quite general and should be changed to fit the
unique goals of any given research investigation.

EXCERPT 17.24 • Chi-Square with Cramer’s V Used as an Estimate 
of Effect Size

Of the 436 males, 44% engaged in stereotypic behaviors and only 3% in cross-gender
behaviors. Interestingly, 53% of the males engaged in gender-neutral behaviors. Thus,
males were more likely to engage in gender neutral behaviors than male stereotypic
ones, partially refuting our second hypothesis in which we expected both genders to
be depicted predominately in gender-stereotypic behaviors. Of the 306 females, 58%
engaged in female-stereotypic behaviors and 6% in crossgender behaviors. In com-
parison to the 53% of males engaging in gender-neutral behaviors, only 32% of
females did. Thus, females were more likely to engage in female stereotypic behavior
than either of the other types of behavior. This overall pattern of differences in depic-
tions of gender stereotypes was significant; 
This effect was large 

Source: Fitzpatrick, M. J., & McPherson, B. J. (2010). Coloring within the lines: Gender
stereotypes in contemporary coloring books. Sex Roles, 62(1–2), 127–137.

1Cramer’s V = .65, p 6 .0012.
x212, N = 7422 = 310.04, p 6 .001.
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study so that the chances were minimal that they would either (1) end up with sta-
tistical significance but not practical significance or (2) end up without statistical
significance when a meaningful effect existed in the study’s populations. I salute
these researchers for having conducted their a priori power analysis!

EXCERPT 17.25 • A Power Analysis to Determine the Needed Sample Size

A power analysis was performed on the basis of a recent pilot study of our group,
where the effect size w was 0.39 regarding healing. This revealed the
necessity to include 52 ulcers to ascertain a difference between the two groups with
a power of 0.8 at a two-sided Fifty-five patients completed the study
protocol; 28 (50.9%) in the stocking and 27 (49.1%) in the bandage group.

Source: Brizzio, E., Amsler, F., Lun, B., & Blättler, W. (2010). Comparison of low-strength
compression stockings with bandages for the treatment of recalcitrant venous ulcers. Journal
of Vascular Surgery, 51(2), 410–416.

P 6 .05. . . .

12x2>N2
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In Chapter 17, we examined a variety of test procedures designed for data that are
qualitative, or nominal, in nature. Whether dealing with frequencies, percentages,
or proportions, those tests involved response categories devoid of any quantitative
meaning. For example, when a chi square test was used in Excerpt 17.10 with data
from fifth-graders who threw darts for the first time, neither the grouping variable
(defined by the goals the students were told to focus on) nor the response variable
(reasons why they missed the bulls-eye) involved categories that had any numeri-
cal meaning.

We now turn our attention to a group of test procedures that utilize the sim-
plest kind of quantitative data: ranks. In a sense, we are returning to this topic
(rather than starting from scratch), because in Chapter 9, I pointed out how re-
searchers can set up and evaluate null hypotheses concerning Spearman’s rho and
Kendall’s tau. As I hope you recall from Chapter 3, each of these correlational pro-
cedures involves an analysis of ranked data.

Within the context of this chapter, we consider five of the many test procedures
that have been developed for use with ordinal data: the median test, the Mann–Whitney
U test, the Kruskal–Wallis one-way analysis of variance of ranks, the Wilcoxon
matched-pairs signed-ranks test, and the Friedman two-way analysis of variance of
ranks. Most people refer to these statistical tools as nonparametric test procedures.1

The five tests considered in this chapter are not the only ones that involve ranked
data, but they are the ones used most frequently by applied researchers. Because
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1The term nonparametric is simply a label for various test procedures that involve ranked data. In contrast,
the term parametric is used to denote those tests (e.g., t, F) that are built on a different statistical view of the
data—and usually a more stringent set of assumptions regarding the population(s) associated with the study’s
sample(s).



these five tests are used so often, we examine each one separately in an effort to
clarify the research setting for which each test is appropriate, the typical format
used to report the test’s results, and the proper meaning of a rejected null hypothe-
sis. First, however, we must consider the three ways in which a researcher can
obtain the ranked data needed for any of the five tests.

Obtaining Ranked Data

One obvious way for a researcher to obtain ranked data is to ask each research par-
ticipant to rank a set of objects, statements, ideas, or other things. When this is done,
numbers get attached to the things by each person doing the ranking, with the num-
bers 1, 2, 3, and so on used to indicate an ordering from best to worst, most im-
portant to least important, strongest to weakest, and the like. The resulting numbers
are ranks.2

In Excerpt 18.1, we see a case where ranks were used in a research study. In
the study associated with this excerpt, the researchers collected survey data from a
random sample of 1,076 Finnish adolescents. The researchers’ goal was to better
understand the lifestyle, values, and behavior of the target group. Several of the sur-
vey’s questions asked the adolescents to rank a set of items listed by the researchers.
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EXCERPT 18.1 • Obtaining Ordinal Data by Having People Rank a Set
of Things

One question in our survey was “Which qualities/characteristics do you prefer most?”
There were 16 characteristics [e.g., having friends, honesty, brand name clothes] that
students had to rank in order from 1 (most important) to 16 (least important) that
they valued most.

Source: Soininen, M., & Merisuo-Storm, T. (2010). The life style of the youth, their every day
life and relationships in Finland. Procedia Social and Behavioral Sciences, 2(2), 1665–1669.

A second way for a researcher to obtain ranks is to observe or arrange the
study’s participants such that each one has an ordered position within the group. For
example, we could go to the Boston Marathon, stand near the finish line while hold-
ing a list of all contestants’ names, and then record each person’s standing (first,
second, third, or whatever) as he or she completes the race. Or, we might go into a

2Ranks are often confused with ratings. Ranks indicate an ordering of things, with each number generated by
having a research participant make a relative comparison of the things being ranked. Ratings, however, in-
dicate amount, and they are generated by having a research participant make an independent evaluation of
each thing being rated (perhaps on a 0 to 100 scale).
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classroom, ask the students to line up by height, and then request that the students
count off beginning at the tall end of the line.3 In Excerpt 18.2, we see an example
of this method for obtaining ranks.

3Although none of the tests discussed in this chapter could be applied to just the ranks obtained in our run-
ning or line-up-by-height examples, two of the tests could be used if we simply classified each subject into
one of two or more subgroups (e.g., gender) in addition to noting his or her order on the running speed or
height variable.

EXCERPT 18.2 • Obtaining Ordinal Data by Noting the “Order of Finish”

Three researchers were present in the room. One researcher was blind to the purpose
of the experiment and instructed to catch all the birds as quickly as possible using a
large, padded net. This researcher caught the birds in all trials. The second researcher
took the birds out of the net and returned them to their cages, and the third researcher
recorded the identification numbers and order captured. After all birds were captured
they were returned to their colony rooms. One week later, this procedure was repeated
with the same [birds]. . . . We used Spearman correlations to assess ‘repeatability’
[because] our dependant measure is a rank order.

Source: Guillette, L. M., Bailey, A. A., Reddon, A. R., Hurd, P. L., & Sturdy, C. B. (2010). A
brief report: Capture order is repeatable in chickadees. International Journal of Comparative
Psychology, 23(2), 216–224.

EXCERPT 18.3 • Converting More Refined Measurements into Ranks

The United Kingdom Clinical Aptitude Test (UK-CAT) was introduced for the pur-
pose of student selection by a consortium of 23 UK University Medical and Dental
Schools, including the University of Aberdeen. . . . The applicants [to UoA] were
ranked on the basis of UK-CAT score.

Source: Fernando, N., Prescott, G., Cleland, J., Greaves, K., & McKenzie, H. (2009). A com-
parison of the United Kingdom Clinical Aptitude Test (UK-CAT) with a traditional admission
selection process. Medical Teacher, 31(11), 1018–1023.

The third way for a researcher to obtain ranks involves a two-step process.
First, each participant is independently measured on some variable of interest with
a measuring instrument that yields a score indicative of that person’s absolute stand-
ing with respect to the numerical continuum associated with the variable. Then, the
scores from the group of participants are compared and converted into ranks to in-
dicate each person’s relative standing within the group.

In Excerpt 18.3, we see a case in which this two-step process was used. Ranks
were used in this study because the researchers wanted to see if the “top” applicants to
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the University of Aberdeen (UoA) medical school fare well on both the standardized
entrance examination—used throughout the United Kingdom—and the University’s
own applicant evaluation criteria. In the year the study was conducted, there were 1,538
applicants. Surprisingly, only 101 of the 314 applicants admitted to UoA’s medical
school were among the 318 most-qualified applicants based on the entrance exam.

Reasons for Converting Scores on a Continuous Variable into Ranks

Sometimes, as in the study associated with Excerpt 18.3, raw scores are converted
into ranks because the core essence of the research question involves ranks. In most
cases, however, that is not the reason why researchers engage in the two-step, data-
conversion process whereby scores on a variable of interest are converted into
ranks. Because the original scores typically are interval or ratio in nature, whereas
the ranks are ordinal, such a conversion might appear to be ill-advised in that it
brings about a loss of information. There are, however, three reasons why re-
searchers might consider the benefits associated with the scores-to-ranks conversion
to outweigh the loss-of-information liability.

One reason why researchers often change raw scores into ranks is that the test
procedures developed for use with ranks involve fewer assumptions than do the test
procedures developed for use with interval- or ratio-level data. For example, the as-
sumptions of normality and homogeneity of variance that underlie t- and F-tests do not
serve as the basis for some of the tests considered in this chapter. As Excerpts 18.4
and 18.5 make clear, researchers sometimes convert their raw scores into ranks 
because the original data involved nonnormality or heterogeneity of variance.

EXCERPTS 18.4–18.5 • Nonnormality and Heterogeneous Variances as
Reasons for Converting Scores to Ranks

Differences in reported time spent online for fertility issues versus cancer issues
were tested with nonparametric methods (Wilcoxon signed-rank tests) because of
the observed skewness of the distribution of reported times.

Source: Meneses, K., McNees, P., Azuero, A., & Jukkala, A. (2010). Development of the Fer-
tility and Cancer Project: An Internet approach to help young cancer survivors. Oncology
Nursing Forum, 37(2), 191–197.

[T]he assumption of homogeneity of variance failed for all variables, as the Levene’s
tests turned out to be significant. Because parametric testing was not justified, non-
parametric tests (Kruskal-Wallis) were conducted.

Source: Terband, H., Maassen, B., Guenther, F. H., & Brumberg, J. (2009). Computational
neural modeling of speech motor control in childhood apraxia of speech (CAS). Journal of
Speech, Language & Hearing Research, 52(6), 1595–1609.



438 Chapter 18

A second reason why researchers convert raw scores to ranks is related to the
issue of sample size. As you may recall, t- and F-tests tend to be robust to viola-
tions of underlying assumptions when the samples being compared are the same
size and large. When the ns differ or are small, however, nonnormality or hetero-
geneity of variance in the population(s) can cause the t- or F-test to function dif-
ferently than intended. For this reason, some researchers turn to one of the five test
procedures discussed in this chapter if they have small samples or if their ns differ.
In Excerpt 18.6, we see a case where concerns about sample size prompted the
researchers to use nonparametric tests.

EXCERPT 18.6 • Sample Size as a Reason for Converting Scores to Ranks

Six elite sprint cross-country skiers from the Austrian national and student natio-
nal teams (mean yr, body body height

) volunteered to participate in the study. . . . Owing to the subject size
[i.e., sample size], nonparametric statistical techniques were adopted in the present
study.

Source: Stoggl, T., Kampel, W., Muller, E., & Lindinger, S. (2010). Double-push skating
versus V2 and V1 skating on uphill terrain in cross-country skiing. Medicine and Science in
Sports and Exercise, 42(1), 187–196.

= 181 ; 8 cm
weight = 77 ; 6 kg,age = 27 ; 4

Regarding sample size, it is legitimate to ask the simple question, “When are
samples so small that parametric tests should be avoided even if the ns are equal?”
Unfortunately, there is no clear-cut answer to this question because different math-
ematical statisticians have responded to this query with conflicting responses.
According to one point of view, nonparametric tests should be used if the sample
size is 6 or less, even if all samples are the same size. A different point of view holds
that parametric tests can be used with very small samples as long as the ns do not
differ. I mention this controversy simply to alert you to the fact that some re-
searchers use nonparametric tests because they have small sample sizes, even
though the ns are equal.

The third reason for converting raw scores to ranks is related to the fact that
raw scores sometimes appear to be more precise than they really are. In other words,
a study’s raw scores may provide only ordinal information about the study’s par-
ticipants even though the scores are connected to a theoretical numerical continuum
associated with the dependent variable. In such a case, it is improper to treat the raw
scores as if they indicate the absolute distance that separates any two participants
that have different scores, when in fact the raw scores only indicate, in a relative
sense, which person has more of the measured characteristic than the other.

Consider, for example, the popular technique of having participants respond
to a Likert-type attitude inventory. With this kind of measuring device, the 
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respondent indicates a level of agreement or disagreement with each of several
statements by selecting one of several options that typically include “Strongly
Agree” and “Strongly Disagree” on the ends. In scoring a respondent’s answer
sheet, consecutive integers are typically assigned to the response options (e.g., 1, 2,
3, 4, 5) and then the respondent’s total score is obtained by adding together the in-
dividual scores earned on each of the inventory’s statements. In this fashion, two
people in a study might end up with total scores of 32 and 29.

With Likert-type attitude inventories, the total scores derived from the partic-
ipant responses are probably only ordinal in nature. For one thing, the arbitrary as-
signment of consecutive integers to the response options does not likely correspond
to any participant’s view of how the response options relate to another. Moreover,
it is probably the case that certain of the inventory’s statements are more highly con-
nected than others to one’s reason for holding a positive or negative attitude toward
the topic being focused on—yet all statements are equal in their impact on a re-
spondent’s total score. For these reasons, it is not very plausible to presume that the
resulting total scores possess the characteristic of equal intervals that is embodied
in interval (and ratio) levels of measurement.

Excerpts 18.7 and 18.8 illustrate how a concern for level of measurement
sometimes prompts researchers to use nonparametric tests. The word ordinal that
we see in these excerpts was used because data in the studies came from Likert-type
scales. However, other kinds of data can be ordinal if the measurement scale lacks
the quality of equal intervals. (Rulers and thermometers yield numbers on a scale
that has equal intervals because a difference of 2 inches or 10° means the same thing
anywhere along the scale; in contrast, the numbers associated with most psycho-
logical inventories are not characterized by equal intervals.) For example, the research

EXCERPTS 18.7–18.8 • “Scale” Reasons for Treating Data as Ordinal 
in Nature

Nonparametric analyses (Mann–Whitney U test and Wilcoxon signed-ranks test)
were used for analyses comparing the TBI and control group data [because] the item
response format for individual items yields ordinal, not ratio, data.

Source: Douglas, J. M. (2010). Relation of executive functioning to pragmatic outcome 
following severe traumatic brain injury. Journal of Speech, Language & Hearing Research,
53(2), 365–382.

Because the data were ordinal, a Kruskal-Wallis test was done to assess for any
differences in ease of observation among the 3 types of dressings.

Source: McIe, S., Petitte, T., Pride, L., Leeper, D., & Ostrow, C. L. (2009). Transparent film
dressing vs. pressure dressing after percutaneous transluminal coronary angiography. American
Journal of Critical Care, 18(1), 14–20.
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participants in the study associated with Excerpt 18.7 were classified into nine dis-
ability levels with these labels: none, mild, partial, moderate, moderately severe, se-
vere, extremely severe, vegetative state, and extreme vegetative state. These
categories had increasing levels of disability, but they were not characterized by the
notion of equal intervals.

Now that we have considered how and why a researcher might end up with
ranked data, let’s take a look at each of the five test procedures that deserve the label
popular nonparametric test. As noted earlier, these test procedures are the median test,
the Mann–Whitney U test, the Kruskal–Wallis one-way ANOVA, the Wilcoxon
matched-pairs signed-ranks test, and the Friedman two-way ANOVA. In looking at
each of these test procedures, I want to focus our attention on the nature of the research
setting for which the test is appropriate, the way in which the ranked data are used, the
typical format for reporting results, and the meaning of a rejected null hypothesis.

The Median Test

The median test is designed for use when a researcher wishes to compare two or
more independent samples. If two such groups are compared, the median test is a
nonparametric analog to the independent-samples t-test. With three or more groups,
it is the nonparametric analog to a one-way ANOVA.

A researcher might select the median test in order to contrast two groups
defined by a dichotomous characteristic (e.g., male versus female, experimental
versus control) on a dependent variable of interest (e.g., throwing ability, level of
conformity, or anything else the researcher wishes to measure). Or, the median test
might be selected if the researcher wishes to compare three or more groups (that
differ in some qualitative fashion) on a measured dependent variable. An example
of this latter situation might involve comparing football players, basketball players,
and baseball players in terms of their endurance while riding a stationary bicycle.

The null hypothesis of the two-group version of the median test can be stated
as where the abbreviation Mdn stands for the median in the pop-
ulation and the numerical subscripts serve to identify the first and second popula-
tions. If three or more groups are compared using the median test, the null
hypothesis takes the same form except that there would be additional Mdns involved
in The alternative hypothesis says that the two Mdns differ (if just two groups
are being compared) or that at least two of the Mdns differ (in the situation in which
three or more groups are being contrasted).

To conduct a median test, the researcher follows a simple three-step proce-
dure. First, the comparison groups are temporarily combined and a single median
is determined for the entire set of scores. (This step necessitates that ranks be as-
signed either to all participants or at least to those who are positioned near the mid-
dle of the pack.) In the second step, the comparison groups are reconstituted so that
a contingency table can be set up to indicate how many people in each comparison

H0.

H0: Mdn1 = Mdn2,
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group lie above and below the grand median identified in the first step. This con-
tingency table has as many columns as there are comparison groups, but it always
has two rows (one labeled above the median, the other labeled below the median).
Finally, an independent-samples chi-square test is applied to the data in the contin-
gency table to see if the samples differ (in the proportion of cases falling above the
combined median) by more than what would be expected by chance alone, pre-
suming that is true.

In Excerpt 18.9, we see a case where a median test was used in a study of 604
men who were concerned with hair loss. Of the full group, 321 of the research partic-
ipants had consulted a doctor about their hair loss problem; the other 283 men had not
yet sought out medical help but were planning to do so. These two groups were com-
pared in terms of how many self-treatments—such as vitamins, special shampoo, and
over-the-counter medications—had been tried. The symbol is in the excerpt because
the median test involved analyzing the study’s data via a contingency table.2 * 2

x2

H0

EXCERPT 18.9 • The Median Test Used to Compare Two Groups

Regarding self-treatments prior to medical consultation, respondents were provided
a list of 27 possible treatments, including specific prescription and nonprescription
medicines, alternative treatments (e.g., vitamins, shampoos, etc.), and at-home de-
vices (e.g., laser comb, wig, etc.). . . . Men reported a median of two to three such
treatments, with more prior treatments reported by men who had not yet consulted a
doctor but were likely to so in the near future ( median test ).

Source: Cash, T. F. (2009). Attitudes, behaviors, and expectations of men seeking medical
treatment for male pattern hair loss: Results of a multinational survey. Current Medical 
Research and Opinion, 25(7), 1811–1820.

= 26.30, p 6 0.001x2

In the study associated with Excerpt 18.9, perhaps the researchers set up the
contingency table so that the columns corresponded with the groups (seen a doctor:
yes or no) and the rows corresponded to being above or below the grand median,
with each of the 604 men positioned in one of the four cells. If the two frequencies
in each column had been about the same, the null hypothesis would have been re-
tained. However, the actual frequencies in the contingency table produced a statis-
tically significant value for chi square, with a greater-than-chance number of people
from the yet-to-see-a-doctor group positioned above the grand median (and a
greater-than-chance number of people from the other group below that median).

Excerpt 18.9 is instructive because the fourth word in the second sentence is
median. Note that this is singular, not plural. Many people mistakenly think that a me-
dian test involves a statistical comparison of two sample medians to see if they are far
enough apart from each other to permit a rejection of However, there is only one
sample median involved in a median test (the grand median based on the data from

H0.



442 Chapter 18

all groups), and the statistical question being asked is whether the comparison groups
differ significantly in terms of the percentage of each group that lies above this sin-
gle median. Given any set of scores, it would be possible to change a few scores and
thereby change the group medians (making them closer together or further apart)
without changing the median test’s calculated value or p. To me, this constitutes proof
that the median test is not focusing on the individual medians of the two samples.

As mentioned earlier, the median test can compare two groups or more than
two groups. In Excerpt 18.10, we see a case where the median test was used to com-
pare three groups. These three groups were patients with leg ulcers who received
different treatments to help them heal. The median test did not produce a statisti-
cally significant result when the groups were compared in terms of the dependent
variable, healing time.

4This test is also referred to as the Wilcoxon test, the Wilcoxon rank-sum test, and the Wilcoxon–Mann–
Whitney test.

EXCERPT 18.10 • The Median Test Used to Compare Three Groups

An open, randomized, prospective, single-center study was performed in order to
determine the healing rates of VLU [venous leg ulcers] when treated with different
compression systems and different sub-bandage pressure values. . . . To compare
the median healing times from the three groups, a median test was performed. . . .
Median healing time in group A was 12 weeks (range, 5–24 weeks), 11 weeks
(range, 3–25 weeks) in group B, and 14 weeks (range, 5–24 weeks) in group C
(median test: ).

Source: Milic, D. J., Zivic, S. S., Bogdanovic, D. C., Jovanovic, M. M., Jankovic, R. J., Milose-
vic, Z. D., et al. (2010). The influence of different sub-bandage pressure values on venous leg
ulcers healing when treated with compression therapy. Journal of Vascular Surgery, 51(3),
655–661.

P 7 .05

There is one final point to be made about the median test. You may see or hear
the terms Mood’s median test and Levene’s median test. The first of these is the test
we have been considering, and the name of its inventor is sometimes used when re-
ferring to this statistical procedure. Levene’s median test is altogether different; it
is a parametric test used to compare samples in terms of their variances.

The Mann–Whitney U Test

The Mann–Whitney U test4 is like the two-sample version of the median test in
that both tests allow a researcher to compare two independent samples. Although
these two procedures are similar in that they are both considered to be nonpara-
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metric tests, the Mann–Whitney U test is the more powerful of the two. In other
words, if the two comparison groups truly do differ from each other, the
Mann–Whitney U test (as compared to the median test) is less likely to produce a
Type II error. This superiority of the Mann–Whitney test comes about because it
utilizes more information from the data than does the median test.

When using the Mann–Whitney U test, the researcher examines the scores of
the research participants on the variable of interest. Initially, the two comparison
groups are lumped together. This is done so that each person can be ranked to reflect
his or her standing within the combined group. After the ranks have been assigned,
the researcher reconstitutes the two comparison groups. The previously assigned
ranks are then examined to see if the two groups are significantly different.

If the two samples being compared come from identical populations, then the
sum of ranks in one group ought to be approximately equal to the sum of ranks in
the other group. For example, if there were four people in each sample and if 
were true, we would not be surprised if the ranks in one group were 2, 4, 5, and 8
whereas the ranks in the other group were 1, 3, 6, and 7. Here, the sum of the ranks
are 19 and 17, respectively. It would be surprising, however, to find (again assum-
ing that is true) that the sum of the ranks are 10 and 26. Such an extreme out-
come would occur if the ranks of 1, 2, 3, and 4 were located in one of the samples
whereas the ranks of 5, 6, 7, and 8 were located in the other sample.

To perform a Mann–Whitney U test, the researcher computes a sum-of-ranks
value for each sample and then inserts these two numerical values into a formula. It
is not important for you to know what that formula looks like, but it is essential that
you understand the simple logic of what is going on. The formula used to analyze the
data produces a calculated value called U. Based on the value of U, the researcher (or
a computer) can then derive a p-value that indicates how likely it is, under , to have
two samples that differ as much or more than do the ones actually used in the study.
Small values of p, of course, are interpreted to mean that is unlikely to be true.

In Excerpt 18.11, we see a case in which the Mann–Whitney U test was used
to compare the amount of alcohol consumed by two groups of college students. 

H0

H0

H0

H0

EXCERPT 18.11 • The Mann-Whitney U Test

A Mann-Whitney U test was used to compare the difference between the mean alco-
hol consumption scores at the 2 institutions. The Mann-Whitney U was used as a sub-
stitute for a Student t test because the assumption of the normality of the distribution
alcohol consumption scores is questionable. . . . The mean alcohol consumption for
the students at the religious institution was 11.9 drinks in the 30 days
prior to the survey, which was significantly lower than the drinks
per 30 days for students attending the secular university 

Source: Wells, G. M. (2010). The effect of religiosity and campus alcohol culture on collegiate
alcohol consumption. Journal of American College Health, 58(4), 295–304.

1U = -7.55, p 6 .052.
26.9 1SD = 53.12

1SD = 27.62
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Although the means of the two samples appear in this excerpt, the test’s calculated
value, U, was based on the sum of ranks.

Although it is quite easy for a researcher to obtain a calculated value for U
from the sample data and to compare that data-based number against a tabled crit-
ical value, the task of interpreting a statistically significant result is a bit more dif-
ficult, for two reasons. First, the null hypothesis being tested deals not with the
ranks used to compute the calculated value but rather with the continuous variable
that lies behind or beneath the ranks. For example, if we used a Mann–Whitney U
test to compare a sample of men against a sample of women with respect to their
order of finish after running a 10-kilometer race, the data collected might very well
simply be ranks, with each person’s rank indicating his or her place (among all con-
testants) on crossing the finish line. The null hypothesis, however, would deal with
the continuous variable that lies beneath the ranks, which in our hypothetical study
is running speed.

The second reason why statistically significant results from Mann–Whitney
U tests are difficult to interpret is related to the fact that the null hypothesis says
that the two populations have identical distributions. Consequently, rejection of 
could come about because the populations differ in terms of their central tenden-
cies, their variabilities, or their distributional shapes. In practice, however, the
Mann–Whitney test is far more sensitive to differences in central tendency, so a
statistically significant result is almost certain to mean that the populations have
different average scores. But even here, an element of ambiguity remains because
the Mann–Whitney U test could cause to be rejected because the two popula-
tions differ in terms of their means, or in terms of their medians, or in terms of
their modes.

In the situation where the two populations have identical shapes and vari-
ances, the Mann–Whitney U test focuses on means, and thus How-
ever, applied researchers rarely know anything about the populations involved in
their studies. Therefore, most researchers who find that their Mann–Whitney U test
yields a statistically significant result legitimately can conclude only that the two
populations probably differ with respect to their averages. Another way of drawing
a proper conclusion from a Mann–Whitney U test that causes to be rejected is
to say that the scores in one of the populations tend to be larger than scores in the
other population. This statement could only be made in a tentative fashion, how-
ever, because the statistically significant finding might well represent nothing more
than a Type I error.

With most of the tests we have considered so far (such as t-tests, F-tests,
and chi-square tests), large calculated values cause the p-level to be small
whereas small calculated values cause p to be large. With the Mann–Whitney U
test, however, there is a direct relationship between p and U. With this nonpara-
metric test, it is small rather than large values of U that make the sample 
data improbable when compared to what we would expect if the null hypothesis
were true.

H0

H0: m1 = m2.

H0

H0
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The Kruskal–Wallis H Test

In those situations in which a researcher wishes to use a nonparametric statistical
test to compare two independent samples, the Mann–Whitney U test is typically
used to analyze the data. When researchers wish to compare three or more such
groups, they more often than not utilize the Kruskal–Wallis H test. Hence, the
Kruskal–Wallis procedure can be thought of as an extension of the Mann–Whitney
procedure in the same way that a one-way ANOVA is typically considered to be an
extension of an independent-samples’ t-test.5

The fact that the Kruskal–Wallis test is like a one-way ANOVA shows through
when one considers the mathematical derivation of the formula for computing the
test’s calculated value. On a far simpler level, the similarity between these two test
procedures shows through when we consider their names. The parametric test we
considered in Chapter 11 is called a one-way ANOVA whereas the nonparametric
analog to which we now turn our attention is called the Kruskal–Wallis one-way
ANOVA of ranks.

The Kruskal–Wallis test works very much as the Mann–Whitney test does.
First, the researcher temporarily combines the comparison groups into a single
group. Next, the people in this one group are ranked on the basis of their perfor-
mance on the dependent variable. Then, the single group is subdivided so as to
reestablish the original comparison groups. Finally, each group’s sum of ranks is
entered into a formula that yields the calculated value. This calculated value, in the
Kruskal–Wallis test, is labeled H. When the data-based H beats the critical value or
when the p-value associated with H turns out to be smaller than the level of signif-
icance, the null hypothesis is rejected.

In Excerpts 18.12 and 18.13, we see two examples of the Kruskal–Wallis test
being used in applied studies. In the first of these excerpts, three groups of parents

5When just two groups are compared, the ANOVA F-test and the independent-samples t-test yield identical
results. In a similar fashion, the Kruskal–Wallis and Mann–Whitney tests are mathematically equivalent when
used to compare two groups.

EXCERPTS 18.12–18.13 • The Kruskal–Wallis H Test

Quantitative analyses substantiated racial/ethnic differences; black parents placed
significantly higher demands on children for the amounts (
Kruskal–Wallis) and types ( Kruskal–Wallis) of food eaten
compared to parents of other races/ethnicities.

Source: Ventura, A. K., Gromis, J. C., & Lohse, B. (2010). Feeding practices and styles used
by a diverse sample of low-income parents of preschool-age children. Journal of Nutrition 
Education and Behavior, 42(4), 242–249.

H = 8.39, 2 df, P 6 .01;
H = 5.89, 2 df, P 6 .05;

(continued )
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were compared separately on two different dependent variables. We know that
there were three groups because each H test had 2 df. In Excerpt 18.13, we can fig-
ure out that there were four comparison groups by paying attention to the df num-
ber that appears next to letter H. Notice that the full name of this test procedure is
used in Excerpt 18.13, whereas the shortened version of this name is used in
Excerpt 18.12.

The Kruskal–Wallis H test and the Mann–Whitney U test are similar not only
in how the subjects are ranked and in how the groups’ sum-of-ranks values are used
to obtain the test’s calculated value, but also in the null hypothesis being tested and
what it means when is rejected. Technically speaking, the null hypothesis of the
Kruskal–Wallis H test is that the populations associated with the study’s compari-
son groups are identical with respect to the distributions on the continuous variable
that lies beneath the ranks used within the data analysis. Accordingly, a rejection of

could come about because the population distributions are not the same in cen-
tral tendency, in variability, or in shape. In practice, however, the Kruskal–Wallis
test focuses primarily on central tendency.

Although the Mann–Whitney and Kruskal–Wallis tests are similar in many re-
spects, they differ in the nature of the decision rule used to decide whether 
should be rejected. With the Mann–Whitney test, is rejected if the data-based U
turns out to be smaller than the critical value. In contrast, the Kruskal–Wallis is
rejected when the researcher’s calculated H is larger than the critical value. In
Excerpt 18.12, note that the larger of the two calculated values of H is paired with
the smaller of the two p-values.

Whenever the Kruskal–Wallis H test leads to a rejection of there remains
uncertainty as to which specific populations are likely to differ from one another.
In other words, the Kruskal–Wallis procedure functions very much as an omnibus
test. Consequently, when such a test leads to a rejection of the researcher usu-
ally turns to a post hoc analysis so as to derive more specific conclusions from the
data. Within such post hoc investigations, comparison groups are typically com-
pared in a pairwise fashion.

The post hoc procedure used most frequently following a statistically signif-
icant H test is the Mann–Whitney U test. Excerpt 18.14 illustrates the use of the U

H0,

H0,

H0

H0

H0

H0

H0

A comparison of these [pre–post] difference scores between groups with a Kruskal–
Wallis one-way analysis of variance by ranks revealed no significant differences,

Source: Marshall, P., Cheng, P. C.-H., & Luckin, R. (2010). Tangibles in the balance: A dis-
covery learning task with physical or graphical material. Proceedings of the Fourth Interna-
tional Conference on Tangible, Embedded, and Embodied Interaction, 153–160.

H132 = 0.89, p 7 .05.

EXCERPTS 18.12–18.13 • (continued)
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test in post hoc investigation following rejection of the Kruskal–Wallis null 
hypothesis. When used in this capacity, most researchers use the Bonferroni proce-
dure for adjusting the level of significance of each post hoc comparison.

The Wilcoxon Matched-Pairs Signed-Ranks Test

Researchers frequently wish to compare two related samples of data generated by
measuring the same people twice (e.g., in a pre/post sense) or by measuring two
groups of matched individuals just once. If the data are interval or ratio in nature
and if the relevant underlying assumptions are met, the researcher will probably uti-
lize a correlated t-test to compare the two samples. On occasion, however, that kind
of parametric test cannot be used because the data are ordinal or because the t-test
assumptions are untenable (or considered by the researcher to be a nuisance). In
such situations, the two related samples are likely to be compared using the
Wilcoxon matched-pairs signed-ranks test.

In conducting the Wilcoxon test, the researcher (or a computer) must do five
things. First, each pair of scores is examined so as to obtain a change score (for the
case where a single group of people has been measured twice) or a difference score
(for the case where the members of two matched samples have been measured just
once). These scores are then ranked, either from high to low or from low to high.
The third step involves attaching a or a sign to each rank. (In the one-group-
measured-twice situation, these signs indicate whether a person’s second score
turned out to be higher or lower than the first score. In the two-samples-measured-
once situation, these signs indicate whether the people in one group earned higher
or lower scores than their counterparts in the other group.) In the fourth step, the
researcher simply looks to see which sign appears less frequently and then adds up
the ranks that have that sign. Finally, the researcher labels the sum of the ranks that

-+

EXCERPT 18.14 • Use of the Mann–Whitney U Test within a Post 
Hoc Investigation

A Kruskal–Wallis test revealed a significant difference between the [four] student
groups. . . . Mann–Whitney post hoc analyses revealed, as expected, that physics stu-
dents reported significantly less familiarity with self-harm behaviour, than either
medical clinical psychology 
or nursing students However, both nursing and clinical
psychology students reported significantly more familiarity than medical students did
( and respectively).

Source: Law, G. U., Rostill-Brookes, H., & Goodman, D. (2009). Public stigma in health and
non-healthcare students: Attributions, emotions and willingness to help with adolescent self-
harm. International Journal of Nursing Studies, 46(1), 108–119.

U = 310.000, p = 0.004,U = 324.500, p = 0.001

1U = 105.000, p 6 0.0012.
1U = 94.500, p 6 0.00121U = 177.000, p 6 0.0012,
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have the least frequent sign as T, considers T to be the calculated value, and com-
pares T against a tabled critical value.

With computers readily available to do the computations, the researcher has a
much easier task when conducting a Wilcoxon test. The raw data are simply entered
into the computer and then, in a flash, the calculated value appears on the computer
screen. The way many statistics programs are set up, this calculated value for the
Wilcoxon test is a z-score rather than a numerical value for T.

In Excerpt 18.15, we see a case in which the Wilcoxon matched-pairs signed-
ranks test was used in a study dealing with middle school teachers. The researchers
wanted to know if teachers’ perception of digital mini-games (designed to enhance
academic learning) would change if the teachers used and then discussed such
games. This excerpt is instructive because it contains two sum-of-ranks values, one
for those teachers who improved their scores and the other for the teachers whose
scores decreased. As shown in the excerpt, the sum-of-ranks value for the smaller
T-value became the calculated value.

EXCERPT 18.15 • Use of the Wilcoxon Matched-Pairs Signed-Ranks Test

The Wilcoxon Signed Ranks Test for matched pairs was used to assess whether
preservice teachers perceptions’ were modified by participation in a series of

digital mini-games based on the ranked order magnitude of the change between their
before and after responses. The results revealed a statistically significant difference in
perception after the preservice teachers played the games ( [two
tailed]). The sum of the ranked increases totaled 72.50, and the sum of the ranked
decreases totaled 5.50. Because higher scores indicated more positive perceptions,
the results revealed that participation in the digital mini-games modified preservice
teachers’ views by positively improving their perceptions regarding their efficacy.

Source: Ray, B., & Coulter, G. A. (2010). Perceptions of the value of digital mini-games:
Implications for middle school classrooms. Journal of Digital Learning in Teacher Education,
26(3), 92–100.

T = 5.5, p 6 .01 

N = 18

When the Wilcoxon test leads to a numerical value for T, the researcher’s con-
clusion either to reject or to retain is based on a decision-rule like that used within
the Mann–Whitney U test. Simply stated, that decision-rule gives the researcher per-
mission to reject when the data-based value of T is equal to or smaller than the
tabled critical value (because a direct relationship exists between T and p). However,
if the Wilcoxon test’s calculated value is z, the decision-rule is just the opposite.
Here, it is large values of z that permit the null hypothesis to be rejected.

Although it is easy to conduct a Wilcoxon test, the task of interpreting the final
result is more challenging. The null hypothesis says that the populations associated
with the two sets of sample data are each symmetrical around the same common
point. This translates into a statement that the population of change (or difference)

H0

H0
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scores is symmetrical around a median value of zero. Interpreting the outcome of a
Wilcoxon matched-pairs signed-ranks test is problematic, because the null hypoth-
esis could be false because the population of change/difference scores is not sym-
metric, because the population median is not equal to zero, or because the
population is not symmetrical around a median other than zero. Accordingly, if the
Wilcoxon test leads to a statistically significant finding, neither you nor the re-
searcher will know the precise reason why has been rejected.

There are two different ways to clarify the situation when one wants to inter-
pret a significant finding from the Wilcoxon test. First, such a test can be interpreted
to mean that the two populations, each associated with one of the samples of data
used to compute the difference/change scores, are probably not identical to each
other. That kind of interpretation is not too satisfying, because the two populations
could differ in any number of ways. The second interpretation one can draw if the
Wilcoxon test produces a small p-value is that the two populations probably have
different medians. (This is synonymous to saying that the population of differ-
ence/change scores is probably not equal to zero.) This interpretation is legitimate,
however, only in the situation where it is plausible to assume that both populations
have the same shape.

Friedman’s Two-Way Analysis of Variance of Ranks

The Friedman test is like the Wilcoxon test in that both procedures were developed
for use with related samples. The primary difference between the Wilcoxon and
Friedman tests is that the former test can accommodate just two related samples
whereas the Friedman test can be used with two or more such samples. Because of
this, Friedman’s two-way analysis of variance of ranks can be thought of as the
nonparametric equivalent of the one-factor repeated-measures ANOVA that we con-
sidered in Chapter 14.6

To illustrate the kind of situation to which the Friedman test could be applied,
suppose you and several other individuals are asked to independently evaluate the
quality of the five movies that previously have won the Best Picture award from the
Academy of Motion Pictures. I might ask you and the other people in this study to
rank the five movies on the basis of whatever criteria you typically use when eval-
uating movie quality. Or, I might ask you to rate each of the movies (possibly on a
0 to 100 scale), thus providing me with data that I could convert into ranks. One
way or the other, I could end up with a set of five ranks from each person indicat-
ing his or her opinion of the five movies.

If the five movies being evaluated are equally good, we would expect the
movies to be about the same in terms of the sum of the ranks assigned to them. In

H0

6Although the Friedman and Wilcoxon tests are similar in that they both were designed for use with correlated
samples of data, the Friedman test actually is an extension of the sign test.
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other words, movie A ought to receive some high ranks, some medium ranks, and
some low ranks if it is truly no better or worse than movies B, C, D, and E. That
would also be the case for each of the other four movies. The Friedman test treats
the data in just this manner, because the main ingredient is the sum of ranks as-
signed to each movie.

Once the sum of ranks are computed for the various things being compared,
they are inserted into a formula that yields the test’s calculated value. I do not dis-
cuss here the details of that formula, or even present it. Instead, I want to focus on
three aspects of what pops out of that formula. First, the calculated value is typi-
cally symbolized as (or sometimes simply as ). Second, large values of sug-
gest that is not true. Third, the value of is referred to a null distribution of
such values so as to determine the data-based p-value and decide whether the null
hypothesis should be rejected.

Excerpt 18.16 illustrates the use of the Friedman test. In the study associated
with this excerpt, the researchers wanted to see if women seemed more attractive to
men when the women were wearing an outfit that made them, the women, feel at-
tractive. The 49 men who did the evaluation saw three pictures of each of 25 women
dressed in outfits she had selected that made her feel attractive, unattractive, or just
comfortable. Each man ranked the three pictures of each woman, and then his ranks
given to all 25 photographs where the women felt attractive were summed. Likewise,
each man’s sums of ranks for the unattractive and comfortable pictures were com-
puted. These three sum-of-rank scores from each man were then ranked 1, 2, and 3
to indicate preferences for the three photographic conditions of the study: attractive,
unattractive, and comfortable. These three simple ranks for the 49 men were ana-
lyzed via Friedman’s test, with the result being a statistically significant result. The
interesting twists to this study are twofold: (1) the photographs showed only the
women’s faces and not the outfits they were wearing, and (2) an effort was made to
have each woman’s facial expression be the same in each of her three pictures.

x2
rH0

x2
rx2x2

r

EXCERPT 18.16 • Friedman’s Two-Way Analysis of Variance of Ranks

The faces of 25 females volunteers between the ages of 22 and 28 . . . were pho-
tographed [while] the women were wearing clothes in which they felt (1) attractive,
(2) unattractive and (3) comfortable. . . . The women were asked to have a neutral
facial expression and always look in the same direction when the photographs were
taken to avoid effects caused by differences in smiles or eye contact. . . . The men
were asked to rank the three [face-only] images of each woman in order of attrac-
tiveness. . . . The face considered to be most attractive by men was the one in which
the women were dressed in clothes that made them feel attractive (Friedman two-
way ANOVA: ).

Source: Lõhmus, L., Sundström, L. F., and Björklund, M. (2009). Dress for success: Human 
facial expressions are important signals of emotion. Annales of Zoologici Fennici, 46(1), 75–80.

x2 = 57.8, df = 2, p 6 0.001
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If the Friedman test leads to a rejection of the null hypothesis when three or
more things (such as movies in our earlier hypothetical example) are compared, you
are likely to see a post hoc follow-up test utilized to compare the things that have
been ranked. Although many test procedures can be used within such a post hoc in-
vestigation, you will likely see the Wilcoxon matched-pairs signed-ranks test em-
ployed to make all possible pairwise comparisons. In using the Wilcoxon test in this
fashion, the researcher should use the Bonferroni adjustment procedure to protect
against an inflated Type I error rate.

Large-Sample Versions of the Tests on Ranks

Near the end of Chapter 17, I pointed out how researchers sometimes conduct a z-test
when dealing with frequencies, percentages, or proportions. Whenever this occurs,
researchers put their data into a special formula that yields a calculated value called z,
and then the data-based p-value is determined by referring the calculated value to the
normal distribution. Any z-test, therefore, can be conceptualized as a normal curve test.

In certain situations, the z-test represents nothing more than an option avail-
able to the researcher, with the other option(s) being mathematically equivalent
to the z-test. In other situations, however, the z-test represents a large-sample
approximation to some other test. In Chapter 17, I pointed out how the sign,
binomial, and McNemar procedures can be performed using a z-test if the sample
sizes are large enough. The formula used to produce the z calculated value in these
large-sample approximations varies across these test procedures, but that issue is of
little concern to consumers of the research literature.

Inasmuch as tests on nominal data can be conducted using z-tests when the
sample(s) are large, it should not be surprising that large-sample approximations
exist for several of the test procedures considered in this chapter. To be more spe-
cific, you are likely to encounter studies in which the calculated value produced by
the Mann–Whitney U test is not U, studies in which the calculated value produced
by the Kruskal–Wallis one-way analysis of variance of ranks is not H, and studies
in which the calculated value produced by the Wilcoxon matched-pairs signed-
ranks test is not T. Excerpts 18.17 through 18.19 illustrate such cases.

EXCERPTS 18.17–18.19 • Large-Sample Versions of the Mann–Whitney,
Kruskal–Wallis, and Wilcoxon Tests

In this sample, the mean number of indoor tanning sessions during the past year was
and women reported more sessions during the past year relative to

men ( respectively; Mann–Whitney U test; ).

Source: Mosher, C. E., & Danoff-Burg, S. (2010). Indoor tanning, mental health, and substance
use among college students: The significance of gender. Journal of Health Psychology, 15(6),
819–827.

z = -7.15, p 6 .001Ms = 16 vs 5,
12 1SD = 212,

(continued )
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In Excerpts 18.17 and 18.19, we see that the calculated value in the large-
sample versions of the Mann–Whitney and Wilcoxon tests is a z-value. In contrast,
the calculated value for the large-sample version of the Kruskal–Wallis test is a chi-
square value. These excerpts thus illustrate nicely the fact that many of the so-called
large-sample versions of nonparametric tests yield a p-value that is based on the
normal distribution. Certain of these tests, however, are connected to the chi-square
distribution.

The Friedman test procedure—like the Mann–Whitney, Kruskal–Wallis, and
Wilcoxon procedures—can be conducted using a large sample approximation. Most
researchers do this by comparing their calculated value for against a chi-square
distribution in order to obtain a p-value. If you look again at Excerpt 18.16, you see
a case in which the Friedman test was conducted in this fashion.

It should be noted that the median test is inherently a large-sample test to
begin with. That is the case because this test requires that the data be cast into a

contingency table from which a chi-square calculated value is then derived.
Because this chi-square test requires sufficiently large expected cell frequencies, the
only option to the regular, large-sample median test is Fisher’s Exact Test. Fisher’s
test, used within this context, could be construed as the small-sample version of the
median test.

Before concluding this discussion of the large-sample versions of the tests
considered in this chapter, it seems appropriate to ask the simple question, “How
large must the sample(s) be in order for these tests to function as well as their more
exact, small-sample counterparts?” The answer to this question varies depending 
on the test being considered. The Mann–Whitney z-test, for example, works well 
if both ns are larger than 10 (or if one of the ns is larger than 20), whereas the
Wilcoxon z-test performs adequately when its n is greater than 25. The

2 * 2

x2
r

There were significant differences between species (Kruskal–Wallis test:
).

Source: Vlamings, P. H. J. M., Hare, B. & Call, J. (2010). Reaching around barriers: The per-
formance of the great apes and 3–5-year-old children. Animal Cognition, 13(2), 273–285.

The mean pleasantness score was larger for the blue lighting (mean rating 
where 5 was the most unpleasant and 1 is the most pleasant) than for the red lighting
(mean rating ). The Wilcoxon test showed that this difference between the
two colours is highly statistically significant 

Source: Laufer, L., Láng, E., Izsó, L., & Németh, E. (2009). Psychophysiological effects of
coloured lighting on older adults. Lighting Research & Technology, 41(4), 371–378.

p 6 0.0072.1z = -2.72,
2.1 ; 0.85

3.5 ; 0.94,

df = 3; P = 0.001
x2 = 17.52;

EXCERPTS 18.17–18.19 • (continued)
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Kruskal–Wallis chi-square test works well when there are more than three compar-
ison groups or when the ns are greater than 5. The Friedman chi-square test func-
tions nicely when there are more than four things being ranked or more than 10
research participants doing the ranking.

Although not used very often, other large-sample procedures have been de-
vised for use with the Mann–Whitney, Kruskal–Wallis, Wilcoxon, and Friedman
tests. Some involve using the ranked data within complex formulas. Others involve
using the ranked data within t- or F-tests. Still others involve the analysis of the
study’s data through two different formulas, the computation of an average calcu-
lated value, and then reference to a specially formed critical value. Although not
now widely used, some of these alternative procedures may gain popularity among
applied researchers in the coming years.

Ties

Whenever researchers rank a set of scores, they may encounter the case of tied
observations. For example, there are two sets of ties in this hypothetical set of
10 scores: 8, 0, 4, 3, 5, 4, 7, 1, 4, 5. Or, ties can occur when the original data take
the form of ranks. Examples here would include the tenth and eleventh runners in
a race crossing the finish line simultaneously, or a judge in a taste test indicating
that two of several wines equally deserve the blue ribbon.

With the median test, tied scores do not create a problem. If the tied observa-
tions occur within the top half or the bottom half of the pooled group of scores, the
ties can be disregarded because all of the scores are easily classified as being above
or below the grand median. If the scores in the middle of the pooled data set are
tied, the above and below categories can be defined by a numerical value that lies
adjacent to the tied scores. For example, if the 10 scores in the preceding paragraph
had come from two groups being compared using a median test, high scores could
be defined as anything above 4, whereas low scores could be defined as less than or
equal to 4. (Another way of handling ties at the grand median is simply to drop
those scores from the analysis.)

If tied observations occur when the Mann–Whitney, Kruskal–Wallis,
Wilcoxon, or Friedman tests are being used, researchers typically do one of three
things. First, they can apply mean ranks to the tied scores. (The procedure for com-
puting mean ranks was described in Chapter 3 in the section dealing with Kendall’s
tau.) Second, they can drop the tied observations from the data set and subject the
remaining, untied scores to the statistical test. Third, they can use a special version
of the test procedure developed to handle tied observations.

In Excerpts 18.20 and 18.21, we see two cases in which the third of these
three options was selected. In both of these cases, the phrase corrected for ties is an
unambiguous signal that the tied scores were left in the data set and that a special
formula was used to compute the calculated value.
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Ties can also occur within the Friedman test. This could happen, for example,
if a judge were to report that two of the things being judged were equally good.
Such tied observations are not discarded from the data set, because that would ne-
cessitate tossing out all the data provided by that particular judge. Instead, the tech-
nique of assigning average ranks is used, with the regular formula then employed
to obtain the calculated value for the Friedman test.

A Few Final Comments

As we approach the end of this chapter, five final points must be made. These points
constitute my typical end-of-chapter warnings to those who come into contact with
technical research reports. By remaining sensitive to these cautions, you will be
more judicious in your review of research conclusions that are based on nonpara-
metric statistical tests.

My first warning concerns the quality of the research question(s) associated
with the study you find yourself examining. If the study focuses on a trivial topic,
no statistical procedure has the ability to “turn a sow’s ear into a silk purse.” This
is as true of nonparametric procedures as it is of the parametric techniques discussed
earlier in the book. Accordingly, I once again urge you to refrain from using data-
based p-levels as the criterion for assessing the worth of empirical investigations.

My second warning concerns the important assumptions of random samples
and independence of observations. Each of the nonparametric tests considered in
this chapter involves a null hypothesis concerned with one or more populations. The
null hypothesis is evaluated with data that come from one or more samples that are

EXCERPTS 18.20–18.21 • Using Special Formulas to Accommodate Tied
Observations in the Data

Mann–Whitney U test was used to compare means between groups, and the p-values
are the exact two-tailed significance values corrected for ties.

Source: Frich, P. S., Kvestad, C. A., & Angelsen, A. (2009). Outcome and quality of life in patients
operated on with radical cystectomy and three different urinary diversion techniques.
Scandinavian Journal of Urology & Nephrology, 43(1), 37–41.

When the presence or absence of gonads for all collected anemones is analyzed
using the Kruskal–Wallis test there is no significant difference between seasons
( when corrected for ties).

Source: Lombardi, M. R., & Lesser, M. P. (2010). The annual gametogenic cycle of the sea
anemone Metridium senile from the Gulf of Maine. Journal of Experimental Marine Biology
and Ecology, 390(1), 58–64.

P = 0.42
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assumed to be representative of the population(s). Thus, the notion of randomness
is just as essential to any nonparametric test as it is to any parametric procedure.
Moreover, nonparametric tests, like their parametric counterparts, are based on an
assumption of independence, simply meaning that the data provided by any indi-
vidual are not influenced by what happens to any other person in the study.7

My third warning concerns the term distribution-free, a label that is some-
times used instead of the term nonparametric. As a consequence of these terms
being used as if they were synonyms, many applied researchers are under the im-
pression that nonparametric tests work equally well no matter what the shape of the
population distribution(s). This is not true. As indicated earlier in the chapter, the
proper meaning of a rejected null hypothesis is frequently influenced by what is
known about the distributional shape of the populations.

My fourth warning is really a reiteration of an important point made earlier in
this book regarding overlapping distributions. If two groups of scores are compared
and found to differ significantly from each other (even at impressive p-levels), it is ex-
ceedingly likely that the highest scores in the low group are higher than the lowest
scores in the high group. When this is the case, as it almost always is, a researcher
should not claim—or even suggest—that each of the individuals in the high group had
a higher score than any of the individuals in the other group. What legitimately can
be said is that people in the one group, on the average, did better. Those three little
words on the average are essential to keep in mind when reading research reports.

To see clearly what I mean about overlapping distributions, consider Excerpt
18.22. In the study associated with this excerpt, the researchers compared two groups
of individuals with acute cardiovascular symptoms. One group had a prior history of
cerebrovascular disease; the other group did not. In the full research report, the

7With the median, Mann–Whitney, and Kruskal–Wallis tests, independence is assumed to exist both within
and between the comparison groups. With the Wilcoxon and Friedman tests, the correlated nature of the data
causes the independence assumption to apply only in a between-subjects sense.

EXCERPT 18.22 • Overlapping Distributions

We stratified the study patients according to a history of CVD [cerebrovascular disease]
and compared their baseline demographic characteristics, treatments, and outcomes.
Continuous data are reported as the median and interquartile range, and categorical data
are reported as percentages. The Mann-Whitney U test was used for comparison of con-
tinuous variables. . . . Patients with CVD were older 
than their counterparts without CVD 

Source: Lee, T. C., Goodman, S. G., Yan, R. T., Grondin, F. R., Welsh, R. C., Rose, B., et al.
(2010). Disparities in management patterns and outcomes of patients with non–ST-elevation
acute coronary syndrome with and without a history of cerebrovascular disease. American
Journal of Cardiology, 105(8), 1083–1089.

IQR = 57 - 76].[median = 67,
IQR = 67 - 81][median = 75,
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researchers indicate that they found a statistically significant difference (with 
using the Mann–Whitney U test) between the ages of the two groups of individu-
als. Because of this, they stated, in the research report’s abstract and in the report’s
full text, that “patients with a history of CVD were older.” But is this really true? Were
all of the patients with a history of CVD older than those in the comparison group?

By looking at the information contained in Excerpt 18.22, you can see the
presence of overlapping distributions. Because the variability of ages in each group
are reported via the interquartile range (which focuses on the middle 50 percent of
the scores), we do not know precisely how young the youngest person was in the
“older” CVD group. However, that person had to be no older than 67. Similarly, we
do not know the exact age of the oldest person in the “younger” non-CVD com-
parison group; however, that person had to be at least 76 years old.

I think Excerpt 18.22 provides a powerful example of why you must be vigi-
lant when reading or listening to research reports. Researchers frequently say that
the members of one group outperformed the members of one or more comparison
groups. When the researchers fail to include the two important words on average
when making such statements, you should mentally insert this phrase into the state-
ment that summarizes the study’s results. You can feel safe doing this, because
nonoverlapping distributions are very, very rare.

My final warning concerns the fact that many nonparametric procedures have
been developed besides the five focused on within the context of this chapter. Such
tests fall into one of two categories. Some are simply alternatives to the ones I have
discussed, and they utilize the same kind of data to assess the same null hypothe-
sis. For example, the Quade test can be used instead of the Friedman test. The other
kind of nonparametric test not considered here has a different purpose. The Jonck-
heere–Terpstra test, for instance, allows a researcher to evaluate a null hypothesis
that says a set of populations is ordered in a particular way in terms of their aver-
age scores. I have not discussed such tests simply because they are used infre-
quently by applied researchers.

p 6 .001

Distribution-free
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Chapter 18.

2. Ten misconceptions about the content of Chapter 18.
3. One of the best passages from Chapter 18: “The Importance of the Research

Question(s).”
4. The interactive online resource entitled “Wilcoxon’s Matched-Pairs Signed-

Ranks Test.”
5. The website’s final joke: “The Top 10 Reasons Why Statisticians Are Misun-

derstood.”

To access the chapter outline, practice tests, weblinks, and flashcards, visit the com-
panion website at http://www.ReadingStats.com.

Review Questions and Answers begin on page 531.
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In previous chapters, we looked at several different kinds of analyses that involve
tests on means. We focused our attention in those earlier chapters on three kinds
of t-tests: one-way ANOVAs with and without repeated measures; post hoc and
planned comparisons; two-way ANOVAs with zero, one, or two between-subjects
factors; and several different kinds of analysis of covariance. All these test proce-
dures are similar in that the statistical focus is on one or more population means.

A second common denominator of the test procures mentioned in the preced-
ing paragraph is the fact that they are univariate in nature. Despite variations in the
number of independent variables involved, in the between-versus-within kind of in-
dependent variables involved, or in the presence or absence of covariates, any t-test,
any ANOVA, any ANCOVA, any post hoc investigation, and any planned compar-
ison is applied to the data corresponding to a single dependent variable. We have
seen many cases, of course, where a study had two or more dependent variables;
however, the statistical tests in those situations that we examined earlier were always
applied separately to each of the study’s dependent variables.

We now turn our attention to statistical procedures that deal simultaneously
with the means of two or more dependent variables. Such tests are considered to
be multivariate in nature. In several respects, these procedures that we now con-
sider are similar to the ones we have examined previously. Like their univariate
“cousins,” multivariate tests have null and alternative hypotheses, they involve a
level of significance and produce a p-value, a decision about the tested can be
wrong and constitute a Type I or a Type II error, assumptions are important, post
hoc tests are often conducted, and statistical significance does not necessarily imply
practical (i.e., clinical) significance.

Despite the similarities between univariate and multivariate tests, there are some
important differences between these two kinds of tests. Three of these differences

H0
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EXCERPTS 19.1–19.2 • Two- and Three-Group One-Way MANOVAs

Participants were divided into two groups; those who have never taken ecstasy
(termed non-users) and those who had taken ecstasy at any point in their life
(users). . . . To explore group differences in impulsivity [both rash-impulsivity and
reward-drive] and affect [both positive and negative], a between groups one-way
multivariate analysis of variance (MANOVA) was performed.

Source: Egan, S. T., Kambouropoulos, N., & Staiger, P. K. (2010). Rash-impulsivity, reward-
drive and motivations to use ecstasy. Personality and Individual Differences, 48(5), 670–675.

As a preliminary step, it was important to verify whether clients assigned to
practicum students, predoctoral interns, and licensed professional staff differed in

are worth noting here. First, a multivariate null hypothesis is more complicated than
a univariate because there are two or more comparison groups along with data
on two or more dependent variables. Second, certain of the assumptions that un-
derlie multivariate test are altogether different from the assumptions of univariate
tests. Finally, the post hoc procedures that work well with univariate tests are not
recommended for use with multivariate tests. As this chapter unfolds, we consider
each of these points in more detail.

The Versatility of Multivariate Tests

For any of the tests on means considered in earlier chapters, a multivariate proce-
dure exists to handle the case of multiple dependent variables. Stated differently, for
any ANOVA that has been designed for data on a single dependent variable, there
is a MANOVA (with the letter M standing for multivariate) available for use. The
same is true for the analysis of covariance; for any ANCOVA, there is a parallel
MANCOVA that is appropriate for the situation where the researcher has data on
two or more dependent variables.

In Excerpts 19.1 and 19.2, we see two examples of a one-way MANOVA
being used. In the first of these excerpts, there were two comparison groups (ecstasy
users and nonusers), just like the ANOVA we considered in Chapter 10. Here, how-
ever, the members of two groups were measured on four dependent variables: rash-
impulsivity, reward-drive, postive effect, and negative effect. In Excerpt 19.2, there
are three comparison groups (practicum students, pre-doctoral interns, and licensed
professional staff), and a one-way ANOVA (like that considered in Chapter 11)
would have been used if there had been just one dependent variable. Here, however,
a one-way MANOVA was used because there were 10 dependent variables: the
OQ-45 and the nine scales of the CAS.

H0

(continued )
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Excerpts 19.3 and 19.4 illustrate the application of two-way MANOVAs. The
first of these excerpts comes from a study in which both factors (type of friendship and
gender) were between in nature, just like the two-way ANOVAs considered in Chapter
13. Here, however, there were two dependent variables: relational and physical vic-
timization. The study associated with Excerpt 19.4 involved a mixed design (in
which the between factor was Condition and the within factor was Time), making the
data set somewhat like the two-way mixed ANOVAs we looked at in Chapter 14. In
this study, however, there were three outcome variables: SIF, Empathy, and TRIM.

2 * 3

EXCERPTS 19.1–19.2 • (continued)

their initial symptom severity. We therefore conducted a multivariate analysis of
variance (MANOVA) using intake scores on all dependent measures (the OQ-45 and
all CAS subscales) across counselor training levels.

Source: Nyman, S. J., Nafziger, M. A., & Smith, T. B. (2010). Client outcomes across counselor
training level within a multitiered supervision model. Journal of Counseling and Development,
88(2), 204–209.

EXCERPTS 19.3–19.4 • Two-Way MANOVAs with and without 
a Within Factor

The 384 children in the present study [included] 293 (76.3%) who had a recipro-
cated best friendship (162 girls, 131 boys) and 91 (40 girls, 51 boys) who identified
a unilateral best friend. A two-way MANOVA was conducted to determine if the lev-
els of relational and physical victimization differed as a function of whether the
friendship was mutual or unilateral and the child’s sex.

Source: Daniels, T., Quigley, D., Menard, L., & Spence, L. (2010). “My best friend always did
and still does betray me constantly”: Examining relational and physical victimization within
a dyadic friendship context. Canadian Journal of School Psychology, 25(1), 70–83.

First, we conducted a 2 (Immediate-Treatment Condition and Waiting-List Condition)
(Time 1, Time 2, Time 3) repeated measures MANOVA on the three outcome

variables related to forgiveness of a target offense (i.e., SIF, Empathy, and TRIM).

Source: Kiefer, R. P., Worthington, E. L., Myers, B. J., Kliewer, W. L., Berry, J. W., Davis, D. E.,
et al. (2010). Training parents in forgiving and reconciling. American Journal of Family
Therapy, 38(1), 32–49.

* 3

In Excerpts 19.5 and 19.6, we see examples of one-way and two way multi-
variate analyses of covariance. If there had been just one dependent variable in each
of these studies, they would have been very much like the ANCOVAs we considered



Multivariate Tests on Means 461

in Chapter 15. However, these excerpts are included in this chapter because each is
multivariate in nature due to three dependent variables involved in Excerpt 19.5
(dissatisfaction with body fat, waist-to-hip ratio, and breast size) and 17 such vari-
ables involved in Excerpt 19.6.

EXCERPTS 19.5–19.6 • Multivariate Analyses of Covariance

In this study, heterosexual and nonheterosexual women were
asked to rate figure drawings and computer-generated images of women that varied
in body fat, waist-to-hip ratio, and breast size in terms of self, ideal, and cultural
ideal; discrepancy indices, indicating body dissatisfaction, were created for each
body aspect. . . . Because BMI was correlated with self-ideal discrepancies in both
groups, a one-way MANCOVA, controlling for BMI, with sexual orientation as the
independent variable, was performed.

Source: Koff, E., Lucas, M., Migliorini, R., & Grossmith, S. (2010). Women and body dissat-
isfaction: Does sexual orientation make a difference? Body Image, 7(3), 255–258.

A two-way MANCOVA was employed in which playing status (professional, amateur)
and position (goalkeeper, defender, midfielder and forwards) were the between-
participant factors and maturation (the difference between skeletal and chronologi-
cal age) the covariate. All 17 dependent measures [e.g., height, mass, percentage
body fat] were included in the analysis.

Source: le Gall, F., Carling, C., Williams, M., & Reilly, T. (2010). Anthropometric and fitness
characteristics of international, professional and amateur male graduate soccer players from
an elite youth academy. Journal of Science and Medicine in Sport, 13(1), 90–95.

1n = 8421n = 952

The Multivariate Null Hypothesis

In the typical univariate situation where two groups are compared with a t-test or a
one-way ANOVA, the null hypothesis is fairly easy to conceptualize. To do this, we
imagine two populations of scores, each with the same mean. As indicated in
Chapter 10, the null hypothesis in this situation states that the two population means
are equal: Staying with the univariate case, situations with three or
more groups require only that we add a new for each additional population. We
considered such null hypotheses in Chapter 11.

If data exist on multiple dependent variables, and if a multivariate approach
is taken to compare group means, there are two legitimate ways to conceptualize
the null hypothesis. The first of these ways of thinking about, or actually defining, the
null hypothesis involves just three familiar concepts: groups, dependent variables,
and population means. The alternative conceptualization requires us to understand
terminology (e.g., linear combination of dependent variables, group separation)

m

H0: m1 = m2.
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not yet considered in this book. Let us now consider these two ways of stating the
multivariate 

It is possible to conceptualize the MANOVA null hypothesis as an extension
of the univariate From this perspective, the MANOVA’s null hypothesis states
that the study’s populations have the same mean on the first dependent variable,
the same mean on the second dependent variable, and so on. For example, if a
MANOVA were to compare undergraduate students from two different universities
in terms of height and IQ, the null hypothesis would state, simultaneously, two
things: the two populations of students have the same mean height, and these two
populations have the same mean IQ. (Notice that the null hypothesis does not say
that the means of the dependent variables—height and IQ—are equal; the multi-
variate stipulates equality of means across populations on each dependent
variable, not equality of means across dependent variables.)

In Excerpt 19.7, we see a case where a team of researchers articulated their
study’s MANOVA null hypothesis in this way. In the symbolic representation of
this null hypothesis, each column of corresponds to a different population,
while each row of corresponds to a different dependent variable. If the null
hypothesis were true, the means in any row (e.g., ) would be
identical, as those means correspond to different populations; however, the
means in any column (e.g., ) could differ because those corre-
sponds to the study’s dependent variables of yield, plant height and harvested
head weight.

msm11, m21, m31

m11, m12, Á , m1g

ms
ms

H0

H0.

H0.

EXCERPT 19.7 • The Null Hypothesis in a One-Way MANOVA

The data to be analysed [involve] dependent variables represented by the response
namely: yield, harvested head weight, and plant height. We wish to observe the
effects of the treatments on three dependent variables simultaneously. . . .
MANOVA is an extension of analysis of variance [that can] test whether there are
differences between the means of the identified groups of subjects on a combination
of dependent variables, that is, it is used to test the null hypothesis.

Where is the population mean for the variable yield, plant height and
harvested head weight respectively for all g [i.e., for all treatment groups].

Source: Maposa, D., Mudimu, E., & Ngweny, O. (2010). A multivariate analysis of variance
(MANOVA) of the performance of sorghum lines in different agroecological regions of
Zimbabwe. African Journal of Agricultural Research, 5(3), 196–203.

mig1i = 1, 2, 32

Ho = P
m11

m21

m31
Q = P

m12

m22

m32
Q = Á = P

m1g

m2gQm3g
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When one or more covariates are involved in a multivariate test of means, one
way to conceptualize the null hypothesis is to think of it as an extension of the 
we considered in Chapter 15. Whereas the null hypothesis of a univariate ANCOVA
has a single set of adjusted population means, the MANCOVA null hypothesis can
be thought of as having multiple sets of adjusted means, one set for each dependent
variable. In Excerpt 19.8, we see a case where a researcher used this approach to
describe the null hypothesis evaluated by his multivariate analysis of covariance. In
this particular MANCOVA, there was a single independent variable (corresponding
to the two comparison groups), three dependent variables (corresponding to the
posttest scores called overall, dialogue text, and lecturette), and three covariates
(corresponding to the pretest measure of each dependent variable).

H0

EXCERPT 19.8 • The Null Hypothesis in a One-Way MANCOVA

For this study, the multivariate null hypothesis that was tested in covariance was that
the adjusted population mean vectors [on the dependent variables] for the two groups
were equal. . . . MANCOVA accounts for the differences in ability (as measured by
the pre-test) between the two groups by adjusting the means on the post-test to
account for the differences on the covariates. . . . The dependent variables related to
the two groups’ scores on the post-test: overall post-test scores, dialogue text post-
test scores, and lecturette post-test scores.

Source: Wagner, E. (2010). The effect of the use of video texts on ESL listening test-taker
performance. Language Testing, 27(3) 1–21.

Excerpt 19.8 contains the word vectors. In this study there were two vectors,
or sets, of adjusted population means, one for each comparison group. Each of these
vectors contained the hypothesized adjusted population means on the three depen-
dent variables. To see a display of mean vectors, take another look at Excerpt 19.7.
Each vector in that excerpt is a vertical set of contained inside a set of brackets.

The alternative way of conceptualizing the null hypothesis of a multivariate
test of means requires us to do some upside-down (but useful) thinking and create,
in our minds, a new variable. Three steps are involved. First, we view the study’s
multiple dependent variables as if they were the independent variables in a multiple-
regression-like equation, with weights attached to these variables to indicate their
relative usefulness to the explanatory goal of this regression. Second, we insert each
person’s data into this equation to get a predicted score on our equation’s depen-
dent variable. In a very real sense, these predicted scores correspond to a new vari-
able that we have created by statistically combining the original dependent variables
into a single variable. Finally, we look to see if the comparison groups have different
mean scores on the newly created dependent variable.

ms
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In the first step of the procedure just described, the weights for the original
dependent variables are determined statistically so as to maximize differences be-
tween the groups in their scores on the newly created dependent variable. In other
words, those weights are chosen to achieve the goal of group separation. Scores
on the newly created variable designed to show this group separation come into ex-
istence via a linear combination of dependent variables. The weights used within
this equation are called discriminant coefficients, because their function, collec-
tively, is to discriminate the comparison groups from each other on the newly cre-
ated dependent variable.1

In Excerpt 19.9, we see a passage from a research report that contains the
phrase, “a linear combination of the measures.” In the MANOVA conducted in this
study, there was a single independent variable (gender) and 10 dependent variables
(associated with different subscales of four instruments designed to assess person-
ality and attitudinal traits). Notice how the final sentence in this excerpt begins. The
researchers state that they used MANOVA to see if there was any group differ-
ence—that is, group separation—on the newly created dependent variable gener-
ated by combining the study’s 10 measured variables.

1If there are more than two dependent variables, MANOVA actually generates additional new variables, each
orthogonal to (i.e., independent from) the others, representing alternative ways of combining the dependent
variables. Usually, however, these additional linear combinations contribute little to the goal of group sepa-
ration as compared with the first one that’s created.

EXCERPT 19.9 • The Multivariate Notion of a Linear Combination of
Dependent Variables

The aim of the present study was to add to existing research focusing on the reasons
for gender differences in help-seeking by comparing the frequency among men and
women of a number of individual and socioculturally influenced attitudinal factors
that may influence help-seeking for mental health problems. . . . A multivariate
analysis of variance was performed to find any group differences based on a linear
combination of the measures of interest, that is, LSS, TAS-26, the six facets of the
NEO-O, and the two subscales of the DSS.

Source: Judd, F., Komiti, A., & Jackson, H. (2008). How does being female assist help-
seeking for mental health problems? Australian and New Zealand Journal of Psychiatry,
42(1), 24–29.

Now that we see how MANOVA actually works, it is possible to consider
the second way of conceptualizing the multivariate null hypothesis. This says
that each population’s mean on the newly created dependent variable is the same
regardless of the discriminant coefficients used in an effort to create group separation.
In other words, the null hypothesis is that there is no group separation, among the

H0
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populations, in terms of the new variable created to show group differences. Stated
differently, this null hypothesis says that each of the study’s dependent variables
contributes nothing to group separation because the various populations have iden-
tical means on each dependent variable.

It may appear that the two conceptualizations of the multivariate null hypoth-
esis are the same, as both stipulate that the various populations have identical means
on each of study’s dependent variables. Although similar in that respect, we have
seen that the second of the two conceptualizations also involves concepts such as
group separation, a linear combination of dependent variables, and discriminant
coefficients. These three concepts are not superfluous; instead, they lie at the core
of MANOVAs logic and computations.

Testing the Multivariate Null Hypothesis

Several test procedures have been developed to test MANOVA’s omnibus null
hypothesis. Although researchers sometimes use tests referred to as Hotelling’s
trace or Roy’s largest root, the test procedures used most often are called Wilks’
lambda and Pillai’s trace. In Excerpts 19.10 and 19.11, we see examples of these
latter two tests being used in applied studies. As you can see, the two multivariate
tests in the first of these excerpts, and the single multivariate test in the second
excerpt, all led to a rejection of the omnibus null hypothesis.

EXCERPTS 19.10–19.11 • Wilks’ Lambda and Pillai’s Trace

Data analyses were performed using multivariate analysis of variance (MANOVA)
because the response we measured (survival, length of larval period and body
mass at metamorphosis) is inherently multivariate. Inclusion of all three response
variables in the analyses provided the maximum amount of information regarding
the effects of our experimental treatments. . . . The overall MANOVAs showed that
our treatments significantly affected traits of both cane toads (Wilks’ lambda

) and ornate burrowing frogs (Wilks’ lambda ).

Source: Crossland, M. R., Alford, R. A., & Shine, R. (2009). Impact of the invasive cane toad
(Bufo marinus) on an Australian frog (Opisthodon ornatus) depends on minor variation in
reproductive timing. Oecologia, 158(4), 625–632.

A multivariate analysis of variance examining all adherence variables combined
revealed a significant omnibus effect of anxiety on adherence (Pillai’s trace

).

Source: Kuhl, E. A., Fauerbach, J. A., Bush, D. E., & Ziegelstein, R. C. (2009). Relation of
anxiety and adherence to risk-reducing recommendations following myocardial infarction.
American Journal of Cardiology, 103(12), 1629–1634.

= 2.44, p = 0.01

= 0.025, P 6 0.001P 6 0.04
= 0.18,
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In Excerpts 19.10 and 19.11, the calculated values for Wilks’ lambda (0.18
and 0.025) and Pillai’s trace (2.44) are reported in their raw forms.2 Although the
calculated values of multivariate tests are occasionally reported like that, it is
more common to see the calculated values converted into an F-value. Excerpts
19.12 and 19.13 illustrate this kind of conversion. These excerpts contain two df
values located next to the F-value, as would have been the case if a univariate
analysis had been conducted. With most multivariate tests, however, the first of
each F’s two df values is determined by multiplying the number of dependent
variables by the 1 less than the number of groups. Knowing this, we can figure
out that there were two comparison groups in the study from which Excerpt 19.13
was taken.3

2Wilks’ lambda is often reported via the upper- or lower-case letter for lambda, or 
3The formula for determining the second df associated with the MANOVA F-test is complicated and varies
depending on which test procedure is used to test the omnibus null hypothesis.

l.¶

EXCERPTS 19.12–19.13 • Converting Multivariate Calculated Values 
into F-Ratios

A MANOVA was used to test for gender differences in mean levels of support from
the various sources. The five CASSS support subscale scores were entered as
dependent variables, and [results indicated] Wilks’ lambda

.

Source: Rueger, S. Y., Malecki, C. K., & Demaray, M. K. (2010). Relationship between multiple
sources of perceived social support and psychological and academic adjustment in early
adolescence: Comparisons across gender. Journal of Youth and Adolescence, 39(1), 47–61.

A multivariate analysis of variance (MANOVA) was conducted to determine whether
there were significant between-group differences in DP-gram peak occurrence, peak
height, and peak width. The Hotelling’s trace multivariate test of overall between-
group differences was not significant,

Source: Bhagat, S. (2009). Analysis of distortion product otoacoustic emission spectra in normal-
hearing adults. American Journal of Audiology, 18(1), 60–68.

F13, 402 = 0.321, p = .81.

19.65, p 6 .001
= .865, F15, 6322 =

Researchers frequently report only one of the four popular multivariate test
statistics, as was the case in Excerpts 19.10 through 19.13. Sometimes, however,
more than one is reported for the same data that have been analyzed. This occurs
because computer programs typically conduct all four tests on any set of data that’s
analyzed, because the results of all four tests usually lead to the same decision
regarding the multivariate null hypothesis, and because Pillai’s trace is more robust
than the other test procedures.
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Assumptions

Like the analysis of variance, MANOVA and MANCOVA have assumptions.
Competent researchers attend to these assumptions when conducting multivariate
tests on means, and they make adjustments in the planned analytic strategy if any
important underling assumption appears to be untenable.

When conducting a MANOVA, researchers should be aware of seven main
assumptions. These are: (1) random samples from the relevant populations, (2) inde-
pendence of observation, (3) multivariate normality, (4) homogeneity of variance–
covariance matrices, (5) linear relationships between dependent variables, (6) no
outliers, and (7) no multicollinearity. An additional assumption, equality of regres-
sion slopes, comes into play with any MANCOVA.

In research reports, multivariate assumptions are dealt with by applied re-
searchers in different ways. In many cases, researchers say absolutely nothing about
any of the assumptions, thereby giving the impression that they were unaware that
MANOVA and MANCOVA do not operate as intended if important assumptions are
violated. In other cases, researchers report that they checked the assumptions and
discovered one or more of them to be untenable; then, they move right ahead with
their multivariate analysis and warn readers of the research report “to be careful
when interpreting the findings.” Both of these ways of dealing with assumptions
leaves much to be desired.

In Excerpt 19.14, we see a passage from a research report that indicates three
things. Via two relatively short sentences, the researcher makes it clear that he is
aware of MANOVA’s underlying assumptions, that these assumptions were tested
in a preliminary phase of the investigation’s data analysis, and that none of the as-
sumptions seemed to be violated. Give credit to researchers when they incorporate
these three bits of information into their research reports.

EXCERPT 19.14 • Attending to Assumptions

In order to check whether the assumptions of MANOVA were met, preliminary
assumption testing for normality, linearity, univariate and multivariate outliers, homo-
geneity of variance–covariance matrices and multi-collinearity were conducted. No
significant violation was found.

Source: Sahin, M. (2010). The impact of problem-based learning on engineering students’
beliefs about physics and conceptual understanding of energy and momentum. European
Journal of Engineering Education, 35(5), 519–537.

When researchers assess the veracity of assumption underlying their planned
multivariate analyses, one or more of the assumptions may seem untenable. When
that occurs, several legitimate and helpful options exist. In situations like this, the
researcher can eliminate problematic scores (or even entire variables) from the
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analysis, use data transformations in an effort to reduce nonnormality or variance–
covariance heterogeneity, choose a more robust test procedure, make the level of
significance more rigorous, or decide not to use MANOVA or MANCOVA.

Excerpt 19.15 comes from a study in which the researchers attended to the
assumptions associated with the one-way MANOVA they planned to use. In check-
ing to see if their study’s data conformed to the assumptions, the researchers dis-
covered various problems. This excerpt deserves your close attention, because it
illustrates several different options that exist when assumptions appear to be violated.
The researchers associated with this excerpt earn high marks for clearly indicating
what they did as a consequence of their “preliminary assumption testing.”

EXCERPT 19.15 • MANOVA Options when Assumptions Seem
Untenable

A one-way between groups MANOVA was performed to investigate the significance
of the suggestibility score differences between the HGSHS [groups]: A, the GSHA,
and the CURSS. . . . Preliminary assumption testing was conducted to check for
normality, linearity, multicollinearity, univariate and multivariate outliers, and homo-
geneity of variance–covariance matrices. All dependent variables except voluntary
responding met the assumption of normality. A square-root transformation was used
to normalize the voluntary responding distribution. The assumptions of linearity and
multicollinearity were met. Four participants were found to be multivariate outliers
and were therefore deleted from the analyses (two participants from the GSHA
condition and two participants from the CURSS condition). Box’s test of equality of
covariances indicated a violation of the assumption of homogeneity of variance–
covariance matrices. In order to ensure the robustness of Pillai’s statistic despite this
violation, cases were randomly deleted so that all three sample sizes were equal,

[in size].

Source: Barnes, S. M., Lynn, S. J., & Pekala, R. J. (2009). Not all group hypnotic suggestibility
scales are created equal: Individual differences in behavioral and subjective responses.
Consciousness and Cognition, 18(1), 255–265.

n = 103

Some researchers subject their data to a nonparametric analysis when MANOVA
assumptions seem untenable. Several such procedures have been developed to do
this, and they occasionally are referred to by the acronyms NPMANOVA (in which
the letters NP stand for nonparametric) or PERMANOVA (in which the letters
PER stand for permutation). In Excerpt 19.16, we see a case in which one of these
nonparametric procedures was used. Notice that a regular MANOVA was used
with the data from one set of minnows, as the assumptions there did not seem to be
violated. However, the data from the second set of minnows failed to support
MANOVA’s assumptions; accordingly, those data were converted into ranks and an
extension of the nonparametric Kruskal–Wallis test was applied to the ranked data.



EXCERPTS 19.17–19.18 • Estimating Effect Size in One-Way 
and Two-Way MANOVAs

Results of the [one-way] MANOVA revealed significant, but weak, differences
between the control and experimental groups, Wilks’ Lambda

Thus, initial analysis revealed that offering students the choicep 6 0.05, h2 = 0.04.
= 0.96, F = 2.59,
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EXCERPT 19.16 • Nonparametric MANOVA

The [two-factor] experiment consisted of a conditioning phase, during which minnows
were taught to recognize a brown trout as a predator in clear water, followed by a test-
ing phase, where minnows were exposed to brown trout, rainbow trout or perch
[factor 1] in clear or turbid water [factor 2]. We calculated the change in shelter use and
time moving from the prestimulus baseline. Because the two variables were not inde-
pendent from each other, we analysed them simultaneously using a MANOVA proce-
dure. Behavioural data from the control minnows followed parametric assumptions and
were analysed with a two-way MANOVA. Behavioural data from the alarm cue min-
nows did not meet homoscedasticity assumptions (nonhomogeneity of variances).
Hence, the data were rank-transformed prior to performing a nonparametric MANOVA
using the Sheirer–Ray–Hare extension of the Kruskal–Wallis test [for ranks].

Source: Ferrari, M. C. O., Lysak, K. R., & Chivers, D. P. (2010). Turbidity as an ecological
constraint on learned predator recognition and generalization in a prey fish. Animal Behaviour,
79(2), 515–519.

(continued )

Statistical Significance and Practical Significance

One of the purposefully recurring themes in this book has been the distinction
between statistical significance and practical significance. Repeatedly, I have made
the point that a finding can end up being statistically significant even though there
is little or no practical importance associated with the claimed “discovery.” This is
just as true for multivariate tests on means as it is for the univariate tests we con-
sidered in earlier chapters. Accordingly, it should come as no surprise that tech-
niques exist that can help researchers—as well as the readers of their research
reports—avoid the mistake of thinking that a statistically based finding is “big”
when in fact it is “small” (or perhaps even smaller-than-small).

One way to assess the practical significance of a multivariate result is through
a data-based estimate of effect size. When the omnibus test from a MANOVA or a
MANCOVA is computed, an estimate of effect size can also be computed. Although
there are several different indices available for use, the two that are used most often
are eta squared and partial eta squared. These two kinds of effect size estimates are
illustrated in Excerpts 19.17 and 19.18.
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In Excerpt 19.17, eta squared was used to estimate effect size. As you may
recall from Chapter 11, eta squared and partial eta squared are equal to the same
value in a one-way ANOVA. This is the case in a one-way MANOVA only when
there are just two comparison groups. If three or more groups are involved in the
one-way MANOVA, partial eta squared turns out smaller than eta squared.4 Excerpt
19.18 contains the results of a two-way MANOVA, with a partial eta squared pro-
vided for each F-value. In two-way ANOVAs, values of eta squared and partial eta
squared are different due to the way they are computed. However, that is not the
case in a two-way MANOVA. If there are just two levels of a factor, the computa-
tional formulas for partial eta squared and eta squared cause these two estimates of
effect size for that factor’s main effect to be identical. That is also the case for the
interaction effect in any MANOVA.

The popular criteria for assessing standardized estimates of effect size, such
as partial eta squared, are the same in a multivariate analysis as they are in a uni-
variate analysis. For partial eta squared (and eta squared), the lower limits for the
labels small, medium, and large are .01, .06, and .14, respectively. If these criteria
are used to evaluate the effect size estimates in Excerpt 19.18, two of the statisti-
cally significant findings would be called small whereas one would be classified as
being medium in size.

The computation of effect size estimates represents a post hoc way of dealing
with the possibility that statistical significance might exist even though the true

2 * 2

4Eta squared partial eta squared where the smaller of two things: (1) the df for
the effect being tested, if that effect were being tested univariately, or (2) the number of dependent variables.

s == 1 - l1>s,= 1 - l;

EXCERPTS 19.17–19.18 • (continued)

among differing types of examination had a small effect on their perception of both
fairness and learning.

Source: Mauldin, R. K. (2009). Gendered perceptions of learning and fairness when choice
between exam types is offered. Active Learning in Higher Education, 10(3), 253–264.

To examine differences between types of fans, a 2 (Gender of Participant) (Type
of Interest) MANOVA was conducted using fanship, entitativity, identification
with the group, and collective happiness as dependent variables. The omnibus 
results show a main effect of type of interest (Wilks’

), a main effect of participant gender (Wilks’
), and an interaction between gender and

type of interest (Wilks’ ).

Source: Reysen, S., & Branscombe, N. R. (2010). Fanship and fandom: Comparisons between
sport and non-sport fans. Journal of Sport Behavior, 33(2), 176–193.

l = .929, F112,8972 = 1.85, p = .015, hp
2 = .024

F14,3392 = 3.50, p = .008,hp
2 = .040

l = .960,p 6 .001,hp
2 = .100

l = .730, F112,8972 = 8.96,

* 4



Multivariate Tests on Means 471

effect has little or no practical significance. An alternative way of dealing with this
same issue is a priori in nature. By performing a power analysis in the planning
stage of an investigation, a researcher determines the proper sample size for his or
her study, thus reducing the chances that too much data will cause a small effect to
look big, or that not enough data will cause a big effect to be overlooked.

In Excerpt 19.19, we see an example of an a priori power analysis being used
in conjunction with a four-group one-way MANCOVA. In this excerpt, notice that
the effect size is said to be .50. This is not a data-based, estimated effect size, like
those we saw in Excerpts 19.17 and 19.18. Rather, the effect size in Excerpt 19.19
was selected by the researchers to indicate the dividing line between real effects that
are of trivial magnitude and those that are large enough to be considered large, note-
worthy, and important.

EXCERPT 19.19 • A Priori Power Analysis in a MANOVA Study

The purpose of this study was to examine the impact of co-morbid disorders in the
area of behavior problems within a specific population of adults residing at two state-
run facilities. This was achieved by using multivariate analyses to compare groups
of participants with ID [intellectual disability] alone, ID and epilepsy alone, ID and
ASD [autism spectrum disorders] alone, and finally, a combined group with ID,
ASD, and epilepsy, which are disorders commonly found among individuals resid-
ing at state-run residential facilities. . . . An a priori power analysis was conducted
to determine the total sample size required for the present study. [W]hen alpha (�)
is set at .05 [along] with a medium effect size set at .50 and power set at .80, . . . it
was determined that a total sample of 80 participants was required for a MANOVA
with four groups (i.e., ).

Source: Smith, K. R. M., & Matson, J. L. (2010). Behavior problems: Differences among
intellectually disabled adults with co-morbid autism spectrum disorders and epilepsy. Research
in Developmental Disabilities, 31(5), 1062–1069.

n = 20

Post Hoc Investigations

If a MANOVA or MANCOVA omnibus null hypothesis is rejected, the researcher
will likely conduct some form of post hoc investigation in order to understand the
forces at play in the data that have been analyzed. Such investigations are appro-
priate even in studies where just two groups have been compared, due to their
multivariate nature.

My review of a large number of journals shows that the most popular strategy
for probing a significant multivariate finding is a set of univariate tests, one con-
ducted for each dependent variable. For example, if a researcher achieves significance
with a one-way MANOVA, he or she is likely to conduct a one-way ANOVA (or a
t-test, perhaps, if there are just two groups of scores) on the data corresponding to
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the first dependent variable, a similar analysis on the data corresponding to the sec-
ond dependent variable, and so on until each and every dependent variable has been
dealt with. Then, any of these univariate ANOVAs, if significant, is itself probed,
perhaps with Tukey’s HSD, if there are three or more comparison groups.

In a similar fashion, the most common strategy for probing one or more sig-
nificant findings from a two-way MANOVA, or from any kind of MANCOVA, in-
volves multiple univariate analyses, each focused on a different dependent variable.
Then, any significant result from any of these univariate ANOVAs or ANCOVAs is
probed, if necessary, as was illustrated earlier in Chapters 13 through 15. Such post
hoc probing is intended to discover what caused the initial multivariate result to
be significant.

This extremely popular strategy for probing significant multivariate findings
is illustrated in Excerpt 19.20. The MANOVA referred to in this excerpt was a

multivariate analysis of variance in which the factors were Gender (Males
versus Female) and Culture (Chinese versus Canadian). The research participants
were adolescent males and females, ages 16 through 18, from each culture who
completed a questionnaire regarding their current romantic (i.e., dating) relation-
ships. Their responses produced data on the study’s three dependent variables: trust,
intimacy, and companionship.

2 * 2

EXCERPT 19.20 • Probing the Results of a Multivariate Analysis 
with Univariate Tests

A MANOVA was conducted with partner’s trust, intimacy, and companionship as
dependent variables, and culture and gender as between-subjects factors. The results
indicated a significant multivariate effect of culture,
and a significant culture by sex interaction, Follow-up
univariate ANOVAs [showed that] Chinese adolescents reported less trust and less
companionship in their romantic relationships than did Canadian daters. A gender
interaction with culture was significant for intimacy. In China, the boys reported
greater intimacy with their romantic partner than did girls In
Canada, a reverse trend was found, with girls reporting greater romantic intimacy
than boys 

Source: Li, Z. H., Connolly, J., Jiang, D., Pepler, D., & Craig, W. (2010). Adolescent roman-
tic relationships in China and Canada: A cross-national comparison. International Journal of
Behavioral Development, 34(2), 113–120.

1t = 2.64, p 6 .012.

1t = 3.06, p 6 .012.

F13, 2112 = 6.03, p 6 .001.
F13, 2112 = 15.35, p 6 .001,

As indicated in Excerpt 19.20, the two-way MANOVA produced two signifi-
cant results. To probe these results, the researchers conducted three separate two-way
ANOVAs, one for each dependent variable. The univariate ANOVA on the trust
scores produced a significant effect only for the main effect of culture. That was also
the case for the univariate ANOVA of the companionship scores. The univariate
analysis of the intimacy data, however, produced a significant effect for the gender-
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by-culture interaction. To probe this interaction, tests of simple main effects were
conducted (via t-tests) in which the two genders within each culture were compared.

In the study associated with Excerpt 19.20, the interpretation of the three Fs
in each of these two-way univariate ANOVAs, and the simple effects investigation
associated with the analysis of the intimacy data, parallel exactly what the inter-
pretations and post hoc testing would have been if three separate two-way ANOVAs
had been conducted without any preliminary MANOVA. The essence of this popu-
lar strategy for performing the analysis of multivariate data, illustrated in Excerpt
19.20 and in thousands of other studies, is captured nicely by the four-word phrase,
multivariate first, then univariate.

Several statistical authorities frown on the “multivariate first, then univariate”
strategy, despite its popularity. Alternative procedures exist for probing multivari-
ate data sets after the omnibus null hypothesis is rejected, and we will examine a
few of these momentarily. Before doing that, however, let’s consider why the post
hoc strategy used widely across many disciplines has its detractors. There are two
reasons, both connected to any study’s dependent variables.

First, the dependent variables in any MANOVA or MANCOVA are likely to
be correlated.5 Because of this, the multivariate world of any study—referred to
technically as the study’s multivariate space—cannot be described well by think-
ing about the dependent variables one at a time, in a univariate manner. Proof of
this fact can be found in the assumption of homogeneous variance–covariance
matrices. To define or evaluate this assumption, we must consider the interdepen-
dence among the full set of dependent variables. Moreover, the most appropriate
techniques available for screening data for potential outliers evaluate each data
point within the multivariate space.

To understand what a multivariate space is, first imagine that we measure each
of 100 adult workers on three dependent variables: weight, salary, and intelligence.
Next, imagine we take our data into a square room that has its four walls facing
north, south, east, and west. Further imagine that the numerical values for the con-
tinuum associated with the weight variable have been marked along the bottom
edge of the south wall, that the numerical values for the continuum associated with
the intelligence variable have been marked along the bottom edge of the west wall,
and that the numerical values for the continuum associated with the salary variable
have been marked along the vertical joint where the south and west walls meet.

Now we display the data collected from our sample of 100 workers by means
of 100 ping pong balls. For each worker, we tie one end of a piece of string to that
worker’s ball, and then we tie the other end of the string to a tack that we push into
the ceiling. By carefully measuring the length of each piece of string, and by care-
fully finding the right spot to push each tack into the ceiling, we could suspend the
100 ping pong balls such that any given ball has a position in the room that

5The dependent variables not only are likely to be correlated; they ought to be correlated. If the dependent
variables are all independent from one another, a multivariate analysis has disadvantages as compared with a
strategy that involves only separate univariate tests.
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corresponds exactly to a particular worker’s weight, intelligence, and salary. The
room containing these hanging ping pong balls is our multivariate space.

To make our imaginary room with the ping pong balls fit a MANOVA situa-
tion, imagine that 50 of the ping pong balls are blue because they represent male
workers, whereas the other half of the ping pong balls are pink because they repre-
sent female workers. If our room contains a single cloud of 100 balls, with blue and
pink interspersed randomly, the multivariate null hypothesis is retained. However,
if the blue balls tend to be located away from the pink balls, then a test such as
Wilks’ lambda might cause the null hypothesis test to be rejected. The important
thing to see here is that our comparison of blue and pink balls is being made inside
a three-dimensional room. If you looked at the balls from only one angle (e.g., the
south wall), you might well miss a difference between the two clouds of data points.

Discussions and pictures of multivariate space typically are found only in text-
books dealing with intermediate or advanced quantitative techniques. In Excerpt 19.21,
we see a rare reference to the notion of multivariate space that appeared in an applied
research report.

EXCERPT 19.21 • Multivariate Space

MANOVA tests for differences among groups in the multivariate space defined by
the original set of outcome measures (TV, BV, BV/TV, TMD, TMD, and BMC).
In this space, each of the k experimental groups is described in terms of a vector of
means, rather than a single mean value. MANOVA [creates] linear combinations of
the original outcome measures. These linear combinations are constructed such that
the separation among groups is maximized.

Source: Morgan, E. F., Mason, Z. D., Chien, K. B., Pfeiffer, A. J., Barnes, G. L., Einhorn, T. A.,
et al. (2009). Micro-computed tomography assessment of fracture healing: Relationships
among callus structure, composition, and mechanical function. Bone, 44(2), 335–344.

s

To understand the second reason why certain statistical authorities argue against
using univariate tests to probe a significant multivariate finding, recall that the de-
pendent variables are used jointly to create a new variable designed to maximize
group separation. The new variable comes into existence by means of the linear com-
bination of dependent variables, and the MANOVA or MANCOVA null hypothesis
stipulates that the study’s population means are located at the same position on the
continuum corresponding to this newly created variable. If the sample data produce
group means, derived from the linear combination of dependent variables, that are fur-
ther apart than would be expected by chance, the multivariate is rejected. Statis-
tical authorities argue, therefore, that a post hoc investigation ought to answer the
question, “Which dependent variable(s), within the linear combination of such vari-
ables, played a major role in causing the multivariate null hypothesis to be rejected?”

We now look at two procedures that can be used in a post hoc investigation to
probe a significant MANOVA or MANCOVA. These procedures are admittedly

H0



Multivariate Tests on Means 475

used infrequently as compared with the more popular univariate strategy we first
considered. Nevertheless, it is appropriate that we consider these two procedures,
as their popularity is likely to increase in the coming years.

The first of the two post hoc procedures to be discussed here was used in a study
involving young elite female basketball players. Three groups were compared: centers,
forwards, and guards. There were eight dependent variables involved, each of which
related to some sort of athletic ability (e.g., sprinting, jumping, throwing). The multi-
variate analysis produced a significant value for Wilks’ lambda, so the researchers con-
ducted a post hoc investigation. As shown in Excerpt 19.22, they did this by computing
and comparing discriminant ratio coefficients from the main linear combination of
variables that contributed to the group separation in the study’s multivariate space.

EXCERPT 19.22 • Post Hoc Investigation Using Discriminant Ratio
Coefficients

The differences among the groups were examined using multivariate analysis of
variance (MANOVA) and descriptive discriminant analysis (DDA) as a follow-up
procedure (Huberty, 2006). To find out which variables distinguished the groups the
most, discriminant ratio coefficients (DRC) were considered. . . . The initial MANOVA
was significant which shows there
were differences between the positions. To further study the resulting differences,
linear discriminant functions were obtained. The test of dimensionality revealed one
significant discriminant function (canonical ) which accounted
for 87.7% of the variance. . . . The discriminant ratio coefficients (Table 3) suggest
that the best variable for distinguishing between the positions is the 20m sprint,
followed by the basketball throw, sprint and medicine ball throw.6 * 5m

R = .65; p = .005

1Wilks l = .53, F116,1002 = 2.35, p = .0052

TABLE 3 Discriminant Ratio Coefficients (DRC)

Variable DRC

S20 .398
D20 .077
BBT .200
MBT .128
S6X5 .185
D6X5 .041
CMJ .008
DJ25 - .037

Legend: S20: 20 m sprint; D20: 20 m sprint dribble; BBT: basketball throw; MBT:
medicine ball throw; S6X5: sprint; D6X5: sprint dribble; CMJ:
countermovementjump; DJ25: drop jump 25 cm height.

6 * 5 m6 * 5 m

Source: Erčulj, F., Blas, M., Čoh, M., & Bračič, M. (2009). Differences in motor abilities of
various types of European young elite female basketball players. Kinesiology, 41(2), 203–211.



476 Chapter 19

The second recommended post hoc procedure used by some researchers to
probe a significant MANOVA or MANCOVA is called the Roy–Bargman stepdown
analysis, or simply the stepdown F-test procedure. This procedure requires the re-
searcher to first prioritize the dependent variables based on practical or theoretical
considerations. Then, univariate comparisons among the groups take place, primar-
ily via the analysis of covariance, to see if each new variable considered explains a
significant amount of group separation above and beyond the amount already ex-
plained by the variables initially considered. In Excerpt 19.23, we see an example
of this kind of post hoc strategy being used in a study in which gifted male and
female college students were compared on the various components of a personality
trait called overexcitability.

EXCERPT 19.23 • Post Hoc Investigation Using Stepdown F-Tests

The OEQ-II is a 50-item, self-rating questionnaire to measure OE [overexcitability].
Ten items that assess each of the five OEs (emotional, intellectual, imaginational,
sensual, and psychomotor) are randomly distributed throughout the instrument. . . .
A MANOVA to determine whether OE profiles differed by sex found an overall dif-
ference between males and females 
Stepdown F tests indicated which OE means were significantly different for the
group variable sex. Males scored higher on intellectual OE (3.85 vs. 3.52), whereas
females scored higher on emotional (4.21 vs. 3.42) and sensual OE (3.58 vs. 3.18).

Source: Miller, N. B., Falk, R. F., & Huang, Y. (2009). Gender identity and the overexcitabil-
ity profiles of gifted college students. Roeper Review, 31(3), 161–169.

1¶ = .649, F = 12.1, df = 5, 112, p 6 .012.

The two post hoc strategies illustrated in Excerpts 19.22 and 19.23 are simi-
lar in that they help researchers achieve the same goal: identification of the de-
pendent variable(s) responsible for an initial rejection of the multivariate null
hypothesis. That is the same goal researchers have when they use the more popular
post hoc strategy of applying a univariate test to each dependent variable. Although
discriminant ratio coefficients and stepdown F-tests, on the one hand, and univari-
ate t- and F-tests, on the other hand, look the same in terms of the kind of infor-
mation provided, these two classes of post hoc strategies are dissimilar in their
philosophical approach to the way data should be analyzed. That difference is not
irrelevant; what is revealed in a post hoc investigation using univariate tests can be
different from what is discovered via multivariate analyses.

Three Final Comments

Before we finish our consideration of multivariate tests on means, I want to pose
(and then answer) three questions: (1) How much sample data is needed to perform
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a multivariate analysis? (2) Should the alpha level be modified in a post hoc
investigation if univariate tests are used to probe a significant multivariate result?
(3) What, if anything, can cause a multivariate analysis to produce murky or mis-
leading results?

Regarding the issue of sample size, there is one mathematical-based ground-
floor requirement, several rules-of-thumb for what is needed above that mathemat-
ical minimum, and one optimal way to answer the question, “How large should the
samples be?” As for the mathematical requirement, the computational formulas of
a multivariate analysis mandate that the number of scores in each comparison group
must exceed the number of dependent variables involved in the study. More data
than that, however, is needed because of concerns for avoiding Type II errors. I have
seen rules of thumb that deal with the minimum size of comparison groups (some
say n should be at least 20; others say 30), the minimum size of the total data set
(some say at least 100 cases are needed), and the minimum cases per dependent
variable (some say the ratio should be at least 10 to 1). The best way for a researcher
to determine the minimum sample size, of course, is to have an a priori power analy-
sis answer the question, “How large should n be?”

Should alpha be adjusted in a post hoc investigation? Most applied researchers
do not do this. This is due, I think, to a widespread belief that an initial multivari-
ate test has some form of built-in feature that holds down the Type I error risk when
post hoc tests are conducted. In reality, the risk of rejecting true null hypotheses is
inflated unless the Bonferroni or some other procedure is used to make the separate
post hoc tests more rigorous. This is true if the initial multivariate test is followed
by a set of univariate tests; it is also true if the post hoc investigation involves a
series of Roy–Bargman stepdown F-tests.

The last of our three concluding questions asks, “What, if anything, can cause
the results of a multivariate to produce murky or misleading results?” The truthful
answer requires just two words: “Many things.” Problems arise, for instance, if sam-
ples are not random subsets of populations, if dependent variables are measured
with unreliable or invalid instruments, if important assumptions are violated, if
irrelevant dependent variables are included, if important and relevant dependent
variables are overlooked, if the sample size is inadequate, and if no effort is made
to assess the practical significance of results.

In addition to the list of items included in the preceding paragraph, we must
remember that a multivariate analysis is inferential in nature, and thus the deci-
sion to reject or not reject any null hypothesis does not prove anything. Unfortu-
nately, many researchers talk about their multivariate findings as if indisputable
facts have been unveiled. Although we have no control over what those researchers
write or say, we most certainly do have control over how we interpret the claims
they make. Remember, therefore, that any statistical test that causes its null
hypothesis to be rejected might indicate nothing more than a Type I error. Similarly,
any statistical test that causes its null hypothesis to be retained might represent
nothing more than a Type II error.
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We have considered the notion of correlation in several previous chapters. The
central focus of Chapters 3, 9, and 16 was on descriptive and inferential procedures
that assess the strength of relationships. In Chapter 4, we considered cases in which
correlation is used to estimate reliability and validity. In Chapter 17, we noticed how
chi square and associated techniques are sometimes used in a correlational fashion.
In Chapters 15 and 19, we saw how the concept of correlation is embedded in
the techniques of ANCOVA, MANOVA, and MANCOVA. Because correlation is
involved, either directly or indirectly, in so many kinds of data analysis, it is no
exaggeration to say that correlation is the single most important statistical instru-
ment in the applied researcher’s toolkit.

We now turn our attention to another statistical procedure that has the concept
of correlation as its core: the technique of factor analysis. As with most of the sta-
tistical procedures considered in this book, we do not examine the detailed formu-
las that come into play when data are factor analyzed. Instead, we concentrate on
three things: the goals of a factor analysis, the way researchers report the results of
their factor analytic studies, and the reasons why some factor analyses deserve the
label well done, whereas others are deficient in small or large ways.

The Goal (and Basic Logic) of Factor Analysis

Factor analysis is a procedure that attempts to reduce the complexity of a multi-variable
data set so it becomes easier for people to use the data in applied settings or in the
development/refinement of theory. In a word, the goal of factor analysis is parsimony.
The main question is simple: Can the people, animals, or things that have been
measured on several variables be described, accurately, by means of a small number
of numerical descriptors rather than by scores on each of the initial variables?

C H A P T E R 20
Factor Analysis
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Suppose, for example, that each of 100 job applicants is measured in terms
of 15 different traits: creativity, vocabulary, honesty, age, math ability, persever-
ance, social skills, attractiveness, general intelligence, physical stamina, height,
education, tact, writing ability, and kindness. Having 15 scores per applicant
makes it extremely difficult to decide who has the most assets and the least liabil-
ities. A factor analysis might help in this situation, because it attempts to reduce
the initial set of 15 variables into a more manageable set of descriptors. Results
might indicate that each applicant could be described fairly well by scores on just
three mega-traits: academic characteristics, physical characteristics, and interper-
sonal characteristics. In this example, there has been a parsimonious reduction of
15 variables into just three.

The basic logic of factor analysis is simple. If two of the initial variables are
highly related with each other but largely unrelated to any of the other variables,
then those two variables should be merged together, with a new variable created so
a single score can represent a person’s standing on the two combined variables.
Doing this achieves the goal of parsimony by reducing the redundancy between
those two initial variables being combined. Similarly, if three of the other initial
variables are highly related with one another (but not related to any of the other
initial variables), then those three variables also can be combined, with a second,
newly created variable standing in for the three that have been merged. Again,
reduction in redundancy produces parsimony.

Each of the newly created variables in a factor analysis is called a factor.1 In
any given study, there may end up being one, two, or more factors. The number of
factors that emerge from a factor analysis depends on the network of relationships
among the original variables. The results of a factor analysis also depend on cer-
tain decisions the researcher makes when conducting the analysis. Before consid-
ering some of those needed decisions facing a researcher who performs a factor
analysis, let’s look at two tables that help to illuminate the goal (and logic) of
factor analysis.

The two tables we next consider come from a study concerned with chil-
dren’s ability to write. The study’s participants were 120 school children ages 8
through 11. First, the children were told that they would hear an adult read a para-
graph and then their task would be to write down everything they could remem-
ber.2 Next, the paragraph was read twice, after which the children were given as
much time as they wanted to perform the writing task. Finally, the researchers
evaluated each student’s paper in terms of nine criteria: total number of words
(TNW), number of ideas from the paragraph (IDEAS), number of clauses begin-
ning with the coordinating conjunctions and, but, or or (T-UNIT), percentages of

1This kind of factor should not be confused with kind of factor involved in an ANOVA, ANCOVA, MANOVA,
or MANCOVA. In those analyses, factors designate the independent (i.e., grouping) variables.
2The paragraph contained 227 words and 20 sentences, and it answered the question, “Where do people live?”
This paragraph was carefully selected to be age-appropriate for the study’s children.
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words misspelled (SPELL), conventional punctuation (CONVEN), and four other
indicators of quality writing. These nine criteria were the original variables in the
factor analysis.

After the nine scores became available for each child’s written response, the
researchers computed the 36 possible bivariate correlations among the nine vari-
ables. Those correlations appear in Excerpt 20.1. In a very real sense, a correlation
matrix such as this contains the ingredients for the factor analysis. In other words,
any factor analysis begins with an examination of bivariate correlations. Take a
moment to examine this excerpt’s correlations, and see if you can identify any sub-
sets of variables that are characterized by (1) high correlations among the variables
within the subset and (2) low correlations between the subset’s variables and variables
outside the subset.

EXCERPT 20.1 • The Starting Point of a Factor Analysis: Correlation
Coefficients

TABLE 4 Intercorrelations among writing measures

Variable 1 2 3 4 5 6 7 8 9

1. TNW — .83** .88** .43** .93** .25** �.19* �.39** �.007
2. IDEAS — .79** .24** .81** .15 �.19* �.35** �.06
3. T-UNIT — �.024 .83**�.10   .13 �.27** �.06
4. MLT-UNIT — .38** .78** .17 �.33** .07
5. CLAUSES — .43** �.16 �.36** �.05
6. C-DENSITY — �.05 �.21* .02
7. GRAM T-UNIT — .21* �.20*

8. SPELL — �.30*

9. CONVEN —

* **

Source: Puranik, C. S., Lombardino, L. J., & Altmann, L. J. P. (2008). Assessing the microstruc-
ture of written language using a retelling paradigm. American Journal of Speech-Language
Pathology, 17(2), 107–120.

p 6 .01.p 6 .05;

After the factor analysis in the writing study had been performed, the researchers
reported that the nine variables could be represented well by three factors, which
they labeled productivity, complexity, and accuracy. To defend their claim that these
three new variables, or factors, represented a sensible and statistically defensible
reduction of the nine original variables, the researchers computed the bivariate cor-
relation between each of the nine original variables and each of the three factors.
These correlations appear in Excerpt 20.2.
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If you look closely at the information in Excerpt 20.2, you will be able to un-
derstand why the three factors in this study were called Productivity, Complexity,
and Accuracy. Within each row of correlations, one of the three rs was quite large
compared with the other two correlations on the same row. This means that each of
the nine original variables was found to be mainly associated with just one of the
three derived factors. The writing variables that had their highest correlation with
the first factor were variables that dealt with how much the students wrote (e.g., total
number of words and total number of ideas), those that correlated most with the sec-
ond factor assessed how sophisticated the students’ written responses were (e.g.,
clause density), and those that correlated most with the third factor measured how
careful the students were in following writing rules (e.g., correct spelling).

The Three Main Uses of Factor Analysis

Although factor analysis is used in applied research investigations for many rea-
sons, it seems that most researchers utilize this statistical procedure in an effort to
achieve one of three goals. These goals can be described as data reduction, instru-
ment development, and trait identification. Before we look at the specific steps that
researchers take when doing a factor analysis, let’s briefly consider what they hope
to achieve by using this statistical procedure.

In some studies, factor analysis is used to see if a small number of factors can
adequate represent a larger number of original variables. This is precisely why the

EXCERPT 20.2 • The End Point of a Factor Analysis: Derived Factors

TABLE 6 Intercorrelations among factors and writing measures

Factor

Writing variable Productivity Complexity Accuracy

1. TNW .78 .30 �.22
2. IDEAS .74 .16 �.18
3. T-UNIT .77 �.13 �.11
4. MLT-UNIT .19 .91 �.24
5. CLAUSES .77 .39 �.17
6. C-DENSITY .16 .95 �.14
7. GRAM T-UNIT .23 .13 �.55
8. SPELL �.19 �.24 .69
9. CONVEN �.27 �.008 �.79

Source: Puranik, C. S., Lombardino, L. J., & Altmann, L. J. P. (2008). Assessing the microstruc-
ture of written language using a retelling paradigm. American Journal of Speech-Language
Pathology, 17(2), 107–120.



Factor Analysis 483

researchers associated with the writing study subjected their data to a factor analy-
sis. Other researchers have the same goal, as illustrated in Excerpt 20.3.

Besides being used because of its data-reduction capability, factor analysis is
frequently used in studies designed to develop, refine, or assess questionnaires, sur-
veys, and tests. In some cases, factor analysis helps a researcher assign individual
items to different subscales of the instrument (and to identify poorly performing
items that should be discarded). In other cases, the goal is validation. Excerpt 20.4
represents the popular usage of factor analysis to assess construct validity.

Finally, factor analysis is often used to help identify underling personality
constructs that do not manifest themselves totally in any test or questionnaire. These
latent traits, as they are sometimes called, lie below the surface of typical measur-
ing instruments.3 In Excerpt 20.5, we see an example where the stated purpose in
using factor analysis was to identify “underlying dimensions.”

3The measured variables of this kind of factor analysis are sometimes referred to as indicators, observed
variables, or manifest variables.

EXCERPTS 20.3–20.5 • Different Reasons for Using Factor Analysis

The goal of our factor analysis is to find the smallest number of interpretable factors
that explain the correlations among the set of variables. . . . By the help of factor
analysis, reducing a large amount of data to identify the common characteristics of
a group of variables will facilitate to interpret the results of the research.

Source: Aydin, B., & Ceylan, A. (2009). The effect of spiritual leadership on organizational
learning capacity. African Journal of Business Management, 3(5), 184–190.

Factor analysis was used to test construct validity and discriminant validity.

Source: Bechor, T., Neumann, S., Zviran, M., & Glezer, C. (2010). A contingency model for
estimating success of strategic information systems planning. Information & Management,
47(1), 17–29.

Factor analysis was employed to determine the underlying dimensions of lifestyle
variables.

Source: Hur, W. M., Kim, H. K., Park, J. K. (2010). Food- and situation-specific lifestyle seg-
mentation of kitchen appliance market. British Food Journal, 112(3), 294–305.

Exploratory and Confirmatory Factor Analysis

Several different kinds of factor analysis exist because there are different ways to
perform the computations. Some of these are discussed in the next major section
when we focus our attention on the six main steps of a factor analysis. At this point,
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I simply want to distinguish between the two overarching categories of factor analy-
sis. One of these categories involves factor analyses that are exploratory in nature;
in the other category, factor analyses are designed to be confirmatory.

In an exploratory factor analysis (EFA), the researcher has little or no idea as
to number or nature of factors that will emerge from the analysis. With this kind of
factory analysis, it is as if the researcher is about to visit a new art museum that has
just been built and filled with artistic treasures. Once inside, the researcher discovers,
for the first time, how to navigate through the different rooms, where the different
installations are located, and what specific items of art have the strongest personal
appeal. This metaphor is a bit exaggerated, of course, because a researcher perform-
ing an EFA knows several things about the study, such as the instruments used to
measure each variable, the nature of the research participants, related research findings,
and, perhaps, theory-based hypotheses. However, the hallmark of an EFA is the lack
of any a priori constraints on the number or nature of factors that are identified.

Excerpt 20.6 comes from a study in which an EFA was conducted. In this 
excerpt, notice how the researchers provide an explanation as to why they chose to
use this kind of analysis.

EXCERPT 20.6 • Exploratory Factor Analysis (EFA)

The objectives of this study were to assess the validity and reliability of a Setswana
translation of the Perceived Wellness Survey (PWS) in the South African Police
Service and to investigate differences in the perceived wellness of police members,
based on gender, qualification, age and rank. . . . The PWS was translated into
Setswana for purposes of this study. . . . [T]he current authors used exploratory
factor analysis because the PWS is a recently developed measuring instrument, and
no studies regarding its validity in South Africa were found. Exploratory factor
analysis was therefore used to examine construct equivalence.

Source: Rothman, S., & Ekkerd, J. (2007). The validation of the Perceived Wellness Survey
in the South African Police Service. Journal of Industrial Psychology, 33(3), 35–42.

In a confirmatory factor analysis (CFA), the researcher plays a more active
role than in an exploratory factor analysis. Guided by theory or the findings from
previous research, the researcher in this kind of analysis specifies, on the front end,
the desired number of factors and how measured variables are related to those fac-
tors. Returning to our museum metaphor, the researcher here is like a person enter-
ing a museum that has been previously visited by one of the researcher’s friends.
That friend has described the museum’s floor plan, where the best pieces of art are
located, when the crowds will be gone, and how to join a docent-guided tour. Armed
with this information, our museum visitor has various expectations as to what things
are on display, where they are located, and how to navigate around the museum.
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Those expectations may or may not be met, however, due to changes that may have
been made since that friend visited the museum.

In addition to having control over the number of factors that emerge from the
analysis, researchers who conduct CFAs can utilize statistical tests to assess null
hypotheses. We see examples of this in our next section and in Chapter 21. For now,
suffice it to say that many people consider this hypothesis-testing opportunity to be
an asset of confirmatory factor analyses.

Excerpt 20.7 comes from a study in which a new, shorter version of an exist-
ing test was created, used on a trial basis, and evaluated. A CFA was used because
the researchers had information about the longer instrument’s factors. Notice that
one of the researcher’s goals in creating the BQ-13 was to “maintain the original’s
theoretical constructs.”

EXCERPT 20.7 • Confirmatory Factor Analysis (CFA)

The 27-item Barriers Questionnaire [called the BQ-27] is a valid and reliable mea-
sure of patients’beliefs about pain and analgesics. . . . The specific aims of this [study]
were to use statistical and analytical approaches to create a shortened BQ tool, main-
tain the original’s theoretical constructs, and determine the new tool’s validity, inter-
nal consistency, stability, and sensitivity. . . . The BQ-27 was reduced to 13 items
using data from 259 patients [who recommended retention of certain items]. . . .Con-
firmatory factor analysis was used to evaluate the construct validity of the BQ-13
[showing that] the BQ-13 is valid, [with] seven items that measure barriers related to
pain management and six items specifically related to analgesic side effects.

Source: Boyd-Seale, D., Wilkie, D. J., Kim, Y. O., Suarez, M. L., Lee, H., Molokie, R., et al.
(2010). Pain barriers: Psychometrics of a 13-item questionnaire. Nursing Research, 59(2),
93–101.

EXCERPT 20.8 • Exploratory and Confirmatory Factor Analyses Used
Together

Research has identified a large number of strategies that people use to self-enhance
or self-protect. We aimed for an empirical integration of these strategies. Two stud-
ies used [newly created] self-report items to assess all commonly recognized self-

Many studies are characterized by the joint use of both EFA and CFA. Such
studies typically are two-stage investigations in which EFA is used in the initial por-
tion of the investigation. Then, in the second part of the study, CFA is performed,
with guidance provided by the findings in the first stage. Excerpt 20.8 illustrates this
popular was of incorporating both kinds of factor analysis into the same study.

(continued )
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In the next section, we consider the various steps researchers take when they
perform an EFA. After looking at this first main kind of factor analysis, we then focus
our attention on how a CFA differs from the kind of factor analysis that is exploratory.

Exploratory Factor Analysis

In this section, we consider the various steps researchers take when doing an EFA.
Because this statistical technique is complex, with a variety of options available as
the individual steps are taken, the description presented here is only an overview of
the path taken by the typical researcher. Moreover, our focus here, as we look at the
sequential process of doing a factor analysis, is on what applied researchers do and
how they report what they discovered.4

With the preceding paragraph indicating what is (and is not) included in the
coming presentation, let’s now consider the various steps researchers take—or
should take—when they perform an EFA.

Step 1: Checking the Suitability of Data for a Factor Analysis

The initial step in any factor analysis involves checking to see if certain important
features of the data set meet basic requirements for this kind of statistical analysis.
What is done here is a bit like conducting a preliminary check on assumptions, a
step taken by researchers when using many of the test procedures considered in
earlier chapters. However, applied researchers say that they have checked the
suitability of their data to indicate that they have examined a specific subset of
assumptions. Later, I point out that there are other assumptions connected to a factor
analysis beside the ones focused on in this initial step of a factor analysis.

4Following the tradition of this book’s earlier chapters, the presentation here does not focus on formulas or
statistical theory. These two things—theory and data manipulation—are not unimportant, and the interested
reader is encouraged to use other available resources to become knowledgeable of (1) the statistical rationale
for each options when doing a factor analysis and (2) the way data are treated when a computer performs
the analysis.

EXCERPT 20.8 • (continued )

enhancement or self-protection strategies. In Study exploratory factor
analysis identified 4 reliable factors. In Study this model was validated
using confirmatory factor analysis.

Source: Hepper, E. G., Gramzow, R. H., & Sedikides, C. (2010). Individual differences in self-
enhancement and self-protection strategies: An integrative analysis. Journal of Personality,
78(2), 781–814.

2 (N = 416),
1 (N = 345),
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One basic feature of a study that can make a set of data unsuitable for factor
analysis is sample size. Simply put, factor analysis does not work well with small
samples. The issue here is not the absolute size of n but rather the size of the sample
relative to the number of original variables. Many statistical authorities argue that the
n-to-variables ratio should be at least 10 to 1, with even larger sample sizes than that
encouraged by other authorities. Factor analysis can be (and frequently is) used with
smaller-than-recommended sample sizes; however, empirical studies have shown that
the identified factor structure is likely to be inaccurate if the sample size is too small.

In addition to considering the sample size, researchers typically do three other
things when checking to see if their data are suitable for a factor analysis. They inspect
the determinant of the correlation matrix, they compute the Kaiser–Meyer–Olkin
(KMO) measure of sampling adequacy, and they apply Bartlett’s chi-square test of
sphericity. The data are judged to be factorable if the determinant is greater than
.00001, if the KMO measure of sampling adequacy is greater than .60, and if
Bartlett’s test of sphericity is significant.5

Excerpt 20.9 illustrates how researchers typically report their efforts to assess
the suitability of their data for a factor analysis. This excerpt deserves your close
attention, because it indicates the desirable outcomes when checks are made on the
suitability of data for EFA.

5The null hypothesis of Bartlett’s test states that all population correlations among the original variables are
equal to zero.

EXCERPT 20.9 • Assessing the Suitability of Data

The determinant of the correlation matrix as an indictor of multicollinearity was
.007, which is substantially greater than the minimum recommended value of
.00001. . . . The Kaiser–Meyer–Olkin (KMO) coefficient of sampling adequacy fell
within the excellent range at .84 [and further analysis] showed that all KMO values
for individual variables were greater than .700. . . . The Bartlett’s Test of Sphericity,
which examines whether the matrix is different from the identity matrix, was sig-
nificant indicating that the matrix does not resem-
ble an identity matrix, further supporting the existence of factors within the data.

Source: Randolph, K. A., & Radey, M. (2009). Measuring parenting practices among parents
of elementary school-age youth. Research on Social Work Practice, in press.

(x2 (171) = 1921.83, p 6 .0001),

The first sentence in Excerpt 20.9 contains the word multicollinearity. The
unfavorable condition of multicollinearity exists if two or more of the original vari-
ables are too highly correlated with each other. However, the correlations between
variables should not all be very small, otherwise no factors will be identified. Thus,
some researchers hope that all bivariate correlations will be moderate in size (and
they inspect the correlation matrix to see if all correlations fall between .30 and .80).
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If preliminary checks indicate that data are unsuitable for a factor analysis,
researchers typically do one of two things. One option is to delete problematic vari-
ables, recheck for suitability, and then proceed with a factor analysis if no new
red flags appear. The other option is to decide not to do a factor analysis. Give
researchers credit when they do either of these things after detecting a problem
when assessing the factorability of their data.

Step 2: Selecting a Method of Factor Extraction

Presuming that no initial problems with the data have been identified, the second
step in a factor analysis involves selecting a statistical method that extracts the fac-
tors from the correlation matrix. In choosing a method of factor extraction, the
researcher functions like a spelunker who must choose what kind of flashlight to
take into a dark cave. Just as there are many different kind of flashlights—head-
mounted versus handheld, spotlight versus lantern-like, and so on—that could help
illuminate the cave’s interior, there are several different kinds of techniques that can
be used to help researchers “see” the factors that exist among, or perhaps beneath,
the full set of bivariate correlations.

The factor extraction methods used most often by applied researchers are
called maximum likelihood, principal components analysis, and principal axis
factoring.6 The first of these works best if the assumptions underlying factor
analysis are met; otherwise, either of the other two extraction procedures is recom-
mended. In Excerpts 20.10, 20.11, and 20.12, we see examples of these three
extraction methods being used in applied studies.

6Some of the other extraction procedures are called ordinary least squares, alpha factoring, generalized least
squares, and image factoring.

EXCERPTS 20.10–20.12 • Factor Extraction

An exploratory Factor Analysis (FA) was employed in order to determine which of
the thirty items formed related subsets. . . . The maximum likelihood extraction was
used to find the factor solution which would best fit the observed correlations.

Source: Baytiyeh, H., & Pfaffman, J. (2010). Volunteers in Wikipedia: Why the community
caters. Educational Technology & Society, 13(2), 128–140.

Principal Components Analysis (PCA) method was [used] to extract the underlying
factors affecting the attitudes of librarians toward information technology.

Source: Ramzan, M., & Singh, D. (2010). Factors affecting librarians’ attitudes toward IT
application in libraries. The Electronic Library, 28(2), 334–344.

(continued )
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Step 3: Deciding How to Rotate Factors

The factors extracted from the correlation matrix are better if they are rotated. This
is because rotated factors help the researcher achieve the goals of simplification and
clarity when trying to understand and describe the factor structure of the data.
Factor rotation helps achieve these goals by reducing the number of factors re-
quired to explain any given amount of variance contained in the original variables.
For example, with unrotated factors, it might take four factors to account for 90 per-
cent of the variability in the data set; after rotation, just two factors might be able
to achieve this same level of explanatory power.

Returning to our cave exploration analogy, deciding on factor rotation is like
choosing a place to stand in the cave when holding the light in an effort to see the
cave’s interior. Certain vantage points are better than others in illuminating geo-
logical formations, fossils, and drawings on the walls. Similarly, factor rotation
makes a difference in what the researcher “sees” when trying to identify connec-
tions among the original variables. Neither the position of the light in the cave nor
the selected method of rotation in factor analysis changes the reality of what is
being looked at, however. It is only the interpretation of that reality that is affected
by where the light is or which rotational method is used.

There are two main categories of factor rotation and several specific methods
within each category. One category involves an orthogonal rotation of factors,
thereby keeping the factors statistically independent (i.e., uncorrelated). The most
popular rotation used in this category is called varimax rotation; alternative fre-
quently used rotational procedures go by the names quartimax and equamax. The
other category involves an oblique rotation of factors, thereby allowing the factors
to be correlated. Specific methods of rotation in this category are called direct
oblimin, quartimin, and promax.

In Excerpts 20.13 and 20.14, we see examples of how researchers typically
indicate whether they used an orthogonal rotation or an oblique rotation of extracted
factors. Excerpt 20.15 illustrates the joint use of both rotational procedures within
the same investigation. (As illustrated by Excerpt 20.15, it is not uncommon for

EXCERPTS 20.10–20.12 • (continued)

Applying factor analysis to symptom cluster research is an effective statistical
approach to identifying common factors that explain the correlation between symp-
toms and finding the communality that “binds” 2 or more symptoms together into a
common concept. Accordingly, exploratory factor analysis with principal axis fac-
toring was used to identify symptom clusters.

Source: Ryu, E., Kim, K., Cho, M. S., Kwon, I. G., Kim, H. S., & Fu, M. R. (2010). Symp-
tom clusters and quality of life in Korean patients with hepatocellular carcinoma. Cancer
Nursing, 33(1), 3–10.
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similar results to be obtained when both orthogonal and oblique rotations are com-
puted for the same data.)

Step 4: Determining the Number of Useful Factors

Both before and after rotation, there are as many factors as there are variables. How-
ever, these factors vary in how useful they are in accounting for variability among
the original variables. Simply put, certain factors are better than others. Therefore,
the researcher’s next task when conducting an EFA is to determine which of the fac-
tors should be retained and which should be discarded.

Four different strategies are used by applied researchers in their effort to iden-
tify useful factors and thereby “separate the wheat from the chaff.” These strategies
involve using Kaiser’s criterion, examining a scree plot, conducting a parallel analy-
sis, or applying the 5 percent rule. These strategies have the same goal, but they try
to achieve that common goal in different ways.

After factor extraction and rotation has taken place, a single numerical value
called an eigenvalue is associated with each factor.7 In any given analysis, the sum
of the eigenvalues is equal to the number of variables. Therefore, a factor analysis of
four variables might produce four factors with eigenvalues equal to 2.0, 1.5, 0.4, and
0.1. Any factor’s eigenvalue is large to the extent that it accounts for variance in the

7Eigenvalues are sometimes called characteristic roots.

EXCERPTS 20.13–20.15 • Factor Rotation

The construct validity of the measures was tested using exploratory factor analysis
(principal component analysis and varimax orthogonal rotation method).

Source: Filiz, Z. (2010). Service quality of travel agents in Turkey. Quality & Quantity, 44(4),
793–805.

We performed exploratory factor analysis using the principal component analysis
extraction method with an oblique (promax) rotation on the 17-item instrument.

Source: Krauss, S. E., Hamid, J. A., & Ismail, I. A. (2010). Exploring Trait and Task Self-
awareness in the Context of Leadership Development among Undergraduate Students from
Malaysia. Leadership, 6(1), 3–19.

Because we had reason to suspect that the four factors would be correlated, we ran
the exploratory factor analysis using oblique rotation as well as varimax (orthogonal)
rotation. The results were virtually identical with regard to which items loaded on
the four factors.

Source: Darling, R. B., & Heckert, D. A. (2010). Orientations toward disability: Differences over
the lifecourse. International Journal of Disability, Development and Education, 57(2), 131–143.
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full set of original variables. Thus, big eigenvalues imply useful factors, whereas
small eigenvalues imply superfluous factors. When researchers apply Kaiser’s crite-
rion, factors are retained only if they have eigenvalues larger than 1.0. Excerpt 20.16
shows an example of this eigenvalue-greater-than-1 strategy being used.

EXCERPT 20.17 • Scree plot and Parallel Analysis

Source: Schultheiss, O. C., Yankova, D., Dirlikov, B., & Schad, D. J. (2009). Are implicit and
explicit motive measures statistically independent? A fair and balanced test using the Picture
Story Exercise and a cue- and response-matched questionnaire measure. Journal of Personality
Assessment, 91(1), 72–81.

EXCERPT 20.16 • Kaiser’s Criterion

We used principal components factor analysis in order to collapse the motivational
and attitudinal data into indices representing their underlying constructs. The indices
were created separately for students and employee samples. Following the Kaiser
criterion, we retained factors with an eigenvalue greater than 1.

Source: Komarek, T., Lupi, F., Kaplowitz, M., & Thorp, L. (2010). Institutional management
of greenhouse gas emissions: How much does “green” reputation matter? Paper presented at
the Agricultural & Applied Economics Association AAEA, CAES, & WAEA Joint Annual
Meeting, Denver, Colorado.

The second and third strategies for identifying useful factors are similar in
that they both use a graph. An example of this kind of visual aid is contained in
Excerpt 20.17. As you can see, the vertical axis on the left represents the numerical
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FIGURE 1 Plot of eigenvalues from principal components analysis of the actual
questionnaire version of the Picture Story Excercise data versus the 95th percentile
of eigenvalues derived from a parallel principal components analysis of random data.
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values of eigenvalues, whereas the horizontal axis represents the factors that have
been identified. In this particular study, there are 14 points along the baseline
because there were 14 personality variables involved in the factor analysis.

The second strategy for identifying useful factor involves plotting a single set
of dots in the graph, with adjacent dots connected by line segments. The resulting
jagged line is called a scree plot, and it appears in Excerpt 20.17 as the set of dark-
ened dots labeled actual data. The left end of this jagged line is positioned high off
the baseline because the first factor’s eigenvalue was equal to 4.48. Moving from that
starting point to the right, the line connecting the solid dots drops sharply, because
the eigenvalue for the second identified factor turned out equal to 2.00. The line then
drops slightly and then sharply again (because the eigenvalues for the third and
fourth factors were 1.79 and 0.95, respectively). Thereafter, the line connecting the
darkened dots seems to decrease in a more constant and gradual fashion.8

When only a scree plot is in view (as would be the case if just the darkened
dots had been plotted in Excerpt 20.17), the researcher decides how many useful
factors there are by looking to see where the jagged line begins to have a constant
and slow rate of decline. This is called the graph’s elbow. In Excerpt 20.17, the
elbow seems to occur at the dot associated with the fourth factor’s eigenvalue. Fac-
tors associated with dots to the left of the elbow are deemed to be useful.

The third strategy for identifying useful factors involves something called a
parallel analysis. With this approach, two jagged lines are put into the graph. One of
these jagged lines is simply the scree-plot line. The second line comes from a factor
analysis of a new set of random numbers set up to have the same sample size and num-
ber of variables as the data actually being analyzed in the study. Because this second,
“parallel” factor analysis uses random data, any correlations between variables exist
because of chance, and thus the eigenvalues from the second analysis should all be low.

Once the two jagged lines have been created, the place where the lines cross
allows the researcher to quickly determine how many useful factors there are. Such
factors are those associated with the dots in the jagged line from the first analysis
positioned to the left of the point where the two lines intersect. In Excerpt 20.17,
this rule leads to three useful factors.

The last of the four strategies for identifying useful factors is the 5 percent
rule. This strategy says to maintain any factor so long as its eigenvalue represents
no less that 5 percent of the total eigenvalue “pie.” Earlier, I used an example of a
factor analysis of four variables that produced factors with eigenvalues equal to 2.0,
1.5, .4, and .1. The last of these eigenvalues is smaller than 5 percent of all four
added together; accordingly, its factor would be deemed too weak to be retained.

Some researchers use just one of the four different strategies—Kaiser’s crite-
rion, a scree plot, parallel analysis, or the 5 percent rule—to decide which factors
are important enough to be retained. Many researchers use a combination of these
strategies. If applied to the data in Excerpt 20.17, three of the strategies—Kaiser’s

8The line connecting the dots will never veer upwards because the factors along the baseline are ordered based
on the sizes of their eigenvalues.
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criterion, a scree plot, and parallel analysis—would lead to a retention of just the
first three factors; however, the strategy based on the 5 percent rule would also
retain the fourth factor. This example illustrates the value in using more than one
approach to deciding how many useful factors underlie the data.

Step 5: Determining the Variable Make-Up of Each Factor

After identifying a subset of factors based on an examination of eigenvalues, the
researcher’s next task is to figure out which of the original variables go with each
of these strong factors. Researchers do this by computing and then carefully exam-
ining a set of factor loadings. As illustrated in Excerpt 20.18, factor loadings are
almost always displayed in a chart that has columns corresponding to factors and
rows corresponding to variables. (Excerpt 20.18 has an extra column on the right
and two extra rows at the bottom; we’ll consider this extra information shortly.)

EXCERPT 20.18 • Factor Loadings 

TABLE 2 The Factor Loading Matrix of the Consideration of Future
Consequences Scale: Principal Components Analysis With Varimax Rotation

Factor

Item A1 A2 A3 Communality

4a .713 �.019 .174 .539
3a .662 .189 .299 .563
11a .647 .418 �.005 .594
5a .575 �.175 .153 .385
9a .523 .461 �.136 .505
10a .488 .402 �.004 .400
12a .478 .124 �.100 .254
8 �.027 .692 .186 .515
7 .118 .636 .059 .422
6 .102 .601 .149 .393
2 .023 .059 .839 .707
1 .163 .295 .701 .605
Eigenvalue 2.490 1.966 1.427 5.877
% of variance 20.8 16.4 11.9 49.0

Note: Loadings in bold are values greater than .40 and are retained for that factor. Underlined
values indicate a multiple loading on two factors. Eigenvalues and percentage of variance are
after rotation.
aReverse-scored items.

Source: Rappange, D. R., Brouwer, W. B. F., & van Exel, N. J. A. (2009). Back to the Consid-
eration of Future Consequences Scale: Time to reconsider? Journal of Social Psychology,
149(5), 562–584.
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In the study from which Excerpt 20.18 was taken, the researchers factor ana-
lyzed a personality inventory designed to measure people’s inclination to consider
the future consequences of their current behavior. This inventory contained 12 items—
e.g., “I am willing to do something I find not much fun if it pays off later on”—with
a five-option format available so each respondent could indicate how accurately
each item described him or her. Each of these items was treated as a variable in the
factor analysis, with the original data coming from 2,006 young adolescents
(ages 11–15) in the Netherlands.

Each row in Excerpt 20.18 shows the factor loadings of a given item on each
of the three factors that had been identified. Each factor loading is simply the product–
moment correlation between the adolescents’ scores on the item and their scores on
the factor. For example, the information for item 2 (the 11th item in the list) shows
that this item had a correlation of .023 with factor A1, a correlation of .059 with
factor A2, and a correlation of .839 with factor A3. Using the language of factor
analysis, we can interpret these correlations by saying that this item loaded heavily
on factor A3, but hardly at all on factors A1 or A2. This simply means that item 2
belongs in, or is a component of, the third factor.

To help us see which items belong to each of the factors, the researchers who
prepared the table in Excerpt 20.18 bolded any factor loading that was greater than
.40. To help us even more, the researchers juggled the order of the items such that
those items loading most on factor A1 are listed first, followed by items that loaded
most on Factors A2 and A3. Finally, the researchers underlined three factor load-
ings that were higher than .40 but not the highest for these items; this calls our
attention to the fact that those three items have nontrivial loadings on two of the
factors. (Cases like these of double loading are not uncommon.)

In Excerpt 20.18, the final column contains the communality for each variable
(i.e., each item in the personality inventory). These communalities, which can range in
size from 0 to 1, indicate the relative value of a variable to the factor structure being
created. A large communality indicates that a variable is useful; conversely, small com-
munalities may prompt the researcher to drop the variable from future analyses (or, if
the variables are items in a test being developed, eliminate the item from the test).9

The final thing to note about Excerpt 20.18 is beneath each column of factor
loadings. In that spot in the table, the researchers presented each factor’s eigenvalue.
We considered eigenvalues previously, but now we can see how they are computed.
If we first square the individual factor loadings for factor A1 and then add up those
resulting squares, we get 2.490. Likewise, the sum of the squared factor loadings
for factor A2 (or factor A3) is equal to 1.966 (1.427). The percentage beneath each
of these values was computed by dividing each eigenvalue by 12, the number of
variables (i.e., items). Collectively, the three factors account for about 49 percent of
the variance in the original data.

9A communality is computed as the sum of the squared factor loadings. In Excerpt 20.18, for example, the
first communality equals (.713)2 + ( - .019)2 + (.174)2.
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Step 6: Naming Factors

The factors identified in a factor analysis initially have no names. They are just fac-
tors, as exemplified by the table we saw in Excerpt 20.18. In an EFA, the names of
factors are established in a post hoc manner by the researcher looking to see which
variables load most heavily on each factor. An illustration of this being done appears
in Excerpt 20.19.

EXCERPT 20.19 • Naming Factors in an Exploratory Factor Analysis

In Study 1, exploratory factor analyses revealed four factors. . . . Items with salient
loadings on Factor I corresponded to parental behavior which shamed the child,
made the child feel unsafe and which placed developmentally inappropriate
demands on the child; items with salient loadings on Factor II described insensitive
parental behavior; items with loadings on Factor III described physically violent
parental behavior which would terrorize the child and items with loadings on Factor IV
described rejecting/isolating parental behavior. Thus, the four factors were named as
“Inappropriate Expectations,” “Insensitivity,” “Terrorizing,” and “Rejecting/Isolating,”
respectively.

Source: Uslu, R. I., Kapci, E. G., Yildirim, R., & Oney, E. (2010). Sociodemographic charac-
teristics of Turkish parents in relation to their recognition of emotional maltreatment. Child
Abuse & Neglect, 34(5), 345–353.

In this kind of factor analysis, the naming of factors is a subjective process.
The names given to the factors by one person who looks at a table of factor loadings
might differ from the names created by someone else looking at the same table.
Accordingly, it is prudent in this kind of factor analysis to have different people
independently establish factor names. If the resulting sets of factor names are similar,
we can be more confident that the factors have been properly labeled. Unfortu-
nately, few researchers take the time to do this.

Confirmatory Factor Analysis

Confirmatory factor analysis (CFA) is similar to exploratory factor analysis (EFA)
in several respects. CFA involves measured variables, an initial matrix of intercor-
relations among those variables, factors, and factors loadings. In addition, this form
of factor analysis is often used for the purpose of assessing the construct validity of
measuring instruments designed to assess personality traits.

Although EFA and CFA are alike in certain respects, they differ in two main
ways. First, there is the issue of hypotheses. Whereas a researcher can conduct an
EFA without having any hunches as to how the analysis will turn out, CFA demands
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that hypotheses guide the way the data are analyzed. Second, there is the issue of
model fit. With EFA, the results (in terms of the number of factors, factor names,
and factor composition) present the researcher with what we might call a model, but
there is no feature of the analytic procedure that allows that model to be tested. In
contrast, CFA allows the researcher to statistically test the fit of any proposed
model(s). These two differences make it legitimate to think that EFA is a theory-
generating activity whereas CFA is a theory-testing endeavor.

With the preceding two paragraphs providing a brief introduction, let’s now
consider the various steps researchers usually take when they perform a bare-bones
CFA. As noted in Chapter 21, a CFA can be, and often is, performed within the con-
text of a complex statistical procedure called structural equation modeling (SEM).
Our current consideration of confirmatory factor analysis provides an overview of
this kind of factor analysis when it is not conducted within the context of a full-
blown SEM analysis.

Step 1: Articulation of Hypotheses and the Model

Based on previous research or existing theory, a researcher begins a CFA by spec-
ifying the factors that presumably exist beneath the variables that as yet have not
been measured. The researcher’s hypothesis may be that a single factor exists, or
multiple factors may be hypothesized. Regardless of how many factors are pre-
dicted to exist, each one is often referred to as a latent variable.

After the researcher has specified the latent variable(s) thought to exist, he
or she next makes plans to collect data on each of the observed variables. In
many studies, these observed variables are individual items in a questionnaire
or survey; however, such variables can be anything the researcher thinks is a
good proxy for, or representative of, the underlying hypothesized latent vari-
able(s). The measured variables are often referred to as the study’s indicators or
its manifest variables.

Once the latent and observed variables have been specified, the researcher’s
next task involves creating a model that predicts which of the observed variables
will load on each of the hypothesized factors. In an EFA, this pairing of observed
variables to factors comes after data have been collected, and it is influenced largely
by the computed correlations among the observed variables. In a CFA, this pairing
is done within the model that is articulated prior to any data collection.

Excerpt 20.20 illustrates how latent variables are pre-specified in a CFA study.
In this investigation, a personality inventory dealing with eating disorders was ad-
ministered to 203 females attending college in Canada. Because this instrument ini-
tially had been validated with a clinical sample of individuals known to be suffering
from eating disorders, the researchers wanted to see if the two factors of the ques-
tionnaire held up in a nonclinical sample. (The observed variables referred to in
this excerpt were the 23 items in the EDRSQ, the Eating Disorder Recovery Self-
Efficacy Questionnaire).
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Step 2: Collection of Data

After the researcher’s model has been specified, the next phase of a CFA involves
the collection of data on the observed variables. This form of statistical analysis
does not work well with data from small samples, so the researcher must gather a
sufficient amount of data. Various rules of thumb for establishing the minimum
sample size exist. Some rules stipulate that n must be at or above some absolute
level, other rules say that n should be a multiple of the number of observed vari-
ables, and a few rules dictate that the minimum n should be determined by a power
analysis or a consideration of desired accuracy in parameter estimation.

When conducting CFAs, researchers should indicate what rule of thumb they
used to determine that the sample size was large enough to proceed with the analy-
sis. However, simply citing a rule of thumb is not good enough. Researchers should
indicate the reason(s) why they decided to use one particular rule of thumb rather
than other available ones.

Step 3: Concern for Missing Data

After the data become available, the researcher’s next task is to screen the data for miss-
ing observations. When questionnaires or personality inventories are administered to
large groups of individuals, certain people may purposefully or inadvertently fail to
answers one or more questions. These omissions create a problem for CFA. Conse-
quently, either a hypothetical score must be inserted for each piece of missing data, or
the individuals who supplied only partial data must be expunged from the sample.

Excerpt 20.21 illustrates a concern for missing data. This excerpt is instruc-
tive because it shows both options for dealing with missing data: the imputing of
hypothetical scores and the deletion of individuals from the sample.

EXCERPT 20.20 • The A Priori Nature of the Factors in a CFA

The original version of the EDRSQ was created to account for two important aspects
of eating disorder recovery self-efficacy: NESE and BISE. The two constructs were
thought to be different, yet associated. . . . The NESE scale measures the confidence
in the ability to adopt healthy eating habits without becoming anxious and without
restricting, bingeing, purging and exercising excessively. The BISE scale measures
the confidence in the ability to maintain a realistic body image that is not overshad-
owed by an unhealthy drive for thinness. . . . In order to test this model, a CFA was
conducted. The model was composed of two latent variables (NESE and BISE) with
14 and nine observed variables, respectively.

Source: Couture, S., Lecours, S., Beaulieu-Pelletier, G., Philippe, F. L., & Strychar, I. (2010).
French adaptation of the eating disorder recovery self-efficacy questionnaire (EDRSQ):
Psychometric properties and conceptual overview. European Eating Disorders Review, 18(3),
234–243.
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Step 4: Assessment of Model Fit

The results of a CFA permit the researcher to evaluate how well the model fits the
data. This is not done by evaluating the factors individually, as is done in an EFA.
Instead, the entire set of relationships among the observed (i.e., manifest) variables
and the hypothesized latent factors is examined in a holistic fashion. This goal is
accomplished via the simultaneous inspection of several goodness-of-fit indices.

In Excerpt 20.22, we see how several goodness-of-fit indices were used to see
if a four-factor model fit the data. Included in this excerpt are the widely used criteria

EXCERPT 20.21 • Concern for Missing Data

Confirmatory factor analysis (CFA; using AMOS 5.0) was conducted on the 14 items
to test the fit of the data to the two-factor model. . . . If a participant was

missing data for just one of the 14 items, the mean of the scale was inserted. For two
or more, the participant was deleted from the analyses. This is because CFA is prob-
lematic when there are missing data.

Source: Fox, C. L., Elder, T., Gater, J., & Johnson, E. (2010). The association between ado-
lescents’ beliefs in a just world and their attitudes to victims of bullying. British Journal of
Educational Psychology, 80(2), 183–198.

(N = 331),

EXCERPT 20.22 • Assessing Model Fit

The adequacy of the four-factor structure of the MASC-T was examined using con-
firmatory factor analysis (CFA) for the community sample of 12,536 children and
adolescents. We also examined the adequacy of the four-factor structure of the
MASC-T in six subgroups of participants grouped according to gender (boys and
girls) and age (8–11, 12–15, and 16–19 years). Four indices including the root mean
square error of approximation (RMSEA), standardized root mean square residual
(SRMR), non-normed fit index (NNFI), and comparative fit index (CFI) were [com-
puted]. RMSEA values larger than .10 are typically considered poor and values
smaller than .10 are acceptable. An SRMR NNFI and 
indicate a good fit. . . . The adequacy of the four-factor structure of the MASC-T
(Physical Symptoms, Harm Avoidance, Social Anxiety, and Separation/Panic) was
examined using CFA. . . . The values of all indices 

met our goodness-of-fit standards and were invariant
across gender and age. The results indicated that the four-factor model was well fitted
for Taiwanese children and adolescents.

Source: Yen, C.-F., Yang, P., Wu, Y.-Y., Hsu, F.-C., & Cheng, C.-P. (2010). Factor structure,
reliability and validity of the Taiwanese version of the Multidimensional Anxiety Scale for
Children. Child Psychiatry and Human Development, 41(3), 342–352.

NNFI = .944; CFI = .948]
SRMR = .053;[RMSEA = .050;

CFI 7 .907 .90,6 .08,
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for determining whether the fit is good or poor. In this case, all four goodness-of-
fit indices suggested that the four-factor model fit the data. Note that this support
for the model came from two fit indices (RMSEA and SRMR) being small and the
other two indices (NNFI and CFI) being large. This is because certain goodness-of-
fit indices measure the degree to which the model and the data depart from each
other, whereas certain other goodness-of-fit indices assess the degree to which the
model and the data coincide. Taken together, a variety of these fit indices provides
a better assessment of model fit than any one looked at by itself.

Step 5: Inspecting Factor Loadings and 
Correlations Among Factors

In addition to assessing the fit of a model, researchers also examine the factor
loadings and correlations among factors to see if the a priori hypotheses are sup-
ported by the results. This is done to establish convergent and discriminant
validity. Convergent validity is shown when the factor loadings for a given latent
variable’s indicator variables are high. The other kind of validity, discriminant
validity, is shown via small factor loadings for other indicator variables on that
latent variable.

Excerpt 20.23 illustrates this step of inspecting factor loadings to assess con-
vergent and discriminant validity. This excerpt also shows how researchers examine
the correlations among the factors.

EXCERPT 20.23 • Examining Factor Loadings and Correlations

The Multidimensional Perfectionism Cognitions Inventory (MPCI) is a promising
new instrument developed at the University of Tokyo, Japan, for assessing the fre-
quency of cognitions associated with dispositional perfectionism along three
dimensions [i.e., factors]: personal standards, pursuit of perfection, and concern
over mistakes. . . . The aim of the present research was to provide a first investiga-
tion of the reliability and validity of the English version of the MPCI, the MPCI-E,
using a large English-speaking sample. First, a confirmatory factor analysis was
conducted to investigate the factorial validity with the aim to replicate the original
measure’s three-factor oblique structure. . . . All items displayed substantial load-
ings on their target factor. Moreover, as was expected, all three factors showed sub-
stantial intercorrelations [because] the factor representing pursuit of perfection
showed high correlations with the factor representing personal standards and the
factor representing concern over mistakes, whereas the latter two factors showed a
more modest correlation.

Source: Stoeber, J., Kobori, O., & Tanno,Y. (2010). The Multidimensional Perfectionism Cog-
nitions Inventory–English (MPCI-E): Reliability, validity, and relationships with positive and
negative affect. Journal of Personality Assessment, 92(1), 16–25.
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Step 6a: Model Modification

It often is the case that the fit of the initial model is inadequate. This situation might
be caused by an observed factor loading equally on more than one factor, or it could
be caused by the model itself having too many (or not enough) factors. When the
model fit turns out to be less than ideal, the researcher usually modifies the model
in some fashion and then repeats steps 1, 3, 4, and 5. One frequently seen type of
modification in the model is the elimination of one or more problematic observed
variables. Excerpt 20.24 illustrates this kind of model modification.

EXCERPT 20.24 • Model Modification

In evaluating construct validity, we ran a confirmatory factor analysis (CFA) on our
three constructs (instruction, curriculum, and ecology). CFA [substantiated] the
three constructs with model trimming used to eliminate any indicators that did con-
tribute significantly to each construct. In an attempt to achieve the most parsimo-
nious model, [we] trimmed the 26 total indicators to 14 (five for instruction, four for
curriculum, and five for ecology).

Source: Marshall, J. C., Smart, J., & Horton, R. M. (2010). The design and validation of
EQUIP: An instrument to assess inquiry-based instruction. International Journal of Science
and Mathematics Education, 8(2), 299–321.

EXCERPT 20.25 • An Option in CFA: Model Comparison

This study assesses the Shodan survey as an instrument for measuring an individ-
ual’s or a team’s adherence to the extreme programming (XP) methodology.

On occasion, the hypothesized model is deemed to be fully inadequate. If this
happens, most researchers return to their data and perform an exploratory factor
analysis. Then, based on the findings of that investigation, the researcher will likely
conduct a new confirmatory factor analysis, with the model this time based on the
discoveries of the exploratory factor analysis.

Step 6b: Comparison of Different Models

One option available in CFA is the comparison of different models. Usually, this
kind of comparison contrasts two or more models having different numbers of
latent variables. Excerpt 20.25 comes from a study in which this kind of comparison
was the driving force behind the investigation.

(continued )
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When different models are compared, the fit statistics for each model are usu-
ally examined. In addition, a chi-square test can be applied to see if there is a sta-
tistically significant difference between the two models. This test first involves the
computation of separate model fit chi-square values for each model, and then it
determines whether the difference between the two values is beyond chance
expectation. These two kinds of comparisons were made in the study from which
Excerpt 20.25 was taken, and the results appear in Excerpt 20.26. In this excerpt,
note that the better of the two models was indicated by the model chi-square value
that was smaller, because each separate value measured the degree to which the
model failed to fit the mode.

x2

x2

EXCERPT 20.26 • Statistical Comparison of Different Models

Finally, a comparison between the uni-dimensional and the four-dimensional mod-
els was performed using the chi-square differences between the two models. . . .
If the two models are significantly different, the model with the smaller chi-square
is significantly better than the first. The comparison indicated that the four-
dimensional model was significantly better than the uni-dimensional model

Comparisons of all other fit indices corroborate
this result. These results provide strong support for the first hypothesis (H1) indi-
cating that the four-dimensional model can better explain the variability in the
Shodan questionnaire items, whilst at the same time providing evidence about its
construct validity.

Source: Michaelides, G., Thomson, C., & Wood, S. (2010). Measuring fidelity to extreme pro-
gramming: A psychometric approach. Empirical Software Engineering, 15(6), 599–617.

¢df = 6, p 6 .001).(¢x2 = 73.2,

EXCERPT 20.25 • (continued)

Specifically, we hypothesize that the adherence to the XP methodology is not a
unidimensional construct as presented by the Shodan survey but a multidimen-
sional one reflecting dimensions that are theoretically grounded in the XP litera-
ture. Using data from software engineers in the University of Sheffield’s Software
Engineering Observatory, two different models were thus tested and compared
using confirmatory factor analysis: a uni-dimensional model and a four-dimen-
sional model.

Source: Michaelides, G., Thomson, C., Wood, S. (2010). Measuring fidelity to extreme pro-
gramming: A psychometric approach. Empirical Software Engineering, 15(6), 599–617.
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Three Final Comments

Before concluding our consideration of factor analysis, three final comments are
necessary. These deal with the concepts of sampling, factor names, and replication.
In a sense, each of the following end-of-chapter comments is a warning.

As is the case with most other statistical procedures, the nature of the results
that emanate from a factor analysis are tied to the nature of the sample(s) from
which data are gathered. Some researchers take pride in discussing the size of their
samples without acknowledging that their samples are quite homogeneous, not
random, or limited by low response rates. Do not be lulled into thinking that the
results of a factor analysis can be trusted simply because the data have come from
hundreds (or thousands) of individuals. Look carefully at the source of a study’s
input data before thinking that the findings generalize to every person on the face
of the Earth!

My second warning about factor analysis concerns the names of factors.
Regardless of whether a research report is based on an EFA or a CFA, the names of
the factors were decided on in a subjective manner. Give EFA researchers credit
when they point out that two or more people independently arrived at the same
names for the factors that popped out of their analyses, and give CFA researchers
bonus points when they discuss the convergent and discriminant validity of the fac-
tors in the models they propose as having the best fit. Keep in mind that a factor
name can be poorly named even though, in an EFA, its eigenvalue is large, or, in a
CFA, it is part of a model that has optimal fit indices.

Finally, remember that replication of statistical findings is persuasive. This is
just as true for factor analysis as it is for any other statistical procedure. Given credit
to those researchers who report having conducted a formal cross-validation of their
study or who present evidence of the invariance of findings across different kinds
of samples.

Bartlett’s test of sphericity
Communality
Confirmatory factor analysis (CFA)
Eigenvalue
Exploratory factor analysis (EFA)
Factor
Factor extraction
Factor loading
Factor rotation
Goodness-of-fit indices
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Latent variable
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Maximum likelihood
Multicollinearity
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Orthogonal rotation
Parallel analysis
Principal axis factoring
Principal components analysis 
Scree plot
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Reading a research report that deals with structural equation modeling (SEM) can
be intimidating, even for experienced consumers of research reports. This statisti-
cal procedure’s name appears ominous, as are its synonyms: covariance structure
analysis, covariance structure modeling, and analysis of covariance structures.
Results of SEM studies are presented not just with tables, but with seemingly com-
plex diagrams containing geometric shapes and arrowed lines. Researchers refer
to certain variables as being endogenous and others as being exogenous. Measure-
ment error comes into play, but in a different way than we saw in Chapter 4. Despite
these and other features of SEM, the goals of and logic behind this statistical pro-
cedure, as well as the way researchers present their SEM findings, can be under-
stood by anyone who is willing to move slowly through this chapter.

Structural equation modeling is like factor analysis in that the focus is on vari-
ables that lie beneath the surface of characteristics that can be observed and directly
measured. However, factor analysis and SEM are different in terms of their goals.
Factor analysis is used in an effort to identify unseen variables (i.e., factors) or to
confirm the existence of such variables. In contrast, SEM is used in an effort to
illuminate any causal connections that may exist among a study’s unseen variables.2

Once an SEM data analysis is completed, these causal links between variables fre-
quently are displayed pictorially by means of a path diagram.

Factor analysis and SEM also differ in terms of the need for theory and
hypotheses. One type of factor analysis—the exploratory kind—can be used without

C H A P T E R 21
Structural Equation Modeling1
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1The initial draft of this chapter was written by Shelley Esquivel and Amy Beavers. Additional assistance with
this chapter was provided by Hongwei Yang.
2The words cause and causal appear frequently throughout this chapter so as to make the language of this
discussion of SEM coincide with that contained in typical research reports. It should be noted, however, that
SEM applied to cross-sectional data is unable, by itself, to address cause-and-effect questions.



theory being a guiding force as the analysis is conducted. SEM, however, is not
exploratory at all; instead, it is used to assess the researcher’s conceptualization, or
model, of causal relationships dictated by theoretically-based hypotheses. More-
over, SEM can accommodate the simultaneous testing and comparison of multiple
models. The analytic capacity of SEM extends beyond factor analysis or other sta-
tistical analyses, thus necessitating the additional terminology referred to earlier.

Although the goals, terminology, and reporting procedures of SEM may be
different from other statistical procedures, many of SEM’s underlying components
and concepts are quite similar to those considered earlier in this book. At its most
basic level, structural equation modeling is the simultaneous analysis of relation-
ships among variables using regression and correlation techniques, and it provides
sets of weights which can be thought of as relationship strength indications. SEM
then goes on to compare the actual relationships among variables to the theorized
relationships hypothesized by the researcher. In other words, it evaluates how well
the theoretical model explains the collected data. The difference between the actual
data and the theoretical predictions provides an index of model worthiness via the
notion of “fit,” introduced in Chapter 20.

SEM Diagrams, Terms, and Concepts

To understand SEM, one must become familiar with a set of terms and concepts, as
well as with the way models are depicted graphically. In this section, we consider
these building blocks of SEM. We begin by looking at the diagram of a hypotheti-
cal SEM model, and then we use this model to help pin down the meaning of var-
ious terms and concepts.

A Hypothetical SEM Model

The diagram in Figure 21.1 is for a hypothetical structural equation model con-
cerned with members of high school swim teams. In this fictitious study, our imag-
inary researcher is trying to see if some theory-based predictions can explain why
certain swimmers seem to have more competitive drive than their peers. The
researcher’s two main thoughts are simple and straightforward: (1) both nature (i.e.,
genetics) and nurture (i.e., experiences) have a causal impact on a young athlete’s
swimming ability, and (2) swimming ability is positively related to, and has causal
influence on, the degree to which the athlete has competitive drive.

A quick glance at Figure 21.1 shows that it is composed of geometric shapes
that take the form of ovals, rectangles, and circles. The ovals are positioned near the
center because they represent the most important elements of the model. Also note
that every oval, rectangle, and circle has at least one arrow leading to it or away
from it. In the coming paragraphs, I refer to this diagram frequently as we decon-
struct this SEM model by considering what each shape and line represents.

Structural Equation Modeling 505
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Latent and Observed Variables

The ovals and rectangles in an SEM diagram represent variables. Two kinds of
shapes are needed to represent a study’s variables because there are two main types
of variables in an SEM study. These are the study’s latent and observed variables.

The latent variables of an SEM study are traits or constructs that cannot be
observed or measured directly. Examples of such variables would be your level of
test anxiety, the amount of intelligence you possess, your trustworthiness, your fear
of spiders, how much you enjoy hiking in the woods, and so on. As indicated earlier,
researchers who conduct SEM studies are mainly interested in latent variables—
identifying them, determining the relationships among them, and (especially)
illuminating any case(s) where one latent variable has a causal impact on some
other latent variable.

In Figure 21.1, there are four latent variables: Nature, Nurture, Swimming
Ability, and Competitive Drive. The thick arrows that connect these latent variables
indicate the researcher’s theoretical predictions that (1) Nature and Nurture are
related, (2) Nature and Nurture each have a causal impact on Swimming Ability,
and (3) Swimming Ability has a causal impact on Competitive Drive.

SEM models involve observed variables that can be measured. Examples of
such variables include your pulse rate, the score you earn on a test, your age, the
number of siblings you have, how frequently you blink during a 60-second inter-
val, and how many calories you typically consume in a day. In SEM studies, each
of these observed variables is technically referred to as an observed variable, as a
manifest variable, or as an indicator variable. Such variables can be a single item
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FIGURE 21.1 Diagram for Hypothetical Swimming SEM Study
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in a test or questionnaire, a subscale score based on a collection of items, a full-
scale score based on all of the instrument’s items, or a measurement of something
(e.g., school attendance) not based on a test or questionnaire.

In Figure 21.1, the 10 observed variables of our hypothetical swimming study
are located in rectangles near the left and right sides of the diagram. The five mea-
sures on the left were selected because they are the visible manifestations of the
study’s Nature and Nurture latent variables. The physiological measures of lung
capacity and wing span (i.e., arm length) get at a person’s genetic predisposition to
be a good swimmer. Life experiences are indexed by the number of years a person
has been on swim teams, the number hours per month a swimmer spends lifting
weights, and the level of parental support as indicated by a parent’s response to the
single question, “On a scale from 0 to 10, how much do you show your child that
you support him/her being on the high school swim team?”

Five additional observed variables are located near the right side of Figure
21.1. The first two of these—timed speed and coach’s rating—were chosen because
they are reasonable ways to measure a person’s swimming ability. The final triad of
observed variables represents the researcher’s three-pronged way of getting at a
person’s competitive drive. They involve measuring the number of swimming
events an individual would like enter, his or her rating given to the item “not winning
makes me mad” in an attitude inventory, and the amount of time he or she shows
up at the swim meet venue prior to the coach’s stated time-to-arrive.

As shown in Figure 21.1, arrows extend outward from each latent variable to
a subset of the observed variables. These directional arrows are meant to convey the
notion that any given latent variable is likely to have an impact on the observed vari-
ables that serve as measurable proxies for the latent variable. For example, the
degree to which you enjoy hiking in the woods (a latent variable) ought to influence
the way you answer questions about your hobbies and how you spend your leisure
time (two observed variables). Or, the degree to which you are scared of spiders
(a latent variable) likely influences how close you get to an open jar containing a
tarantula and how you respond to a question that asks you to rate how much spiders
make you uncomfortable.3

In the diagram we have been considering, there are 10 manifest variables but
only five latent variables. In the typical SEM study, researchers use multiple mani-
fest variables in an effort to get at each latent variable. This is a prudent practice for
two reasons. First, multiple measures usually provide a more reliable assessment of
a latent variable. Second, multiple measures tend to tap into different features of a
construct, thereby increasing validity.

It is worth noting that in the typical SEM study, researchers concentrate first
on the hypothesized latent variables, not the observed variables. This is the opposite

3Manifest variables that are influenced by latent variables are called reflective measures. In Figure 21.1 (and
in the typical SEM study), all the observed variables are reflective. However, the direction of influence can
go the other way, with the observed variable having an impact on a latent variable. In this latter situation, the
manifest variable is called a formative measure.
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of what happens in an exploratory factor analysis where factors emerge and are
named after the researcher has first decided on the study’s measured variables. In
most SEM studies, researchers start by using their knowledge of theory or previous
research to carefully define the latent variables; then, they select measurable vari-
ables that are thought to reflect well the unseen, latent factors. If successful in
choosing the right observed variables, the researcher can peer through the rectan-
gle variables in order to see what’s going on with the oval variables.

Excerpt 21.1 illustrates the way researchers always clarify the observed and
latent variables that comprise their structural equation models. This excerpt is
especially useful, because it shows how the indicator variables for a latent trait can
be created via a process called parceling. This simple process involves clustering
the items of a lengthy measuring instrument into small subsets of items, with a sum-
mary score on each subset of items serving as the observed variable. Parceling usu-
ally involves an odd–even split of the instrument’s items or a random subdivision
of the full set of items.4

4Manifest variables based on parceling often have three advantages compared to the use of individual items
as indicators: higher reliability, less skewness or kurtosis, and fewer parameters in the model.

EXCERPT 21.1 • Indicator and Latent Variables

We used structural equation modeling for our main analyses. For the TPV [targeted
peer victimization], we used the three first items in the TPV scale as the indicator
variables for the “Relational TPV” latent variable, and the last three last TPV items
were used as the indicator variables for the “Physical TPV” latent variable. For
indicators of the Depressive Symptoms latent variable, we divided the CDI into two
parts, based on odd and even numbered items, with each part containing 13 items.

Source: Van Tran, C. (2010). Longitudinal relations between targeted peer victimization and 
depression. Unpublished doctoral dissertation, Vanderbilt University, Nashville, Tennessee, p. 14.

The Measurement Model and the Structural Model

A complete structural equation model is made up of two sub-models: the measurement
model and the structural model. Both models are concerned mainly with a study’s 
latent variables. These models differ, however, in what is specified in each model.

The measurement model does two things. First, it posits the existence of the
study’s latent variables. Second, it asserts that these latent variables manifest them-
selves in the study’s observed variables. As applied to the diagram in Figure 21.1,
the measurement model says, in essence, that the four hypothesized constructs—
Nature, Nurture, Swimming Ability, and Competitive Drive—really exist, and that
the study’s 10 measured variables capture those four latent variables.
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The structural model extends beyond the measurement model and posits the
way in which the latent variables are related to each other. This model stipulates
which pairs of latent variables have a causal connection, which pairs of variables
are related but not in a causal manner, and which pairs of variables are independent
of each other. Such relationships are depicted in Figure 21.1 via the thick lines with
arrows. For example, one of those lines displays graphically the researcher’s hy-
pothesis that Swimming Ability has a causal impact on Competitive Drive.

In Excerpt 21.2, we see reference made to the measurement and structural
models of a recent study. This investigation was focused on the diets of rural adults,
with a main concern for the amount of dietary fat consumed by these individuals.

EXCERPT 21.2 • Measurement and Structural Models

This study tested a multi-group structural equation model to explore differences in
the relative influence of individual, social, and physical environment factors on
dietary fat intake amongst adults aged 40–70 years. . . . First, a measurement model
using confirmatory factor analysis (CFA) was used to confirm the relationship
between the latent variables (i.e., theoretical constructs) and their indicator (observed)
variables. . . . Second, the structural model was tested to estimate the strength of the
relationships between latent variables.

Source: Hermstad, A. K., Swan, D. W., Kegler, M. C., Barnette, J. K., & Glanz, K. (2010).
Individual and environmental correlates of dietary fat intake in rural communities: A structural
equation model analysis. Social Science & Medicine, 71(1), 93–101.

Exogenous and Endogenous Variables

Latent variables are often described as being either exogenous or endogenous.
These two SEM terms are analogous to the notions of independent and dependent
variables in a regression setting. Exogenous variables are considered to be the
independent variables in an SEM model, because they are thought to be on the front
end of a causal relationship. Endogenous variables, however, are considered to be
the model’s dependent variables, because they are believed to be affected by one or
more of the other latent variables.

In Figure 21.1, the Nature and Nurture variables are exogenous, for the dia-
gram depicts each of these latent variables as having an impact on a different latent
variable, Swimming Ability. The variable Competitive Drive, however, is endoge-
nous, because it is on the receiving end of another latent variable’s influence. Swim-
ming Ability has a dual role in the model, because it functions both as a dependent
variable and as an independent variable.5

5A variable that serves both as a dependent and as an independent variable is classified as an endogenous variable.
This convention is probably because variables with dual roles function first as dependent variables.
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Excerpt 21.3 comes from a recent study concerned with the determinants of
health-related quality of life among patients with liver disease. In the SEM model
investigated in this study, there was one exogenous variable (self-efficacy), one
endogenous variable (health-related quality of life, HRQoL), and several other vari-
ables—such as depression—that had a dual role in the model because they were
first influenced by self-efficacy and then had an impact on HRQoL.

6When a causal path exists between an exogenous and an endogenous variable, this type of causal path is
called a Gamma (�) path. When a causal path exists between two endogenous variables, this type of causal
path is called a Beta (�) path. Thus, the path between Nature and Swimming Ability in Figure 21.1 is a gamma
path, whereas the path between Swimming Ability and Competitive Drive is a beta path.

EXCERPT 21.3 • Exogenous and Endogenous Variables

The exogenous variable was Self-Efficacy, and the endogenous variable was HRQoL
[health-related quality of life]. The other variables in the model were both endogenous
and exogenous.

Source: Gutteling, J. J., Duivenvoorden, H. J., Busschbach, J. J. V., de Man, R. A., & Darlington,
A. E. (2010). Psychological determinants of health-related quality of life in patients with
chronic liver disease. Psychosomatics, 51(2), 157–165.

Correlations, Causal Paths, and Independence

In a structural model, the researcher hypothesizes relationships among some or all
of the variables. Two variables, of course, can be related without one having a causal
impact on the other. Such relationships are referred to simply as correlations and
are represented via curved lines, with arrows on each end, connecting the two vari-
ables. In Figure 21.1, the relationship between Nature and Nurture is hypothesized
to be simply correlational, not causal.

As we have seen, causal relationships in a structural model are represented by
directional lines. Each of these lines represents a causal path. In Figure 21.1, three
causal paths are hypothesized: one leading from Nature to Swimming Ability, a
second leading from Nurture to Swimming Ability, and the final one leading from
Swimming Ability to Competitive Drive.6

It is possible, of course, for a researcher to hypothesize that two latent vari-
ables are not connected in either a correlational or a causal manner. When this is
the case, no line in the diagram connects the two variables. In Figure 21.1, there-
fore, the hypothesized model specifies no correlation between either Nature or
Nurture and Competitive Drive.

Excerpt 21.4 comes from a study concerned with hotel workers and their sat-
isfaction with flexible schedules. Three hypothesized causal paths are described in
this excerpt, two of which were supported by the study’s data.
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Mediator Variables

As indicated earlier, some latent variables function simultaneously as exogenous
(independent) variables and endogenous (dependent) variables. This type of variable
is often referred to as a mediator variable.7 Mediation is the result of an exogenous
variable having an influence that passes through an endogenous variable (the media-
tor) before affecting another endogenous variable. In the diagram for the swimming
example we have been considering, Swimming Ability is a mediator variable, because
the effects of Nature and Nurture pass through it as they influence Competitive Drive.

Excerpt 21.5 comes from a study in which structural equation modeling was
used to investigate a mediation hypothesis. As indicated in this excerpt, the study’s

7This kind of mediation is the same as what we considered in Chapter 16 when we looked at multiple regression.

EXCERPT 21.4 • Causal Paths

Hypothesis 1 predicted that a hotel worker’s level of emotional intelligence has a
positive influence on his/her satisfaction with schedule flexibility. Our findings
[revealed that] H1 is supported. Similarly, H2 posited that overall job satisfaction of
hotel workers has a positive influence on their satisfaction with schedule flexibility
[and] H2 is supported. Our model then hypothesized a positive causal path between
satisfaction with schedule flexibility and organizational citizenship behavior (H3)
[but] H3 is not supported.

Source: Lee, G., Magnini, V. P. & Kim, B. (2010). Employee satisfaction with schedule flex-
ibility: Psychological antecedents and consequences within the workplace. International
Journal of Hospitality Management, 30(1), 22–30.

EXCERPT 21.5 • Mediator Variable

Early Head Start children may be more likely to exhibit difficulties with social–
emotional functioning due to the high-risk environments in which they live. However,
positive parenting may serve as a protective factor against the influence of risk on
children’s outcomes. The current study examines the effects of contextual and proximal
risks on children’s social–emotional outcomes and whether these effects are mediated
by maternal sensitivity. . . . A theoretically derived structural equation model was tested
to examine the direct paths from family risk variables to children’s social–emotional
functioning and the indirect paths by way of the mediator variable, maternal sensitivity.
Support was found for a model that identified maternal sensitivity as a mediator of the
relationship between parenting stress and children’s social–emotional functioning.

Source: Whittaker, J. E. W., Harden, B. J., See, H. M., Meisch, A. D., & Westbrook, T. R.
(2010). Family risks and protective factors: Pathways to Early Head Start toddlers’
social–emotional functioning. Early Childhood Research Quarterly, 26(1), 74–86.
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results showed that maternal sensitivity (a latent variable having three indicators:
warmth, acceptance, and responsiveness) was a mediator between parenting stress
(a latent variable with three indicators gleaned from a 38-item questionnaire) and
the children’s social–emotional functioning (a latent variable measured via rating
scales that asked parents to evaluate their child’s social competence, problem
behaviors, and aggression).

A mediator variable can take one of two forms: it can be a complete (or full)
mediator or a partial mediator. This distinction is most easily understood by examin-
ing the diagrams for two different SEM studies.

In Figure 21.1 (from our swimming study), both Nature and Nurture are
hypothesized to have an influence on Competitive Drive that flows totally through
the Swimming Ability variable. This makes the mediator variable, Swimming Ability,
a complete mediator. It is possible, however, that only part of an independent vari-
able’s impact passes through the mediator variable, with the remaining portion of
the exogenous variable’s influence going directly to the dependent variable. When
this is the case, mediation is partial.

Excerpt 21.6 comes from a study in which the researchers evaluated a struc-
tural equation model containing partial mediation. In this excerpt’s diagram, notice

EXCERPT 21.6 • Partial Mediation

[T]his study chose structural equation modeling to test hypotheses [wherein] job 
rotation and role stress among nurses are independent variables, and organiza-
tional commitment is a dependent variable, while job satisfaction is the mediating
variable. . . . The overall research framework is shown as Figure 1. 

H1 (+) H4 (–)

H3 (+)H2 (+) H5 (–)

Job
Satisfaction

Organizational
Commitment

Job
Rotation

Role
Stress

FIGURE 1 Conceptual framework for the relationship among job rotation,
job satisfaction, organizational commitment, and role stress.

Source: Ho, W.-H., Chang C. S., Shih, Y. L., & Liang, R. D. (2009). Effects of job rotation
and role stress among nurses on job satisfaction and organizational commitment. BMC
Health Services Report, 9(8), 1–10.
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that each of the study’s independent variables (Job Rotation and Role Stress) is
hypothesized to have an influence that flows through the mediator variable (Job Sat-
isfaction) as well as an influence that moves directly into the dependent variable
(Organizational Commitment). Note also that each of the five arrows is labeled to
show whether the hypothesized causal influence is positive or negative.

Measurement Error and Residual Error

A strength of structural equation modeling over some other statistical techniques is that
it is able to account for and remove the effects of two types of error: measurement error
and residual error. By including these errors in the model, SEM has a better chance of
revealing the true pattern of relationships among the observed and latent variables.

Measurement error is created whenever data are gathered by means of a
measuring instrument or process that has less than perfect reliability. Because per-
fectly reliable measuring instruments are few and far between, measurement error
is almost always embedded in the scores created when researchers try to tap into
observed variables. Accounting for and removing measurement error in SEM is
analogous to the technique we saw in Chapter 9 of correcting a correlation coeffi-
cient for attenuation.

Whereas measurement error is connected to observed variables, residual
error is associated with latent variables, but only latent variables that function as
dependent variables. This kind of error can be thought of as what is left after the
relevant independent (exogenous) variable(s) explain, or account for, as much vari-
ability in the dependent (endogenous) variable as it or they can. Accounting for and
removing residual error in SEM is analogous to the technique we saw in Chapter
15 of using a covariate to decreases error variance in an ANCOVA study.

The pictorial representation of measurement and residual errors is handled
in a variety of ways. Often, as in Figure 21.1, these errors show up in SEM dia-
grams as small circles, each with an arrow pointing to its relevant indicator vari-
able or endogenous latent variable. When this is done, the measurement errors
usually are abbreviated as e1, e2, and so on, whereas the residual errors are labeled
Res1, Res2, and so on. Sometimes, researchers put the error abbreviations into
the diagram without enclosing them in small circles. Occasionally, researchers
choose not to include any reference at all to these two kinds of errors in their SEM
diagrams; this is done, most likely, to make the diagrams less cluttered and easier
to understand.

Assessing SEM Hypotheses: A Brief Overview

The creation of a logical, theoretically-based model involving observed and latent
variables is only the first phase of an SEM study. A second and equally important
task involves assessing the quality of the model and, if necessary, revising the model
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in small or large ways. The assessment-of-the-model phase of the investigation typ-
ically involves doing four things: checking on important assumptions, evaluating
the measurement model, determining if the structural model fits the data, and mod-
ifying the model to achieve a better fit.

As we now turn our attention to the statistical techniques used in a typical
SEM investigation, we presume that the model being evaluated truly is theory
based. We also presume that the study’s population(s) have been defined appropri-
ately, that large enough samples have been extracted properly from the relevant pop-
ulations, that no problems of low response rate or refusal to participate exist, and
(most important of all) that the topic under investigation is relevant to the work of
practitioners or other researchers. As is the case with many other statistical proce-
dures, SEM modeling cannot magically undo the fatal limitations caused by biased
samples or irrelevant research questions.

Steps in Assessing Model Worth

In the following paragraphs, we follow the statistical route researchers usually take
when they conduct an SEM study. Not every researcher does these things, for alter-
native procedures are used in certain applied studies. Be that as it may, the following
steps represent the analytic strategy most likely to be included in a journal article,
convention paper, doctoral dissertation, or other report.

Checking on Assumptions

The statistical procedures used to assess the measurement and structural models of
an SEM study are based on important assumptions. Accordingly, the conscientious
researcher begins his or her data analysis by checking to see if these prerequisite
conditions seem tenable. The researcher’s hope, of course, is that no violations of
the assumptions crop up.

One important assumption is concerned with normality. This assumption
says that the scores on the study’s set of continuous variables in the relevant 
population(s) form a multivariate normal distribution. Such a distribution is 
analogous to a three-dimensional bell-shaped object that maintains that shape 
no matter which side-view angle is used to look at the bell. This assumption 
is important, because multivariate nonnormality can disrupt tests of model fit
and bias the parameter estimates used to assess path strength in the structural
model.

In Excerpt 21.7, we see a case where a team of researchers attended to the
multivariate normality assumption in their SEM study. This assumption was evalu-
ated by means of Mardia’s test. This test procedure yields two numbers that are
often reported: the critical ratio (CR) and the normalized estimate. The normalized
estimate is like a z-score, and it is the index of the two reported numbers examined
to see if the normality assumption seems tenable.
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There are two nice features of Excerpt 21.7. First, a test of multivariate
normality was conducted even though the univariate indices of skewness and kur-
tosis suggested that each individual variable was approximately normal in shape.
The multivariate test was needed because univariate normality is a necessary but
not sufficient condition for multivariate normality. Second, notice that a check for
multivariate outliers was conducted. This was done via the Mahalanobis distance
measure, one of the most popular techniques for identifying abnormal scores.

When researchers discover that the assumption of multivariate normality
seems untenable, they typically do one of several things. One option is to use a
robust statistical procedure for testing model fit. The Satorra–Bentler scaled chi-
square test, often reported as is an example of such a procedure. Another
robust procedure, illustrated in Excerpt 21.8, is the mean- and variance-adjusted
weighted least square parameter estimator.

S-Bx2,

EXCERPT 21.7 • Concern for Normality and Outliers

The assumption of multivariate normality which underlies the use of statistical mod-
eling was assessed using Mardia’s coefficient of multivariate kurtosis. The analysis
revealed that the data did not violate the multivariate normality assumption (multi-
variate kurtosis normalized estimate ); univariate kurtosis values
ranged from and univariate skewness
values ranged from The presence of
potential outliers was tested according to Mahalanobis distance [measure]. According
to that criterion, no case was considered an outlier.

Source: Nuevo, N., Wetherell, J. L., Montorio, I., Ruiz, M. A., & Cabrera, I. (2009). Knowl-
edge about aging and worry in older adults: testing the mediating role of intolerance of
uncertainty. Aging & Mental Health, 13(1), 135–141.

-0.078 to 0.723 1mean = 0.39; SD = 0.342.
-0.159 to 0.771 1mean = 0.46, SD = 0.312,

= 1.63; CR = 1.29

EXCERPT 21.8 • Use of a Robust Approach to SEM

As in other multivariate techniques, maximum likelihood (ML) method is a generally
used estimating procedure in SEM. A basic assumption of this ML-estimator is the
multivariate normal distribution of all continuous endogenous variables in the model
[but] in reality this assumption is not always fulfilled. Our models include several not-
normally distributed variables and, moreover, our final outcome variable car use is
categorical. An alternative estimator in such circumstances is a mean- and variance-
adjusted weighted least square parameter estimator (WLSMV) which we used instead.
WLSMV is a robust estimator yielding robust standard errors that does not require
extensive computations and does not require enormously large sample sizes.

Source: Van Acker, V., & Witlox, F. (2010). Car ownership as a mediating variable in car travel
behaviour research using a structural equation modelling approach to identify its dual rela-
tionship. Journal of Transport Geography, 18(1), 65–74.
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Two other options exist when the multivariate normality assumption is 
untenable. One of these is to use bootstrapping to create a sampling distribution
tailor-made for the study’s data. The other option is to delete or replace one or more
of the original variables, with the normality assumption retested to see if the corrective
action achieved its goal.

Although multivariate normality is important, it is not the only important
assumption. Because SEM relies heavily on the technique of multiple regression, it
should not be surprising that two additional assumptions ought to be checked out in
the preliminary phase of the data analysis. One of these assumptions says that there is
a linear relationship between variables; the other says that multicollinearity does not
exist. In Excerpt 21.9, we see a case where both of these assumptions were evaluated.

Evaluating the Measurement Model

After important assumptions have been considered, the next order of business is an
evaluation of the measurement model. The concern here is whether the study’s hy-
pothesized constructs (latent variables) are adequately caught by the study’s observ-
able measures. For obvious reasons, it is important to have confidence that the
hypothesized latent variables exist and can be measured before trying to determine
causal paths that may exist between such variables.

In an SEM study, the measurement model is usually evaluated by means of a
confirmatory factor analysis (CFA). The statistical procedures for conducting a CFA
were outlined in Chapter 20, and that discussion is not repeated here. However, it
may be helpful if we do two things now that were not done previously. First, we
look at the diagram of a study’s measurement model that contains results produced
by the CFA. Second, we examine the more typical text-only description of a study’s
measurement model.

EXCERPT 21.9 • Concern for Multicollinearity and Linearity

Multicollinearity was examined with a variation inflation factor (VIF) value, and lin-
earity of such relationships was inspected indirectly, with the expected scatter plot
of the residual indicating homoscedasticity, the normal P-P plot of the regression
standardized residual showing the normality of the residual, and The results of
the regression analyses showed that the latent variables were not multicollinear

The results also indicated that each relationship satisfied
homoscedasticity and normality of the residual, and had a considerably high value

Based on the results, it can be argued that the assumption
of linearity is met considerably in such relationships.

Source: Yoo, S. H. (2010). Exploring an integrated model of governmental agency evaluation
utilization in Korea: Focusing on executive agency evaluation. International Review of Public
Administration, 15(1), 35–49.

10.202 … R2 … 0.6252.
R2

11.253 … VIF … 2.3162.

R2.
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EXCERPT 21.10 • The Measurement Model in an SEM Study

FIGURE 2 Measurement model for the two-factor version of the MDAS with
standardized parameter estimates.

Source: Yuan, S., Freeman, R., Lahti, S., Lloyd-Williams, F., & Humphris, G. (2008). Some
psychometric properties of the Chinese version of the Modified Dental Anxiety Scale with
cross validation. Health and Quality of Life Outcomes, 22(6), 1–11.

The first study we now consider was concerned with dental anxiety. To mea-
sure this kind of anxiety, the researchers had 783 individuals respond to the five items
of a questionnaire called the Modified Dental Anxiety Scale (MDAS). The
items deal with a person’s emotional reaction to these five aspects of an upcoming
appointment with a dentist: the visit itself, being in the waiting room, drilling, scal-
ing, and receiving a local anesthetic injection. Each of these items used a 1 to 5 rat-
ing scale, extending from “no anxiety” to “extreme anxiety.” These items were
considered to be the manifest variables in the SEM study, and they were labeled
mdas1, mdas2, and so on.

Excerpt 21.10 contains the diagram the researchers created after conducting
a confirmatory factor analysis on their data. Based on a consideration of theories of
anxiety and earlier studies focused on differentiating different kinds of anxiety, the
researchers hypothesized two latent variables: anticipatory dental anxiety, on the
one hand, and treatment dental anxiety, on the other. The researchers also hypoth-
esized that two of the MDAS items—mdas1 and mdas2—could measure the antic-
ipatory kind of dental anxiety whereas the other three items—mdas3, mdas4, and
mdas5—could measure the treatment portion of dental anxiety.

0.77

0.78

0.89

0.84

0.82

0.79

Anticipatory
Dental Anxiety

mdas1

mdas2

mdas3

mdas4

mdas5

e1

e2

e3

e4

e5

Treatment
Dental Anxiety

Excerpt 21.10 presents some of the statistical findings from the CFA. The
number next to each straight line in the diagram shows the factor loading of the
manifest variable on the latent variable. Being standardized (and thus having an
upper limit of 1.0), all five of these standardized parameter estimates are quite
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high. Collectively, these five numerical findings from the CFA provide support
for the researchers’ a priori belief that there are two kinds of dental anxiety and
that the items of the MDAS instrument are adequate indicators of these two latent
variables.8

Excerpt 21.11 contains a text-only discussion of an SEM’s measurement
model. This excerpt’s content is instructive, because it shows how researchers focus
on three psychometric components of the measurement model: reliability, conver-
gent validity, and discriminant validity. This excerpt also reveals how these three
aspects of the measurement model were assessed.

8The researchers also gained support for their two-factor theory of dental anxiety by examining several fit
statistics.

EXCERPT 21.11 • Using CFA to Assess the Measurement Model

A confirmatory factor analysis was conducted to test the measurement model. Six
common model-fit measurements were used to assess the model’s fit [indicating]
most of the model-fit indices exceed the respective common acceptance levels sug-
gested by previous research, demonstrating that the measurement model exhibited a
good fit with the data collected. Therefore, we proceeded to evaluate the psychome-
tric properties of the measurement model in terms of reliability, convergent validity,
and discriminant validity.

Moreover, we evaluate reliability and convergent validity of the factors esti-
mated by composite reliability and average variance extracted. . . . Composite reli-
ability (CR) for all factors in our measurement model was above 0.70, which meant
that more than one-half of the variances observed in the items were accounted for
by their hypothesized factors. Thus, all factors in the measurement model had ade-
quate reliability and convergent validity. To examine discriminate validity, we com-
pared the shared variances between factors with the average variance extracted of
the individual factors. The average variances extracted (AVE) were all above the rec-
ommended 0.50 level to be considered reliable. This showed that the shared variance
between factors were lower than the average variance extracted of the individual
factors, confirming discriminate validity. . . . In summary, the measurement model
demonstrated adequate reliability, convergent validity, and discriminate validity.

Source: Ouyang, Y. (2010). A relationship between the financial consultants’ service quality
and customer trust after financial tsunami. International Research Journal of Finance and
Economics, 36, 75–86.

If the measurement model does not seem reasonable, the researcher refrains
from moving forward. Instead, he or she changes the way the original manifest vari-
ables are measured, changes the study’s manifest variables, or changes the hypoth-
esized latent variables.
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Evaluating the Structural Model

The second thing researchers focus on in the assessment phase of an SEM investi-
gation is the structural model. Here, the network of causal paths and correlations
hypothesized to exist among the latent variables is compared against the study’s
empirical evidence. The overarching research question addressed at this point in the
SEM study is simple and straightforward: Does the model fit the data? If the
answer to this question is negative, researchers usually pose a new question: Can
the model be revised such that the modified structural model and empirical evidence
are aligned?

The assessment of model fit is done in a holistic manner, with the full model
considered to be a single entity. This assessment typically leads to one of three con-
clusions about how well the model coincides with the data: a good fit, a moderate
fit, or a poor fit. In Excerpts 21.12 through 21.14, we see statements from three dif-
ferent studies that produced these three kinds of fit.

EXCERPTS 21.12–21.14 • Good, Moderate, and Poor Model Fit

The results of the estimation of the hypothesized causal structure model indicated
that the model fit well the sample.

Source: Akbar, S., Som, A. P. M., Wadood, F., & Alzaidiyeen, N. J. (2010). Revitalization of
service quality to gain customer satisfaction and loyalty. International Journal of Business and
Management, 5(6), 113–122.

The initial [structural] model had a moderate fit to the data.

Source: Aspden, T., Ingledew, D. K., & Parkinson, J. A. (2010). Motives and health-related 
behaviours: An investigation of equipotentiality and equifinality. Journal of Health Psychology,
15(3), 7–79.

The [structural] model provided a poor fit to the data.

Source: Longbottom, J. L., Grove, J. R., & Dimmock, J. A. (2010). An examination of perfec-
tionism traits and physical activity motivation. Psychology of Sport and Exercise, 11(6), 574–581.

The degree to which a structural model fits a study’s data is not measured by
a single number, as is the case when a single bivariate correlation coefficient is used
to measure the degree of relationship between two sets of measured variables.
Instead, researchers involved in SEM studies compute several fit indices, examine
each of them individually (with guidelines as to what indicates good, moderate, or
poor fit), and then merge together the individual findings to reach an overall
assessment of model fit. This approach is necessary because the different fit indices



520 Chapter 21

assess different aspects of the model-versus-data match-up. The value in having
multiple fit indices is analogous to having an opportunity to view a sculpture from
different vantage points.

Most of the more popular fit indices have labels that are reduced to acronyms:
TLI, RMSEA, GFI, CFI, NNFI, AGFI, and SRMR.9 Another index is referred to
as the relative chi-square index; this is simply the computed value of chi square
divided by its degrees of freedom (i.e., ). Rules of thumb have been proposed
for evaluating the numerical values for each fit index, and it is helpful when a
researcher cites in a research report the criteria that were used to evaluate the fit
indices computed and examined in an SEM study. Excerpt 21.15 illustrates this
good practice of citing the fit criteria along with the computed fit indices, thus permit-
ting readers of the research report to see why a model is described as having a good
(or poor) fit with the data.

x2>df

9TLI, Tucker–Lewis Index; RMSEA, Root Mean Square Error of Approximation; GFI, Goodness-of-Fit
Index; CFI, Comparative Fit Index; NNFI, Non-Normed Fit Index; AGFI, Adjusted Goodness-of-Fit Index;
and SRMR, Standardized Root Mean Square Residual.

EXCERPT 21.15 • Model Fit Criteria

The adequacy of the model fit was ascertained using Chi-square test Goodness-
of-Fit Index (GFI), Comparative Fit Index (CFI), Root-Mean-Square of Approxi-
mation (RMSEA), and Chi-square to Degrees of freedom ratio A properly
fit model must have the following fit characteristics: RMSEA chi-square
to degrees of freedom ratio and . . . The fit indices
for the estimated model in Fig. 2 [not shown here] are 

and RMSEA � 0.053. They all satisfy the criteria for a well
fit model.

Source: Amah, O. E. (2010). Multi-dimensional leader member exchange and work attitude
relationship: The role of reciprocity. Asian Journal of Scientific Research, 3(1), 39–50.

0.97, CFI = 0.95,
x2>df = 2.523, GFI =

CFI 7  0.9.6 3.5; GFI 7  0.9,
6 0.08;
1x2>df2.

1x22,

It is worth noting that many of the fit indices assess the degree to which the
model and the data coincide, whereas other fit indices measure the degree to which
the model and the data differ. In Excerpt 21.15, the GFI and CFI indices do the for-
mer, whereas RMSEA and do the latter. This is why the CFI and GFI signify
a good fit when they are close to the maximum value of 1.0, whereas the other two
fit indices turn out to be small when a good fit exists.

In addition to assessing model fit, researchers usually examine the standardized
regression coefficient associated with each of the causal paths in the model to see if
it is statistically significant. Moreover, if directional hypotheses have been articu-
lated—indicating whether an exogenous variable’s influence on an endogenous variable

x2>df
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is positive or negative—those hypotheses can also be evaluated. To see an example 
of a model containing such hypotheses, take another look at Excerpt 21.6. That model
contains five directional hypotheses concerning the causal paths. Each of those
hypotheses was tested individually, and the results are contained in Excerpt 21.16.

EXCERPT 21.16 • Testing Individual Path Coefficients

The Linear Structural Relationship Model was employed to examine the relation-
ships among nurses’ job rotation, role stress, job satisfaction, and organizational
commitment. Hypotheses 1 to 5 in this study were demonstrated to be significant
[each with ]. Nurses’ job rotation had a positive influence on job satisfaction

and organizational commitment Nurses’ job satisfaction
had a positive influence on organizational commitment. Nurses’ role

stress had a negative influence on job satisfaction and organizational
commitment 

Source: Ho, W. H., Chang C. S., Shih, Y. L., & Liang, R. D. (2009). Effects of job rotation and
role stress among nurses on job satisfaction and organizational commitment. BMC Health
Services Report, 9(8), 1–10.

1g22 = -0.792.
1g12 = -0.522

1b21 = 0.632
1g21 = 0.462.1g11 = 0.512

p 6 .01

Model Modification

In SEM studies, it is usually the case that a researcher’s initial model constitutes a
mediocre (or poor) fit to the data, even when the model has been developed care-
fully from theory or previous research. This is especially true when the model is
complex, with a variety of model parameters. However, most researchers use
SEM as a model-generating tool. Consequently, it is not at all uncommon to see a
research report wherein there is a discussion of model 1, followed by a refinement
of that initial model so as to create model 2, with a third (and even better) model
created to replace model 2.

The process of model modification involves changing the model in some fash-
ion. This occurs if initial latent or indicator variables are eliminated or new ones
added, if the network of causal paths is changed, if exogenous variables are con-
verted into endogenous variables (or vice versa), or if elements of the model—such
as the measurement errors connected to two indicator variables—are considered to
be correlated rather than independent (or vice versa). When any of these things
occurs, the model changes. Using technical SEM lingo, such changes cause the
initial model to be respecified.

When engaged in model respecification, the researcher has two goals. One
goal is to have a revised model that fits the data better. The other goal is to have a
modified model that is parsimonious. This latter goal can be achieved by reducing
the number of model parameters—such as eliminating one or more causal paths—
in the model, a procedure referred to as model trimming. In Excerpt 21.17, we see
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a case where model trimming brought about a more parsimonious model without
causing a precipitous decrease in model fit.

Researchers who engage in model modification typically use one or both of
two kinds of statistical information to help them decide how exactly to change the
model. One kind of guidance comes from the standardized parameter estimate
associated with each causal path in the model. If one of these estimates turns out to
be nonsignificant (when tested against a null value of zero), the path associated with
that parameter estimate can be dropped from the model. The revised model, con-
taining fewer model parameters, is said to be a nested model of the previous
model.10 Reference to such a model appears in Excerpt 21.18.

10In such a case, the first model is usually called the full model, whereas the second model is usually called
the reduced or restricted model relative to the full model.

EXCERPT 21.17 • Trimming to Achieve Parsimony

Structural modeling presents a set of relationships between exogenous and endogenous
variables with causal effects. The initial model (MI) was revised three times. . . . Our
initial model (MI) included all unidirectional paths relating latent constructs. In the
next model we excluded direct paths between accountability measures
and employee performance, tantamount to including an extra path (professional
accountability workload) not part of our theoretical model (MT). The final model
(MT-X) excluded nonsignificant paths in MT. The final model (MT-X) shows accept-
able fit: the chi-square value is not significant
and the relative chi-square is below the conservative rule-
of-thumb criteria. All other practical indices are within the acceptable fit ranges

In addition, the final model has
the highest parsimony ratio (.595) and parsimony comparative fit index (.592).
Although the chi-square value has increased in the process of model trimming, the chi-
square difference between the initial and final model is trivial (4.25), and values for
the other fit indices remained virtually unchanged within acceptable ranges. This sug-
gests that the final model represents the most parsimonious and best fit model overall.

Source: Kim, S. E., & Lee, J. W. (2010). Impact of competing accountability requirements on
perceived work performance. American Review of Public Administration, 40(1), 100–118.

1NFI 7 .9, TLI 7 .9, CFI 7 .9, PMSEA 6 .052.

1x2>df = 1.08 6 22
1x2 = 135.05, df = 125, p 6 .2542

:
1MT + X2,

EXCERPT 21.18 • A Nested Model

Several strategies were employed to evaluate the IMB model of ART adherence in
relation to rates of self-reported adherence. The first involved evaluation of the full
IMB model, depicted in Fig. 1 [not shown here], which was assessed in terms of inspec-
tion of standardized path estimates and with standard model fit indices (e.g., CFI,x2,

(continued )
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When engaged in model respecification, researchers can get help from the
modification indices produced in the analysis of the initial model. One modifica-
tion index is generated for any possible line that was not included when the initial
model was diagrammed. The absence of such connecting lines—such as between a
pair of variables or between errors associated with two indicator variables—caused
the two elements at the opposite ends of the line to be uncorrelated in the SEM
analysis. Each modification index shows how much the overall model would de-
crease if this constraint on the model were to be removed.

Excerpt 21.19 illustrates how modification indices can help researchers when
they modify their models. Note the phraseology: “a structural path was found.” It
was not found by searching aimlessly in the dark. Rather, the researchers had a light
focused on it by means of a large modification index.

x2

EXCERPT 21.19 • Modification Indices

Based on information provided by structural estimates and modification indices
greater than five, a modified model was built. . . . The Safety dimension of product
perceived personality was removed from the analysis, as it turned out not to play 
any role in the model; while a structural path was found from subjective norms to
moral norms. Estimation of this modified model showed much better fit statistics,
which reached minimum thresholds for acceptable model’s fit 

The difference test also confirmed that the modified model
performed better than the basic one 

Source: Guido, G., Prete, M. I., Peluso, A. M., Maloumby-Baka, R. C., & Buffa, C. (2010).
The role of ethics and product personality in the intention to purchase organic food products:
A structural equation modeling approach. International Review of Economics, 57(1), 79–102.

1¢x2152 = 39.355, p 6 0.0012.
x2RMSEA = 0.0822.

GFI = 0.965; AGFI = 0.912; CFI = 0.942; NFI = 0.908;x2>df = 2.392;p 6 0.01;
1x21112 = 26.308,

EXCERPT 21.18 • (continued)

RMSEA). A second, nested model was analyzed to evaluate the mediation hypothe-
sis where the full IMB model was compared to a restricted IMB model where the non-
mediated paths from information and all motivation constructs were set to zero. The
restricted model fit was evaluated with standard fit indices and a difference test. . . .
The fit indices generated [by the nested model] compared favorably to those gener-
ated by the full model [and] Chi-Square Difference Thus,
the mediated model was supported as providing a comparable fit to the sample data
that is more parsimonious.

Source: Amico, K. R., Barta, W., Konkle-Parker, D. J., Fisher, J. D., Cornman, D. H., Shuper,
P. A., et al. (2009). The Information–Motivation–Behavioral Skills Model of ART adherence
in a deep south HIV+ clinic sample. AIDS and Behavior, 13(1), 66–75.

1df = 32 = 2.59, p 6 .46.

x2
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Other Uses of SEM

Structural equation modeling can be used to address many types of questions. The
examples used in previous sections illustrated the use of SEM to determine the fit of
a single model (or a respecified model) for a single sample. In this section, we con-
sider how SEM can be used to (1) determine whether an a prior model applies to
multiple groups and (2) compare groups in terms of their means on latent variables.

Assessing Model Invariance

So far, we have discussed the use of structural equation modeling to answer ques-
tions about measurement models and structural models for a single sample. Often,
however, researchers are interested in comparing two (or more) groups of people.
For instance, a researcher might want to know if a model accurately depicts the
relationships among variables for multiple groups of people who differ according to
age, gender, ethnicity, or political affiliation. SEM can be used to answer these ques-
tions about whether measurement or structural models are equivalent (or invariant)
between or among groups.

Researchers who investigate the model invariance of their results can per-
form one or more of three post hoc tests. These tests focus on different kinds of
invariance: measurement invariance, configural invariance, and structural invariance.
All three are important.

A model has measurement invariance if the indicator variables tap into the
same latent variables for different groups of individuals. Suppose a survey that mea-
sures teacher satisfaction is administered to a sample of public school teachers.
Would it be appropriate to compare the results from this survey to the results of the
same survey administered to private school teachers? Before making such a com-
parison, a researcher should first determine whether the measuring instrument is
operating in a similar manner for both groups of teachers.

Configural invariance exists if the network of causal paths and correlations is
similar across different groups of individuals. Here, the focus is on the set of straight
and curved arrows in the SEM diagram. If the set of arrows are identical across the
different comparison groups, researchers can say that they have established config-
ural invariance.

Structural invariance exists if the size of each parameter associated with an
arrow remains stable, even if the model is recreated for a different group of indi-
viduals. Because configural invariance is concerned with the model’s arrows
whereas structural invariance focuses on the strength of the paths, it is possible to
have configural invariance without structural invariance. There reverse, however, is
not possible.

In Excerpt 20.20, we see a case in which all three kinds of invariance tests
were applied. Notice that the results supported two kinds of invariance (measurement
and configural) but not the third kind (structural).
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Comparing Group Means on Latent Variables

Although SEM is primarily concerned with the analysis of relationships (i.e., variances
and covariances), it also can be used to address questions about mean differences in
latent variables. Once measurement invariance has been confirmed, it is reasonable to
ask questions about group differences on the latent variable(s) of interest. A question
about group mean differences of latent variables takes the form, “Is the mean of con-
struct x for one group the same as the mean for that construct in another group?”

Excerpt 21.21 illustrates how groups can be compared on a latent variable.
The two groups in this study came from Thailand and the United States. The construct

EXCERPT 21.20 • Invariance Tests

We performed two-group invariance tests across the two independent survey samples
to establish whether relationship perceptions vary between buyers and suppliers. . . .
First, we performed configural invariance test [and found] the structure of the model
is optimally represented with the pattern of paths and factor loadings specified. Second,
we performed the measurement invariance test. [Results] showed that only five items
were noninvariant across the two groups. In effect, buyers and suppliers generally
interpret measurement items equivalently in most cases. Finally, we performed
structural invariance testing. [Three] tests (LM Test, and ) indicate that
noninvariance is supported for 5 paths, and confirm that there are differences in
relationship perceptions between the buyer and supplier samples.

Source: Nyaga, G. N., Whipple, J. M., & Lynch, D. F. (2010). Examining supply chain rela-
tionships: Do buyer and supplier perspectives on collaborative relationships differ? Journal of
Operations Management, 28(2), 101–114.

¢CFI¢x2

EXCERPT 21.21 • Comparing Group Means on Latent Variables

Latent mean comparison. With [measurement] invariance established, we esti-
mated latent mean differences to determine if Thais had a higher level of mindful-
ness than Americans. To test for differences, the latent mean for the reference group
(American) is fixed to zero and freely estimated in the other group [with] selection
of one group as the reference group an arbitrary decision—the estimated differences
between the groups are the same either way. . . . The latent mean MAAS difference
between Americans (0.000) and Thais (0.003) was not statistically significant

indicating that Thais and Americans do not significantly differ
in mindfulness as measured by the MAAS.

Source: Christopher, M. S., Charoensuk, S., Gilbert, B. D., Neary, T. J., & Pearce, K. L.
(2009). Mindfulness in Thailand and the United States: A case of apples versus oranges?
Journal of Clinical Psychology, 65(6), 590–612.

1t = 0.038; p = ns2,
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on which these two groups were compared was mindfulness. The results provided
no support for the claim that either of these groups is superior to the other in terms
of mean score on the mindfulness trait.

The Dental Anxiety SEM Study

Earlier in this chapter, we saw a diagram of the measurement model from a study
dealing with dental anxiety. Now, after covering a lot of ground in terms of SEM
concepts, I want to show you another diagram from the same study, along with a
table that also appeared in the research report.

You should be able to look at the information contained in Excerpt 21.22 and
understand what the authors were trying to communicate by this diagram. Be sure

EXCERPT 21.22 • Diagram of Dental Anxiety SEM Model

The hypothesized structural model was evaluated with the Chinese data as specified
in Figure 2. . . . Of particular interest was the strength of the relationships between
the anxiety latent factors (Negative Affectivity NA and Autonomic Anxiety AA) with
the 2 dental anxiety latent factors (ADA and TDA).

0.88, 0.91 0.73, 0.77

0.37, 0.45

0.13, 0.13

Anticipatory
Dental Anxiety

Treatment
Dental Anxiety

Negative
Affectivity

had1 had9 had13

had7had1 had5

mdas1

mdas2

mdas3

mdas4

mdas5

Autonomic
Anxiety

FIGURE 3 Structural model of the relation between negative affectivity, auto-
nomic anxiety, and the two factor version of the MDAS including standardised
coefficients: Beijing and Northwest England (italics). Wider arrows denote
greater strength of the relationship. Error terms omitted to simplify diagram.

Source: Yuan, S., Freeman, R., Lahti, S., Lloyd-Williams, F., & Humphris, G. (2008). Some
psychometric properties of the Chinese version of the Modified Dental Anxiety Scale with
cross validation. Health and Quality of Life Outcomes, 22(6), 1–11.
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to read the figure caption, as it explains why there are two numbers located next to
each arrow and why certain of the arrows are thicker than others.

The diagram in Excerpt 21.22 gives no evidence that the researchers were
involved in a model-building effort. However, the information contained in
Excerpt 21.23 shows that three models were created, evaluated, and compared.
Desiring their published model to be parsimonious, the researchers presented
their initial model rather than either of the other models they developed.

EXCERPT 21.23 • Consideration of Alternative Models

Alternative models were also tested. Negative affectivity may influence not only
ADA but also TDA. Hence the path NA TDA was included (Model ii, Table 4)
which resulted in a non-significant parameter estimate and little contribution to the
overall fit. The further model of AA influencing directly ADA was also tested (i.e.
path AA ADA) (Model iii, Table 4). This path was also redundant.

Table 4: Summary statistics of overall fit for the hypothesized Model (i) with
additional paths fitted as indicated by Models ii and iii

Model df RMSEA GFI CFI NFI

i 98.44 40 .056 .964 .979 .966
ii 98.29 39 1 .057 .983 .985 .984
iii 96.93 39 1 .057 .964 .980 .967

Notes: Model i: NA TDA, AA ADA, ADA DTA, NA AA
Model ii: Model i plus NA TDA
Model iii: Model i plus AA ADA

difference root mean square error (RMSEA); goodness of fit index
(GFI); comparative fit index (CFI); normative fit index (NFI); significant

Source: Yuan, S., Freeman, R., Lahti, S., Lloyd-Williams, F., & Humphris, G. (2008). Some
psychometric properties of the Chinese version of the Modified Dental Anxiety Scale with
cross validation. Health and Quality of Life Outcomes, 22(6), 1–11.

(p 7 .05).
ns = non

(x2diff);x2
:
:

4:::
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0.15ns
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Two Final Comments

As we come to the end of this chapter, I consider it highly important to offer two final
warnings. One concerns the issue of causality. The other deals with unseen models.

Good-fitting structural equation models do not prove cause-and-effect rela-
tionships. A good-fitting model is simply one that, based on the data at hand, is
plausible. Give researchers credit when they acknowledge this. When a structural
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model is found to have good fit, causation can be inferred only if other important
conditions are met. Specifically, to infer a cause-and-effect relationship, a re-
searcher should be able to show that the variables of interest are correlated, that the
cause precedes the effect in time, and that other explanations for a cause–effect
relationship are ruled out. This third task—of ruling out other possible explanations
for a relationship—is often a very difficult process.

Even if an extensive model-building effort has produced a model that has a
good fit, there is no guarantee that it is the very best model that could be generated.
Other unseen and untested models are out there, and it is conceivable that one of
them might be superior to the one generated in a researcher’s SEM study. As with
the conclusions reached by means of others statistical procedures, the insights gen-
erated through an SEM study should be viewed as tentative.

Causal paths
Endogenous variable
Exogenous variable
Indicator variable
Latent variable
Mahalanobis distance measure
Manifest variable
Mardia’s test
Measurement error
Measurement model
Mediator variable

Review Terms

Model fit
Model building
Model invariance
Model respecification
Model trimming
Modification indices
Observed variable
Nested model
Parceling
Residual error
Structural model

The Best Items in the Companion Website

1. An interactive online quiz (with immediate feedback provided) covering
Chapter 21.

2. Five misconceptions about structural equation modeling.
3. One of the best passages from Chapter 21: “Causal plausibility, not causal proof.”

To access chapter outlines, practice tests, weblinks, and flashcards, visit the com-
panion website at http://www.ReadingStats.com.

Review Questions and Answers begin on page 531.

http://www.ReadingStats.com
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Epilogue

The warnings sprinkled throughout this book were offered with two distinct groups
of people in mind. The principal reason for raising these concerns is to help those
who are on the receiving end of research claims. However, these same warnings
should be considered by those who are doing research. If both parties are more care-
ful in how they interact with research studies, fewer invalid claims will be made,
encountered, and believed.

There are two final warnings. The first has to do with the frequently heard
statement that begins with these three words, “Research indicates that . . .” The sec-
ond is concerned with the power of replication. All consumers of research, as well
as all researchers, should firmly resolve to heed the important messages contained
in this book’s final two admonitions.

First, you must protect yourself against those who use research to intimidate
others in discussions (and in arguments) over what is the best idea, the best practice,
the best solution to a problem, or the best anything. Because most people (1) are
unaware of the slew of problems that can cause an empirical investigation to yield
untenable conclusions, and (2) make the mistake of thinking that statistical analysis
creates a direct pipeline to truth, they are easily bowled over when someone else
claims to have research evidence on his or her side. Do not let this happen to you!
When you encounter people who promote their points of view by alluding to research
(“Well, research has shown that . . .”), ask them politely to tell you more about the
research project(s) to which they refer. Ask them if they have seen the actual research
reports(s). Then pose a few exceedingly legitimate questions.

If the research data were collected via mailed questionnaires, what was the
response rate? No matter how the data were collected, did the researchers present
evidence as to the reliability and validity of the data they analyzed? Did they attend
to the important assumptions associated with the statistical techniques they used?
If they tested null hypotheses, did they acknowledge the possibility of inferential
error when they rejected or failed to reject any given H0? If their data analysis pro-
duced one or more results that were significant, did they distinguish between sta-
tistical and practical significance? If you ask questions such as these, you may find
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that the person who first made reference to what research has to say may well 
become a bit more modest when arguing his or her point of view. And never, ever
forget that you not only have a right to ask these kinds of questions, you have an
obligation to do so (presuming that you want to be a discerning recipient of the 
information that comes your way).

Second, be impressed with researchers who replicate their own investigations—
and even more impressed when they encourage others to execute such replications.
The logic behind this admonition is simple and shines through if we consider this
little question: Who are you more willing to believe, someone who demonstrates
something once, or someone who demonstrates something twice? (Recall that a cor-
relation matrix containing all bivariate rs among seven or more variables is more
likely than not to be accompanied by the notation p 
 .05 even if all null hypothe-
ses are true, unless the level of significance is adjusted to compensate for the mul-
tiple tests being conducted. Similarly, the odds are greater than 50�50 that a five-way
ANOVA or ANCOVA will produce a statistically significant result simply by
chance, presuming that each F’s p is evaluated against an alpha criterion of .05.)

It is sad but true that most researchers do not take the time to replicate their
findings before they race off to publish their results or present them at a convention.
It would be nice if there were a law stipulating that every researcher had to replicate
his or her study before figuratively standing up on a soapbox and arguing passion-
ately that something important has been discovered. No such law is likely to appear
on the books in the near future. Hence, you must protect yourself from overzealous
researchers who regard publication or being a convention speaker as more impor-
tant than replication. Fortunately, there are more than a few researchers who delay
making any claims until they have first checked to see if their findings are repro-
ducible. Such researchers deserve your utmost respect. If their findings emanate
from well-designed studies that deal with important questions, their discoveries
may bring forth improvements in your life and the lives of others.
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Review Questions

CHAPTER 1

1. Where is the abstract usually found in a journal article? What type of infor-
mation is normally contained in the abstract?

2. What information usually follows the review of literature?
3. If an author does a good job of writing the method section of the research 

report, what should a reader be able to do?
4. The author of this chapter’s model article used the term participants to label

the people from whom data were collected (see Excerpt 1.5). What is another
word that authors sometimes use to label the data suppliers?

5. If a researcher compares the IQ scores of 100 boys with the IQ scores of 100 girls,
what would this researcher’s dependent variable be?

6. What are three ways authors present the results of their statistical analyses?
7. Will a nontechnical interpretation of the results usually be located in a research

report’s results section or in its discussion section?
8. What is the technical name for the bibliography that appears at the end of a

research report?
9. If a research report is published, should you assume that it is free of mistakes?

10. Look again at these five parts of the model article: the statement of purpose
(see Excerpt 1.3), the researcher’s hypothesis (see Excerpt 1.4), the final para-
graph of the results section (see Excerpt 1.8), the first sentence of the discus-
sion section (see Excerpt 1.10), and the abstract (see Excerpt 1.1). With respect
to this study’s purpose and findings, how many of these five sentences are con-
sistent with one another?

CHAPTER 2

1. What does each of the following symbols or abbreviations stand for:
?ms2,Q1,s2,Q2,s,R,SD,Q3,Mdn.,

s,M,N,



2. If cumulative frequency distributions were to be created for each column of
data of Excerpt 2.2, what would be the cumulative frequency for women in
the age group 41–50?

3. Each of several people from your home town is asked to indicate his or her
favorite radio station, and the data are summarized using a picture containing
vertical columns to indicate how many people vote for each radio station.
What is the name for this kind of picture technique for summarizing data?

4. True or False: In any set of data, the median is equal to the score value that
lies halfway between the high and low scores.

5. Which one of these two terms means the same thing as negatively skewed?
a. Skewed left
b. Skewed right

6. If the variance of a set of scores is equal to 9, how large is the standard devia-
tion for those scores?

7. If the standard deviation for a set of 30 scores is equal to 5, how large do you
think the range is?

8. What measure of variability is equal to the numerical distance between the
25th and 75th percentile points?

9. Which of the following three descriptive techniques would let you see each
and every score in the researcher’s data set?
a. grouped frequency distribution
b. stem-and-leaf display
c. box-and-whisker

10. True or False: The distance between the high and low scores in a data set can
be determined by doubling the value of the interquartile range.

CHAPTER 3

1. Following are the quiz scores for five students in English (E) and History (H).

Sam: ,
Sue: ,
Joy: ,
John: ,

Within this same group of quiz-takers, what is the nature of the relationship
between demonstrated knowledge of English and history?
a. high–high, low–low
b. high–low, low–high
c. little systematic tendency one way or the other

2. If 20 individuals are measured in terms of two variables, how many dots will
there be if a scatter diagram is built to show the relationship between the two
variables?

H = 1E = 13
H = 3E = 15
H = 3E = 16
H = 4E = 18

532 Review Questions



3. Which of the following five correlation coefficients indicates the weakest 
relationship?
a.
b.
c.
d.
e.

4. In Excerpt 3.6, what are the numerical values of the two highest correlations?
5. What is the name of the correlational procedure used when interest lies in the

relationship between two variables measured in such a way as to produce each
of the following?
a. two sets of raw scores
b. two sets of ranks (with ties)
c. two sets of truly dichotomous scores
d. one set of raw scores and one set of truly dichotomous scores

6. What does the letter s stand for in the notation ?
7. If a researcher wanted to see if there is a relationship between people’s 

favorite color (e.g., blue, red, yellow, orange) and their favorite TV network, what
correlational procedure would you expect to see used?

8. True or False: If a bivariate correlation coefficient turns out to be closer to 1.00
than to 0.00, you should presume that a causal relationship exists between the
two variables.

9. If a correlation coefficient is equal to.70, how large is the coefficient of 
determination?

10. True or False: If a researcher has data on two variables, there will be a high
correlation if the two means are close together (or a low correlation if the two
means are far apart).

CHAPTER 4

1. The basic idea of reliability is captured nicely by what word?
2. What is the name of the reliability procedure that leads to a coefficient of

stability? To a coefficient of equivalence?
3. Regardless of which method is used to assess reliability, the reliability coef-

ficient cannot be higher than —— or lower than ——.
4. Why is the Cronbach alpha approach to assessing internal consistency more

versatile than the Kuder–Richardson 20 approach?
5. True or False: If the split-half and Kuder–Richardson 20 procedures are applied to

the same set of test scores, both procedures will yield the same reliability estimate.
6. True or False:As reliability increases, so does the standard error of measurement.
7. What might cause the correlation coefficient used to assess concurrent or

predictive validity to turn out low even though scores on the new test are high
in accuracy?

rs

r = - .84
r = - .33
r = + .13
r = + .41
r = + .72

Review Questions 533
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8. Persuasive evidence for discriminant validity is provided by correlation coef-
ficients that turn out close to
a.
b.
c.

9. Should reliability and validity coefficients be interpreted as revealing some-
thing about the measuring instrument, or should such coefficients be inter-
preted as revealing something about the scores produced by using the measuring
instrument?

10. True or False: If a researcher presents impressive evidence regarding the reli-
ability of his or her data, it is safe to assume that the data are valid too.

CHAPTER 5

1. In which direction does statistical inference move: from the population to the
sample, or from the sample to the population?

2. What symbols are used to denote the sample mean, the sample variance, and
the sample value of Pearson’s correlation? What symbols are used to denote
these statistical concepts in the population?

3. True or False: If the population is abstract (rather than tangible), it is impos-
sible for there to be a sampling frame.

4. In order for a sample to be a probability sample, what must you or someone
else be able to do?

5. Which of the following eight kinds of samples are considered to be probability
samples?

cluster samples simple random samples
convenience samples snowball samples
purposive samples stratified random samples
quota samples systematic samples

6. If you want to determine whether a researcher’s sample is a random sample,
which of these two questions should you ask?
a. Precisely how well do the characteristics of the sample mirror the charac-

teristics of the population?
b. Precisely how was the sample selected from the population?

7. True or False: Studies having a response rate lower than 30 percent are not 
allowed to be published.

8. The best procedure for checking on a possible nonresponse bias involves doing
what?
a. Comparing demographic data of respondents and nonrespondents.
b. Comparing survey responses of respondents and a sample of nonrespondents.
c. Comparing survey responses of early versus late respondents.

-1.00
0.00
+1.00



9. If randomly selected individuals from a population are contacted and asked 
to participate in a study, and if those who respond negatively are replaced by
randomly selected individuals who agree to participate, should the final sample
be considered a random subset of the original population?

10. Put the words tangible and abstract into their appropriate places within this
sentence: If a researcher’s population is ———, the researcher ought to pro-
vide a detailed description of the sample, but if the researcher’s population 
is ———, it is the population that ought to be described with as much detail
as possible.

CHAPTER 6

1. True or False: Sampling errors can be eliminated by selecting samples randomly
from their appropriate populations.

2. If many, many samples of size n are drawn randomly from an infinitely big
population, and if the data from each sample are summarized so as to produce
the same statistic (e.g., r), what would the resulting set of sample statistics 
be called?

3. The standard deviation of a sampling distribution is called the _________.
4. True or False: You can have more faith in a researcher’s sample data if the

standard error is large (rather than small).
5. The two most popular levels of confidence associated with confidence intervals

are —— and ——.
6. If the confidence interval reported in Excerpt 6.4 had been a 99 percent CI,

the upper end of the CI would have been:
a. lower than 56
b. higher than 56
c. equal to 56

7. One type of estimation is called interval estimation; the other type is called
———— estimation.

8. True or False: When a researcher includes a reliability or validity coefficient in
the research report, such a coefficient should be thought of as a point estimate.

9. Which type of interval is superior to the other, a confidence interval or a standard
error interval?

10. Excerpt 6.6 contains a confidence interval built around a Pearson’s correlation
coefficient. Does the sample value of lie precisely in the middle of the CI?

CHAPTER 7

1. What another way to express the null hypothesis in Excerpt 7.1?
2. Suppose a researcher takes a sample from a population, collects data, and then

computes the correlation between scores on two variables. If the researcher

r
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wants to test whether the population correlation is different from 0, which of
the following would represent the null hypothesis?
a.
b.
c.
d.

3. True or False: If the alternative hypothesis is set up in a nondirectional fashion,
this decision will make the statistical test one-tailed (not two-tailed) in nature.

4. The null hypothesis is rejected if the sample data turn out to be (consistent/
inconsistent) with what one would expect if were true.

5. Which level of significance offers greater protection against Type I errors, .05
or. 01?

6. Does the critical value typically appear in the research report?
7. If a researcher sets � � .05 and then finds out (after analyzing the sample

data) that , will the null hypothesis be rejected or not rejected?
8. If a researcher’s data turn out such that cannot be rejected, is it appropriate

for the researcher to conclude that most likely is true?
9. If a null hypothesis is rejected because the data are extremely improbable

when compared against (with p � .00000001), for what reason might you
legitimately dismiss the research study as being totally unimportant?

10. True or False: Even if the results of a study turn out to be statistically signif-
icant, it is possible that those results are fully insignificant in any practical
sense.

CHAPTER 8

1. Is it possible for a researcher to conduct a study wherein the result is signifi-
cant in a statistical sense but is not significant in a practical sense?

2. What are the two popular strength-of-association indices that are similar to ?
3. Statistical power equals the probability of not making what kind of error?

a. Type I
b. Type II

4. What kind of relationship exists between statistical power and sample size?
a. direct
b. indirect
c. power and sample size are unrelated

5. The statistical power of a study must lie somewhere between —— and ——.
6. What are the numerical values for small, medium, and large effect sizes (as

suggested by Cohen) when comparing two sample means?
7. If a study is conducted to test H0: μ � 30 and if the results yield a confidence

interval around the sample mean that extends from 26.44 to 29.82, will 
be rejected?

H0

r2

H0

H0

H0

p = .03

H0

H0: r Z 0.00
H0: r = 0.00
H0: r Z 0.00
H0: r = 0.00



8. When the Bonferroni adjustment is used, what gets adjusted first?
a.
b.
c.
d. p

9. If a researcher wants to use the nine-step version of hypothesis testing instead
of the six-step version, what three additional things must he or she do?

10. If the researcher’s sample size is too ———, the results can yield statistical
significance even in the absence of any practical significance. However, if the
sample size is too ———, the results can yield a nonsignificant result even
though the null hypothesis is incorrect by a large margin.
a. small; large
b. large; small

CHAPTER 9

1. If a researcher reports that a sample correlation coefficient turned out to be sta-
tistically significant, which of the following most likely represents the researcher’s
unstated null hypothesis?
a.
b.
c.

2. If a researcher reports that “r(58) � 2.61, ,” how many pairs of scores
were involved in the correlation?

3. When a researcher checks to see if a sample correlation coefficient is or is not
significant, the inferential test most likely will be conducted in a (one-tailed/
two-tailed) fashion.

4. Suppose a researcher has data on five variables, computes Pearson’s r between
every pair of variables, and then displays the rs in a correlation matrix. Also sup-
pose that an asterisk appears next to three of these rs, with a note beneath the
table explaining that the asterisk means . Altogether, how many correla-
tional null hypotheses were set up and tested on the basis of the sample data?

5. In the situation described in question 4, how many of the rs would have turned
out to be statistically significant if the Bonferroni technique had been applied?

6. Is it possible for a researcher to have a test–retest reliability coefficient of .25
that turns out to be statistically significant at ?

7. A confidence interval built around a sample correlation coefficient leads to a
retention of the typical correlational null hypothesis if the CI overlaps which
of the following numbers?
a.
b.
c. 0.00

- .50
-1.0

p < .001

p < .05

p < .05
H0: r = +1.00
H0: r = 0.00
H0: r = -1.00

a

Ha

H0
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d.
e.

8. Is it possible for to be low (i.e., close to zero) and yet have ?
9. True or False: To the extent that the p-value associated with r is small (e.g., ,

, ), the researcher more confidently can argue that a cause-and-
effect relationship exists between the two variables that were correlated.

10. Attenuation makes it (more/less) likely that a true relationship will reveal 
itself through the sample data by means of a statistically significant correlation
coefficient.

CHAPTER 10

1. If 20 eighth-grade boys are compared against 25 eighth-grade girls, should
these two comparison groups be thought of as correlated samples or as inde-
pendent samples?

2. In the null hypothesis of an independent-samples t-test comparison of two
group means, what kind of means are referred to?
a. sample means
b. population means

3. If the df associated with a correlated-samples t-test is equal to 18, how many
pairs of scores were involved in the analysis?

4. Based on the information contained in the following ANOVA summary table,
the researcher’s calculated value would be equal to what number?

Source df SS MS F

Between groups 1 12
Within groups 18 54

5. If a researcher uses an independent-samples t-test to compare a sample of men
with a sample of women on each of five dependent variables, and if the re-
searcher uses the Bonferroni adjustment technique to protect against Type I
errors, what does he or she adjust?
a. each group’s sample size
b. each t-test’s calculated value
c. the degrees of freedom
d. the level of significance

6. True or False: Whereas strength-of-association indices can be computed in
studies concerned with the mean of a single sample, they cannot be computed
in studies concerned with the means of two samples.

7. Suppose a researcher compares two groups and finds that , ,
, and . Based on this information, how large would the 

estimated effect size be? According to Cohen’s criteria, would this effect size
be considered small, medium, or large?

SD2 = 10M2 = 55
SD1 = 10M1 = 60

p < .0001p < .001
p < .01

p < .01r2
+1.00
+ .50



8. If a researcher uses sample data to test the homogeneity of variance assump-
tion in a study involving two independent samples, what will the null hypoth-
esis be? Will the researcher hope to reject or fail to reject this null hypothesis?

9. If the measuring instrument used to collect data has less than perfect reliabil-
ity, the confidence interval built around a single sample mean or around the
difference between two sample means will be (wider/narrower) than would
have been the case if the data had been perfectly reliable.

10. Suppose a one-way analysis of variance is used to compare the means of two
samples. Also suppose that the results indicate that , ,
and . With these results, how large was the sample size, assuming both
groups had the same n?

CHAPTER 11

1. If a researcher uses a one-way ANOVA to compare four samples, the sta-
tistical focus is on (means/variances), there will be ——— (how many)
inferences, and the inference(s) will point toward the (samples/populations).

2. In a one-way ANOVA involving five comparison groups, how many indepen-
dent variables are there? How many factors?

3. If a one-way ANOVA is used to compare the heights of three groups of
first-grade children (those with brown hair, those with black hair, and those
with blond hair), what is the independent variable? What is the dependent
variable?

4. For the situation described in question 3, what would the null hypothesis look
like?

5. Based on the information contained in the following ANOVA summary table,
what is the numerical value for ?

Source df SS MS F

Between groups 4 3

Within groups 2
Total 49

6. Which of these two researchers would end up with a statistically significant
finding after they each perform a one-way ANOVA?
a. The F-value in Bob’s ANOVA summary table is larger than the appropriate

critical F-value.
b. The p-value associated with Jane’s calculated F-value is larger than the

level of significance.
7. Suppose a one-way ANOVA comparing three sample means (8.0, 11.0, and 19.0)

yields a calculated F-value of 3.71. If everything about this study remained
the same except that the largest mean changed from 19.0 to 17.0, the calculated
value would get (smaller/larger).

SSTotal

F = 3
MSError = 4SSTotal = 44
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8. Suppose a researcher wants to conduct 10 one-way ANOVAs, each on a sep-
arate dependent variable. Also suppose that the researcher wants to conduct
these ANOVAs such that the probability of making at least one Type I error 
is equal to. 05. To accomplish this objective, what alpha level should the 
researcher use in evaluating each of the F-tests?

9. A one-way ANOVA is not robust to the equal variance assumption if the com-
parison groups are dissimilar in what way?

10. Is it possible for a one-way ANOVA to yield a statistically significant but
meaningless result?

CHAPTER 12

1. Which term more accurately describes Tukey’s test: planned or post hoc?
2. What are the differences among these three terms: post hoc comparison, follow-

up comparison, a posteriori comparison?
3. If a one-way ANOVA involves five groups, how many pairwise comparisons

will there be if the statistically significant omnibus F is probed by a post hoc
investigation that compares every mean with every other mean?

4. Will a conservative test procedure or a liberal test procedure more likely yield
statistically significant results?

5. True or False: If three sample means are , , and ,
it is impossible for the post hoc investigation to say .

6. Which kind of comparison is used more by applied researchers, pairwise or
nonpairwise?

7. True or False: When conducting post hoc investigations, some researchers use
the Bonferroni technique in conjunction with t-tests as a way of dealing with
the inflated Type I error problem.

8. True or False: Whereas regular t-tests and the one-way ANOVA’s omnibus F-test
have no built-in control that addresses the difference between statistical signifi-
cance and practical significance, planned and post hoc tests have been designed
so that only meaningful differences can end up as statistically significant.

9. If a researcher has more than two comparison groups in his or her study, it
(would/would not) be possible for him or her to perform a one-degree-of-
freedom F test.

10. True or False: In a study comparing four groups (A, B, C, and D), a compar-
ison of A versus B is orthogonal to a comparison of C versus D.

CHAPTER 13

1. If a researcher performs a univariate 3 � 3 ANOVA, how many independent
variables are there? How many dependent variables?

2. How many cells are there in a 2 � 4 ANOVA? In a 3 � 5 ANOVA?

M1 7 M2 7 M3

M3 = 50M2 = 55M1 = 60



3. Suppose the factors of a 2 � 2 ANOVA are referred to as Factor A and Fac-
tor B. How will the research participants be put into the cells of this study if
Factor A is assigned while Factor B is active?

4. How many research questions dealt with by a two-way ANOVA are concerned
with main effects? How many are concerned with interactions?

5. Suppose a 2 (gender) � 3 (handedness) ANOVA is conducted, with the
dependent variable being the number of nuts that can be attached to bolts
within a 60-second time limit. Suppose that the mean scores for the six groups,
each containing 10 participants, turn out as follows: right-handed males �
10.2, right-handed females � 8.8; left-handed males � 7.8, left-handed
females � 9.8; ambidextrous males � 9.0, ambidextrous females � 8.4. Given
these results, what are the main effect means for handedness equal to? How
many scores is each of these means based on?

6. True or False: There is absolutely no interaction associated with the sample
data presented in question 5.

7. How many different mean squares serve as the denominator when the F-ratios
are computed for the two main effects and the interaction?

8. True or False: You should not expect to see a post hoc test used to compare
the main effect means of a 2 � 2 ANOVA, even if the F-ratios for both main
effects turn out to be statistically significant.

9. How many simple main effects are there for Factor A in a 2 � 3 (A � B)
ANOVA?

10. True or False: Whenever a two-way ANOVA is used, there is a built-in control
mechanism that prevents results from being statistically significant unless
they are also significant in a practical sense.

CHAPTER 14

1. If you see the following factors referred to with these names, which one(s)
should you guess probably involve repeated measures? (Select all that apply.)
a. treatment groups
b. trial blocks
c. time period
d. response variables

2. How does the null hypothesis of a between-subjects one-way ANOVA differ
from the null hypothesis of a within-subjects one-way ANOVA?

3. If a 2 � 2 ANOVA is conducted on the data supplied by 16 research participants,
how many individual scores would be involved in the analysis if both factors are
between subjects in nature? What if both factors are within subjects in nature?

4. If the two treatments of a one-way repeated measures ANOVA are presented
to 20 research participants in a counterbalanced order, how many different
presentation orders will there be?
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5. True or False: Because the sample means of a two-way repeated measures
ANOVA are each based on the same number of scores, this kind of ANOVA
is robust to the sphericity assumption.

6. If eight research participants are each measured across three levels of factor
A and four levels of factor B, how many rows (including total) will there be
in the ANOVA summary table? How many df will there be for the total row?

7. How many null hypotheses are typically associated with a two-way mixed
ANOVA? How many of them deal with main effects?

8. If each of 10 males and 10 females is measured on three occasions with the
resulting data analyzed by a two-way mixed ANOVA, how many main effect
means will there be for gender, and how many scores will each of these sam-
ple means be based on?

9. Suppose the pretest, posttest, and follow-up scores from four small groups
(with n � 3 in each case) are analyzed by means of a mixed ANOVA. How
large would the interaction F be if it turned out that ,

, , , and ?
10. True or False: One of the nice features of any repeated measures ANOVA is

the fact that any statistically significant result is guaranteed to be significant
in a practical sense as well.

CHAPTER 15

1. ANCOVA was developed to help researchers decrease the probability that
they will make a (Type I/Type II) error when they test hypotheses.

2. What are the three kinds of variables involved in any ANCOVA study?
3. In ANCOVA studies, is it possible for something other than a pretest (or base-

line measure) to serve as the covariate?
4. Suppose the pretest and posttest means for a study’s experimental (E) and

control (C) groups are as follows: , , ,
. If this study’s data were to be analyzed by an analysis of 

covariance, the control group’s adjusted posttest mean might turn out equal to
which one of these possible values?
a. 5
b. 15
c. 25
d. 35
e. 45

5. For ANCOVA to achieve its objectives, there should be a (strong/weak)
correlation between each covariate variable and the dependent variable.

6. True or False: Like the analysis of variance, the analysis of covariance is robust
to violations of its underlying assumptions so long as the sample sizes are
equal.

MC1post2 = 40
MC1pre2 = 10ME1post2 = 50ME1pre2 = 20

FTime = 5FGroups = 2MSError1w2 = 2SSTotal = 104
SSGroups = 12



7. One of ANCOVA’s assumptions states that the ——— variable should not 
affect the _____ variable.

8. ANCOVA works best when the comparison groups (are/are not) formed by
random assignment.

9. In testing the assumption of equal regression slopes, does the typical researcher
hope the assumption’s null hypothesis will be rejected?

10. True or False: Because ANCOVA uses data on at least one covariate variable,
results cannot turn out to be statistically significant without also being signifi-
cant in a practical sense.

CHAPTER 16

1. In a scatter diagram constructed in conjunction with a bivariate regression
analysis, which of the two axes will be set up to coincide with the dependent
variable?

2. In the equation , what is the numerical value of the constant,
and what is the numerical value of the regression coefficient?

3. In bivariate regression, can the slope end up being negative? What about the
Y-intercept? What about ?

4. True or False: In bivariate regression, a test of is equivalent to a test
that the Y-intercept is equal to 0.

5. In multiple regression, how many X variables are there? How many Y variables?
6. True or False: You will never see Δ reported among the results of a simul-

taneous multiple regression.
7. In stepwise and hierarchical multiple regression, do the beta weights for those

independent variables entered during the first stage remain fixed as additional
independent variables are allowed to enter the regression equation at a later
stage?

8. In binary logistic regression, the dependent variable is (dichotomous/continuous)
in nature.

9. An odds ratio of what size would indicate that a particular independent variable
has no explanatory value?

10. In logistic regression, does the Wald test focus on individual ORs or does it
focus on the full regression equation?

CHAPTER 17

1. True or False: When the sign test is used, the null hypothesis says that the
sample data will contain an equal number of observations in each of the two
response categories, thus yielding as many pluses as minuses.

2. Which test is more flexible, the sign test or the binomial test?

R2

H0: r = 0
r2

Y¿ = 2 + 41X2
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3. What symbol stands for chi square?
4. Suppose a researcher uses a 2 � 2 chi square to see if males differ from 

females with regard to whether they received a speeding ticket during the pre-
vious year. Of the 60 males in the study, 40 had received a ticket. The sample
data would be in full agreement with the chi-square null hypothesis if ——
of the 90 females received a ticket.

5. How many degrees of freedom would there be for a chi-square comparison of
freshmen, sophomores, juniors, and seniors regarding their answers to the
question: “How would you describe the level of allegiance to your school?”
(The response options are low, moderate, and high.)

6. Whose name is often associated with the special chi-square formula that carries
the label correction for continuity?

7. McNemar’s chi-square test is appropriate for (two/more than two) groups of
data, where the samples are (independent/correlated), and where the response
variable contains (two/more than two) categories.

8. If a pair of researchers got ready to use a one-factor repeated measures
ANOVA but then stopped after realizing that their data were dichotomous,
what statistical test could they turn to in order to complete the data analysis?

9. True or False: Techniques for applying the concept of statistical power to tests
dealing with frequencies, percentages, and proportions have not yet been 
developed.

10. Can confidence intervals be placed around sample percentages?

CHAPTER 18

1. Why do researchers sometimes use nonparametric tests with data that are 
interval or ratio?

2. The median test is used with (independent/correlated) samples.
3. If the median test is used to compare two samples, how many medians will

the researcher need to compute based on the sample data?
4. A Mann-Whitney U test is designed for situations where there are — (how

many) samples that ——— (do/do not) involve repeated measures.
5. Which of the test procedures discussed in this chapter is analogous to the cor-

related-samples t-test considered earlier in Chapter 10? Which one is analo-
gous to the one-way ANOVA considered in Chapter 11?

6. Which of the nonparametric tests involves a calculated value that is sometimes
symbolized as ?

7. True or False: The large-sample versions of the Mann–Whitney, Kruskal–Wallis,
and Wilcoxon tests all involve a calculated value that is labeled z.

8. Are random samples important to nonparametric tests?
9. True or False: Because they deal with ranks, the tests considered in this chapter

have lower power than their parametric counterparts.

x2
r



10. The term distribution free (should/should not) be used to describe the various
nonparametric tests discussed in this chapter.

CHAPTER 19

1. What is the statistical focus in a MANOVA?
a. Correlations
b. Standard deviations
c. Means
d. Frequencies

2. Compared to an ANOVA, a MANOVA has two or more ________.
a. dependent variables
b. independent variables
c. levels in each factor
d. factors

3. True or False: If a one-way MANOVA is used to compare a sample of men
against a sample of women in terms of the participants’ speed of running 100
yards on a track and their speed of swimming 100 yards in a pool, the multi-
variate null hypothesis would be μrun � μswim for men and μrun � μswim for
women.

4. Is there a multivariate analogue to the univariate analysis of covariance?
5. Is Wilks’ lambda used very often to test the MANOVA null hypothesis?
6. Multivariate test statistics, such as , are typically converted into

a. z-scores
b. t-values
c. F-values

7. What do the first two letters stand for in the acronym NPMANOVA?
8. True or False: No statistical techniques have been developed as yet to assess

the practical significance of results from a MANOVA investigation.
9. True or False: The only option for performing a post hoc investigation after a

MANOVA has yielded a significant result is to perform univariate tests.
10. Should the Bonferroni adjustment procedure be used in a post hoc investiga-

tion involving univariate tests if the initial MANOVA or MANCOVA has pro-
duced a significant multivariate result?

CHAPTER 20

1. The statistical part of factor analysis begins with an examination of
a. the mean scores on the observed variables
b. the standard deviation of scores on each observed variable
c. the correlations among the observed variables

l
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2. The number of factors identified at the end of a factor analysis usually is _____
than the number of observed variables.
a. smaller
b. larger

3. True or False: The outcome of a factor analysis is clear and good if each 
observed variable has a high correlation with each of the factors.

4. Factor analysis is often used in studies in which the researchers want to assess
which kind of validity?
a. Content validity
b. Predictive validity
c. Construct validity

5. The two main types of factor analysis are called ______ factor analysis and
______ factor analysis.

6. The two main types of factor analysis (can/cannot) be used within the context
of the same study.

7. True or False: Factor rotation takes place before (not after) factor extraction?
8. A factor is considered to be worth retaining is its eigenvalue is

a. small
b. large

9. How are the results of a parallel analysis summarized?
a. In a graph
b. In an F-value
c. In a χ2-value

10. True or False: Tests of model fit are used both in exploratory factor analysis
and in confirmatory factor analysis.

CHAPTER 21

1. True or False: In structural equation modeling, the terms manifest variable
and latent variable refer to the same thing.

2. True or False: In structural equation modeling, the terms indicator and
observed variable refer to the same thing.

3. How are the findings of SEM typically summarized?
a. In a table containing means, standard deviations, and indices of skewness
b. In a diagram containing boxes, ovals, and arrows
c. In a single scatter diagram containing dark and light data points

4. Which kind of variable is considered to have an effect on some other variable?
a. Exogenous
b. Endogenous

5. In SEM, the two types of error are called measurement error and ______.
6. True or False: If model fit is tested in an SEM study, and if the researcher

hopes for a good fit, the desired result will be a nonsignificant (i.e., fail-to-
reject) result.



7. In an SEM study, an examination of the “measurement model” involves
assessing the reliability of the ______ variables.
a. manifest
b. latent

8. A statistic that assesses whether one or more causal paths are missing from
the model is called the “______ index.”
a. completeness
b. modification
c. orthogonal
d. Sherlock

9. What is a latent variable called if it functions as both an exogenous variable
and an endogenous variable?

10. True or False: Because of the complexity and sophistication of SEM, a tight
model fit proves causality.
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CHAPTER 1

1. The abstract is usually found near the beginning of the 
article. It normally contains a condensed statement of the
study’s objective(s), participants, method, and results.

2. Statement of purpose
3. Replicate the investigation
4. Subjects
5. IQ (i.e., intelligence)
6. In paragraphs of text, in tables, and in figures
7. In the discussion section
8. References
9. No

10. All five

CHAPTER 2

1. Size of the data set, mean, standard deviation, median,
upper quartile point, standard deviation, range, standard
deviation, middle quartile point (or median), variance,
lower quartile point, variance, mean

2. 420
3. Bar graph
4. False
5. a
6. 3
7. 20
8. Interquartile range
9. b

10. False

CHAPTER 3

1. a
2. 20
3. c
4. .41 and �.39
5. a. Pearson’s r

b. Kendall’s tau
c. phi
d. point biserial

6. Spearman
7. Cramer’s V
8. False
9. .49

10. False (Correlation says nothing about the two means!)

CHAPTER 4

1. Consistency
2. Test-retest reliability; parallel-forms reliability (or alternate-

forms reliability or equivalent-forms reliability)
3. 1.0; 0.0
4. Cronbach’s alpha is not restricted to situations where the

data are dichotomous
5. False
6. False
7. Poor measurement of the criterion variable
8. b
9. The score obtained by using the measuring instrument

10. False

Answers to 
Review Questions



CHAPTER 5

1. From the sample to the population
2. M, s2, r, �, , �
3. True
4. Assign a unique ID number to each member of the 

population
5. Cluster samples, simple random samples, stratified 

random samples, and systematic samples
6. b
7. False
8. b
9. No

10. abstract; tangible

CHAPTER 6

1. False
2. A sampling distribution
3. standard error
4. False
5. 95 percent; 99 percent
6. b
7. point
8. True
9. A confidence interval

10. No

CHAPTER 7

1. Ho: μ1 � μ2

2. c
3. False
4. inconsistent
5. .01
6. No
7. Rejected
8. No
9. A silly null hypothesis

10. True

CHAPTER 8

1. Yes
2. Eta squared and omega squared
3. b
4. a
5. 0, 1.0

6. Small = .20, medium = .50, large = .80
7. Yes
8. c
9. Specify the effect size, specify the desired power, and 

determine (via formula, chart, or computer) the proper
sample size.

10. b

CHAPTER 9

1. b
2. 60
3. two-tailed
4. 10
5. Most likely none of them
6. Yes
7. c
8. Yes, if the sample size is large enough
9. False

10. less

CHAPTER 10

1. Independent samples (because two groups with different
ns cannot be correlated)

2. b
3. 19
4. 4
5. d
6. False
7. .50; medium
8. H0: � ; fail to reject
9. wider

10. 5

CHAPTER 11

1. means; one; populations
2. 1; 1
3. hair color; height
4. H0: �1 � �2 � �3

5. 114
6. Bob
7. smaller
8. .005
9. Group size

10. Yes

s2
2s2

1

s2
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CHAPTER 12

1. Neither. It depends on whether the researcher who uses
the Tukey test first examines the ANOVA F to see if it is
okay to compare means using the Tukey test.

2. Nothing; they are synonyms.
3. 10
4. A liberal test procedure
5. True
6. Pairwise
7. True
8. False
9. would

10. True

CHAPTER 13

1. 2; 1
2. 8; 15
3. Participants will be randomly assigned to levels of Factor

B from within each level of Factor A.
4. 2; 1
5. The main effect means would be equal to 9.5, 8.8, and 8.7

(for right-handed, left-handed, and ambidextrous individuals,
respectively). Each would be based on 20 scores.

6. False
7. 1
8. True
9. 3

10. False

CHAPTER 14

1. b, c, d
2. They do not differ in any way.
3. 16; 64
4. 2
5. False
6. 8; 95
7. 3; 2
8. 2; 30
9. 2

10. False

CHAPTER 15

1. Type II
2. Independent, dependent, and covariate (concomitant) 

variables

3. Yes
4. e
5. strong
6. False
7. independent; covariate
8. are
9. No

10. False

CHAPTER 16

1. The vertical axis (i.e., the ordinate)
2. The constant is 2; the regression coefficient is 4.
3. Yes; yes; no
4. False
5. At least two; just one
6. True
7. No
8. dichotomous
9. 1.0

10. Individual ORs

CHAPTER 17

1. False. (The null hypothesis is a statement about population
parameters, not sample statistics.)

2. The binomial test
3. χ2

4. 60
5. 6
6. Yates
7. two; correlated; two
8. Cochran’s Q test
9. False

10. Yes

CHAPTER 18

1. Because researchers know or suspect that the normality 
or equal variance assumptions are untenable, especially 
in situations where the sample sizes are dissimilar.

2. independent
3. 1
4. 2; do not
5. The Wilcoxon matched-pairs signed-ranks test; the

Kruskal-Wallis one-way ANOVA of ranks
6. Friedman’s two-way analysis of variance of ranks
7. False. (The Kruskal–Wallis test, when conducted with large

samples, yields a calculated value symbolized as χ2.)
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8. Yes
9. False

10. should not

CHAPTER 19

1. c
2. a
3. False
4. Yes
5. Yes
6. c
7. Nonparametric
8. False
9. False

10. Yes

CHAPTER 20

1. c
2. a

3. False
4. c
5. exploratory; confirmatory
6. can
7. False
8. b
9. a

10. False

CHAPTER 21

1. False
2. True
3. b
4. a
5. residual error
6. True
7. b
8. b
9. A mediator variable

10. False

Answers to Review Questions 551



552

Credits

1.1 through 1.11

Perceptual and motor skills by J. J. Annesi. Copyright 2009 by AMMONS SCIENTIFIC, LTD. Reproduced
with permission of AMMONS SCIENTIFIC, LTD. in the format Textbook via Copyright Clearance Center.

2.1

McDermott, R. J., Nickelson, J., Baldwin, J. A., Bryant, C. A., Alfonso, M., Phillips, L. M., et al. (2009). A
community–school district–university partnership for assessing physical activity of tweens. Preventing Chronic
Disease. 6(1). Contributed to the public domain by the U.S. Centers for Disease Control and Prevention.

2.2

Giannoglou et al., Difference in the topography of atherosclerosis in the left versus right coronary artery in
patients referred for coronary angiography. BMC Cardiovascular Disorders (published by BioMed Central),
2010, 10:26.

2.3

Chyung, S. Y. (2007). Age and gender differences in online behavior, self-efficacy, and academic performance.
Quarterly Review of Distance Education, 8(3), 213–222.

2.4

Radat, F., Lantéri-Minet, M., Nachit-Ouinekh, F., Massiou, H., Lucas, C., Pradalier, A., et al. (2008). The
GRIM2005 study of migraine consultation in France: III: Psychological features of subjects with migraine.
Cephalalgia, 29, 338–350. Reprinted with permission of Sage Publications.

2.5

Faseru et al., Design, recruitment, and retention of African-American smokers in a pharmacokinetic study.
BMC Medical Research Methodology (published by BioMed Central), 2010, 10:6.

2.7

Sloma et al., Knowledge of stroke risk factors among primary care patients with previous stroke or TIA:
a questionnaire study. BMC Family Practice (published by BioMed Central), 2010, 11:47.

2.17

Tilson, Validation of the modified Fresno Test: assessing physical therapists’ evidence based practice
knowledge and skills. BMC Medical Education (published by BioMed Central), 2010, 10:38.

2.20

Exner et al., Worry as a window into the lives of people who use injection drugs: a factor analysis approach.
BMC Harm Reduction Journal (published by BioMed Central), 2009, 6:20.

3.1

Bago et al., The Trunk Appearance Perception Scale (TAPS): a new tool to evaluate subjective impression
of trunk deformity in patients with idiopathic scoliosis. Scoliosis 2010, 5:6.



3.6

Elwood, S., et al. (2009). “The Incubation Effect: Hatching a Solution,” Creativity Research Journal. 21(1):
11. Reproduced with permission of the publisher, Taylor & Francis, Ltd.

3.7

van Osch et al., Action planning as predictor of health protective and health risk behavior: an investigation of
fruit and snack consumption. International Journal of Behavioral Nutrition and Physical Activity 2009, 6:69.

6.3

Reproduced from the Journal of Experimental Social Psychology, 46, Turning the knots in your stomach
into bows: Reappraising arousal improves performance on the GRE, by Jamieson, J. P., Mendes, W. B.,
Blackstock, E., and Schmader, T., 208–212, 2010, with permission from Elsevier.

9.12

Ljoså et al. Shiftwork in the Norwegian petroleum industry: overcoming difficulties with family and social
life – a cross sectional study. Journal of Occupational Medicine and Toxicology 2009, 4:22.

10.11

COMMUNITY COLLEGE JOURNAL OF RESEARCH & PRACTICE. Copyright 2008 by TAYLOR &
FRANCIS INFORMA UK LTD—JOURNALS. Reproduced with permission of TAYLOR & FRANCIS
INFORMA UK LTD—JOURNALS in the format Textbook via Copyright Clearance Center.

10.15

Grammatikopoulos et al., The Short Anxiety Screening Test in Greek: translation and validation. Annals 
of General Psychiatry 2010, 9:1.

11.1 and 11.5

Akbulut, Y. (2007). Effects of multimedia annotations on incidental vocabulary learning and reading compre-
hension of advanced learners of English as a foreign language. Instructional Science, 35(6), 512. Reprinted
by permission of the publisher, Springer.

12.14

Wilkerson, T. W. (2009). An exploratory study of the perceived use of workarounds utilized during the 
prescription preparation process of pharmacies in Alabama. Unpublished doctoral dissertation, Auburn
University, Auburn, Alabama. Reproduced with permission of the author.

12.15

Drenowatz et al., Influence of socio-economic status on habitual physical activity and sedentary behavior 
in 8- to 11-year old children. BMC Public Health (published by BioMed Central), 2010, 10:214.

13.8

Chen, L. J., Ho, R. G., & Yen, Y. C. (2010). Marking strategies in metacognition-evaluated computer-based
testing. Journal of Educational Technology & Society, 13(1), 246–259. Reproduced with permission of IFEST:
the International Forum of Educational Technology and Society.

13.11

Dixon, L. J. (2009). The effects of betrayal characteristics on laypeople’s ratings of betrayal severity and
conceptualization of forgiveness. Unpublished doctoral dissertation. University of Tennessee, Knoxville.
Reproduced with permission of the author.

14.6

Sohlberg, M. M., Fickas, S., Hung, P.-F., & Fortier, A. (2007). A comparison of four prompt modes for
route finding for community travellers with severe cognitive impairments. Brain Injury, 21(5), 531–538.
Reproduced by permission of the publisher (Taylor & Francis Group, http://www.informaworld.com).

14.17

TESOL QUARTERLY : A JOURNAL FOR TEACHERS OF ENGLISH TO SPEAKERS OF OTHER
LANGUAGES AND OF STANDARD ENGLISH AS A SECOND DIALECT by K. J. Hartshorn. Copyright

Credits 553

http://www.informaworld.com


2010 by TEACHERS OF ENGLISH TO SPEAKERS OF OTHER LANGUAGES. Reproduced with
permission of TEACHERS OF ENGLISH TO SPEAKERS OF OTHER LANGUAGES in the format
Textbook via Copyright Clearance Center.

15.9

Howard, V. M., Ross, C., Mitchell, A. M., & Nelson, G. M. (2010). Human patient simulators and interactive
case studies: A comparative analysis of learning outcomes and student perceptions. CIN: Computers,
Informatics, Nursing, 28(1), 42–48. Reproduced with permission of Wolters Kluwer Health.

19.22
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15.9–15.10, 15.12
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importance of, 364–365
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354–355, 15.9
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344
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b. See Slope
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Bartlett
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Bonferroni adjustment technique
with analysis of covariance, 361,

15.19
with chi square, 423, 430
how it works, 176, 8.19–8.20, 10.16
logic behind, 175–176
with Mann-Whitney U-tests, 447
with multivariate investigations, 477
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Box’s test of equal covariance matrices,
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Carryover effects, 320
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Cause and effect, 62, 201, 504n, 9.25
Cell

getting research participants 
into, 281

meaning of, 277–278
means, 278, 285, 288, 13.13
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241
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28, 41, 2.14, 2.21
geometric mean, 31, 2.13
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CFA. See Confirmatory factor analysis
CFI, 520n, 21.15
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430, 17.21
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use with
other-than-nominal data, 410
related samples. See McNemar’s

chi-square test
Wald test, 398

Yates’ correction for discontinuity,
424–425, 17.19

Class interval, 20
Clinical significance, 162n
Cluster sample, 99–100, 5.7
Cochran’s Q test, 426–428, 17.21
Cochran’s test of variance equality,
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Nonpairwise comparison

Computer-generated random 
numbers, 110

Conclusion, 13
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built around a correlation
coefficient, 122, 173, 195–196,
6.6, 8.16, 9.19
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measure, 223–224, 10.19
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coefficient, 16.8
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proper interpretation of, 124
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multiple comparison test, 262
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20.7

Content validity, 82, 4.19
Contingency coefficient, 420–421,

17.15
Contingency table, 414, 415, 419
Continuous variable, 54n, 437
Contrast, 259. See also Planned

comparisons; Post hoc
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in ANCOVA, 347–349, 15.8
in regression, 393–394, 400,

16.14, 16.21
Convenience sample, 101–102, 5.9
Convergent validity, 84, 499, 518,

4.22, 21.11
Correction for attenuation, 202, 9.26
Correction for discontinuity, 424–425,

17.19
Correction for ties, 453–454,

18.20–18.21
Correlated samples, 209–211,

10.6, 10.13
Correlated-samples t-test, 231
Correlation

and cause, 62, 201, 9.25
assumptions of, 199–210, 9.24
descriptive labels, 49–50, 65

3.3–3.5, 3.28
different measures of, 56–61,

3.15–3.23
as a relationship, 45–46
warnings about, 61–65

Correlation coefficient
in descriptive statistics, 48–50,

3.2–3.5

in inferential statistics
comparing two, 193–195,

9.17–9.18
confidence intervals around,

195–196, 9.19
effect size in interpreting,

197–198, 9.22
power analysis, 198–199, 9.23
test on one, 183–189, 9.1–9.11
tests on many, 189–192, 9.12–9.14

zero order, 53n
Correlation matrix, 50–53, 189–190,

3.6–3.7, 9.12, 20.1
Counterbalanced, 71n, 320, 337,

14.8, 14.19
Covariate

limitations of (in ANCOVA with
nonrandom groups), 359–360

in regression, 379, 392
in MANCOVA, 463, 19.6, 19.8
role in ANCOVA studies, 345–350,

15.6–15.8
as a variable in ANCOVA, 340–345,

15.4–15.5
Cox and Snell measure of R2, 399n
Cramer’s V

as correlation coefficient, 61, 421,
3.23, 17.16

as measure of effect size, 430–431,
17.16, 17.24

test of, 17.16
Criterion variable, 83, 369n, 378n, 16.12
Criterion-related validity, 83–84,

4.20–4.21
Critical value, 145–147, 7.18–7.19, 9.6
Cronbach’s alpha, 74, 4.8–4.9, 4.18, 6.10
Crude odds ratio, 397
Curvilinear, 64, 200, 3.26

d (as measure of effect size)
criteria for assessing, 223, 273, 306
examples of, 222, 305, 8.4, 10.17,

12.20, 15.20
Data transformation, 227–228, 248,

303, 10.25, 11.14, 13.17, 19.15
Degrees of freedom

in ANCOVA F-tests, 353
in ANOVA F-tests, 216–217,

241–242, 291, 317, 327,
10.10–10.11, 13.8

in chi-square tests, 412, 417
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in comparing two means with a t-test,
215–216, 220, 10.8–10.9

in multiple regression, 387n
in multivariate F-tests, 466
in testing a single mean, 209, 10.4

Dependent samples, 211
Dependent variable

in general, 9
in ANOVA and ANCOVA, 238,

344–345, 11.2, 15.4–15.5
in MANOVA and MANCOVA, 459,

19.6, 19.8
in regression analyses, 369–370,

392–394, 16.3–16.4, 16.21
Descriptive statistics, 18–42
Determinant, 487, 20.9
df. See Degrees of freedom
Dichotomous, 54, 3.11, 3.14
Direct effect, 390
Direct oblimin, 489
Discrete variable, 54n
Discriminant ratio coefficients, 464,

475, 19.22
Discriminant validity, 84, 499,

4.22, 21.11
Discussion, 13–14, 1.10
Dispersion, 31
Distributional shape

basic notion of, 24
different kinds, 24–28, 2.8–2.10

Distribution-free, 455
Divergent validity, See Discriminant

validity
Dummy variable, 381
Duncan’s multiple range test, 261
Dunnett’s test, 263, 12.10
Dunn-Sidak adjustment, 178–179,

8.22

EFA. See Exploratory factor analysis
Effect size, See also, d, Eta squared, etc.

estimated post hoc,
basic idea of, 163–164
with chi square, 431
with correlations, 163, 197–198,

8.3, 9.22
with interaction, 305, 13.18
with main effects, 305, 13.9, 14.7
with two means, 221–225, 8.4,

10.17–10.20

criteria for assessing, 163–164, 180,
198, 223, 250, 306, 431

raw versus standardized, 164,
167, 225

specified a priori, 166–168, 199,
224, 8.6–8.8, 9.23, 10.21,
11.17–11.18

two meanings of, 179
Eigenvalue, 490, 20.18
Endogenous variable, 509–510, 21.3
Epsilon adjustment, 321. See also

Huynh-Feldt correction
Equal regression slopes. See Homo-

geneity of regression slopes
Equal variance assumption. See

Homogeneity of variance
Equimax, 489
Equipment, 7
Equivalence, coefficient of, 71, 4.3
Equivalent-forms reliability, 70n
Error (to label row in ANOVA summary

table), 242, 291, 334, 13.8
Error rate

experimentwise, 177, 8.20
familywise, 307, 14.18

Error variance, 346
ES. See Effect size
Estimation

interval, 114–125, 206–207, 218
to test a H0, 172–174, 8.16–8.17,

9.19, 10.12
without a H0, 6.4–6.7, 6.12–6.13,

point, 125–129, 6.8–6.11
warnings concerning, 129–130

Eta, 223
Eta squared

criteria for assessing, 223, 250, 306
purpose of, 165, 221–222, 249,

305, 365
examples, 249, 11.15, 12.20, 13.9

Exogenous variable, 509–510, 21.3
Expected frequencies, 412, 423,

17.18
Experimentwise error rate, 177, 8.20
Explained variation, 62–63, 377, 384,

399n, 3.24, 16.7, 16.15
Explanation (in regression), 368, 378,

394, 16.2
Explanatory variable, 369n, 378n
Exploratory factor analysis, 484,

486–495, 20.6, 20.8

f
as measure of effect size

criteria for assessing, 223,
250, 306

examples of, 249, 11.16, 13.14,
15.21

in frequency distributions, 19
Factor,

in ANOVA or ANCOVA, 237,
277–280, 344, 13.1–13.4, 13.7

active versus assigned, 280–281
between-subjects versus within-

subjects, 281–282, 332, 13.6
repeated measures, 313, 14.1–14.3
synonyms for, 277, 13.1–13.2

in factor analysis, 480, 20.2
Factor analysis

and construct validity, 85–86,
4.24, 20.4

communality, 494, 20.19
confirmatory, 484–485, 495–501,

516–518, 20.7–20.8, 20.20,
21.11

determining number of factors,
490–493, 20.16–20.17

eigenvalue, 490, 20.18
exploratory, 484, 486–495, 508,

20.6, 20.8
extraction of factor(s), 488,

20.10–20.12
factor loadings, 493–494, 499, 20.2,

20.18, 20.23
goal and logic of, 479–482
missing data in, 497, 20.21
model

comparison, 500–501,
20.25–20.26

fit, 496, 498–499, 20.22,
21.11, 21.15

modification, 500, 20.24
naming factors, 495, 502, 20.19
reasons for using, 482–483,

20.3–20.5
rotation of factors, 489–490,

20.13–20.15
sample size requirements, 487, 497
suitability of data for, 486, 20.9

Fail to reject. See Null hypothesis, retain
Familywise error rate, 307, 14.18
Fatigue effect, 319
Figure, 11
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Fisher’s exact test, 408–409
example of, 408–409, 17.4
null hypothesis in, 408–409
similarity to independent-samples

t-test, 408
as a test of relationship, 409
useful with small expected

frequencies, 415, 424, 17.18
Fisher’s LSD, 261, 12.14
Fisher’s r-to-z transformation, 195n,
Fit indices, 496, 498–499, 519–521,

20.22, 21.11, 21.15
Five-percent rule, 492
Follow-up test, 252, 259, 12.3. See

also Post hoc comparisons
Formative measure, 507n
F-ratio, 215–216, 241
Frequency, 19, 405
Frequency distribution, 18–20

grouped, 20, 2.2
in words, 23–24, 2.6
simple, 19–20, 2.1
ungrouped, 19

Friedman two-way analysis of variance
corrected for ties, 453–454
examples of, 450, 18.16
as an extension of the sign test, 449n
large-scale approximation,

452–453
null hypothesis of, 450
reject/retain decision-rule, 450

F-test, 215–217, 241, 10.10–10.11,
11.5–11.7

Gamma path, 510n, 21.16
Geisser-Greenhouse conservative F-test,

321, 329, 338, 14.21
Geometric mean, 31, 2.13
GFI, 499, 520n, 20.22, 21.15
Goodness-of-fit

indices, 498–499, 20.22
test, 226n, 412

Graph of an interaction, 294–298, 13.11
Grouped frequency distribution, 20,

2.2, 2.6
Group separation, 464

Harmonic mean, 31
Heterogeneous, 31
Hierarchical

logistic regression, 392

multiple regression, 383, 16.14,
16.18–16.19

Highly significant, 152, 7.27
Histogram, 22, 2.4
Holm sequential Bonferroni adjustment

procedure, 337, 14.18
Homogeneity

of proportions, 410, 425
of regression slopes, 357–358, 15.15
of variance

in ANCOVA, 358
and nonparametric tests, 437, 18.5
in one-way ANOVAs, 246–249,

11.10–11.11
in planned and post hoc tests,

271, 12.11
in t-tests, 226–229, 10.23
in two-way ANOVAs, 302–303,

13.15–13.17
of variance-covariance matrices,

467, 19.14–19.15
Homogeneous, 31
Homoscedasticity, 200, 9.24, 16.28
HSD. See Tukey’s test
Hotelling’s trace, 465, 19.13
Huynh-Feldt correction, 321–322, 338,

14.9, 14.20
Hypothesis

alternative, 137–139, 7.31
ambiguity of term, 156–157, 7.31
null, 132–135, 7.1–7.4
research, 5–6, 156–157, 1.4, 7.31

Hypothesis testing
basic six-step version of

discussion of, 132–152
list of the steps, 131–132, 161
limitations of, 180–181

cautions concerning, 154–159
logic of, 140–144
nine-step version of, 165–172,

8.6–8.13
and the possibility of inferential

error, 149–152
seven-step version of, 161–165
using confidence intervals, 172–174,

8.16–8.17

ICC. See Intraclass correlation
Identity matrix, 20.9
Independence

assumption of, 226, 246, 455, 16.28

test of, 417–420, 17.11–17.13
of variables when correlated, 64–65,

3.27
Independent samples, 209–211, 10.5
Independent-samples chi square test,

413–417, 17.9–17.10
Independent-samples t-test, 214, 10.8,

10.13, 10.15
Independent variable

in ANOVA and ANCOVA, 237, 277,
344, 11.2, 13.1, 15.4–15.5

in MANOVA and MANCOVA,
458, 19.5

in regression, 369–370, 392–394,
16.3–16.4, 16.10, 16.21

Indicator variable, 483n, 496,
506–508, 21.1

Indirect effect, 390
Inferential statistics, 90–94
Inflated Type I error rate, 174–179,

181–182, 262, 307–308
Instruments, 7
Intact groups, 360
Interaction

as departure from parallism, 298n
in mixed ANOVAs, 333, 14.17
in multiple regression, 379, 389
in two-way ANOVAs, 285–286, 288,

294–301, 13.8–13.12
in two-way repeated measures

ANOVAs, 325–326 14.12
Intercept, 375
Internal consistency, 71–74, 4.4–4.9
Interquartile range, 32–33, 2.16, 2.28
Interrater reliability, 74–78,

4.10–4.15
Interval estimation. See Estimation
Interval-level data, 54n, 413
Intraclass correlation, 70, 77–78, 4.2,

4.15–4.15
Introduction, 3–6
Invariance (of model in SEM),

520, 21.20

Johnson-Neyman technique, 357
Jonckheere-Terpstra test, 456

Kaiser-Meyer-Olkin index of sampling
adequacy, 487, 20.9

Kaiser’s criterion, 491, 20.16
Kappa, 76, 4.13
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Kendall’s coefficient of concordance,
75, 4.12, 7.32

Kendall’s correlations
tau, 58–59, 3.19
tau-b, 59, 3.20

KMO index, 487, 20.9
Kolmogorov-Smirnoff test, 226n, 247,

303, 413n, 10.22, 11.10,
11.12, 13.15

Kramer extension of Tukey test, 272
Kruskal-Wallis H test

examples of, 445–446, 18.5, 18.8,
18.12–18.13

large-sample version of, 451–453,
18.18

null hypothesis of, 446
post hoc tests, 446–447, 18.14
reject/retain decision-rule, 446
similarity to

the Mann-Whitney U test, 445, 446
a one-way ANOVA, 445

with tied observations, 453, 18.21
Kuder-Richardson 20, 21, 73,

4.6, 4.7
Kurtosis

coefficients of, 27, 2.11
meaning and examples, 26–27

Large-sample approximations, 428,
451–453, 17.22–17.23,
18.17–18.19

Latent
trait, 483
variable, 496, 506–508, 20.20,

21.1, 21.3
Latin square, 320, 14.8
Least squares principle, 373n
Leptokurtic, 27
Level (of a factor), 277–280, 13.5
Level of significance

meaning of, 146, 147–152
reasons for not choosing .05, 150–151,

7.24–7.25
referred to as alpha level, 148,

7.21–7.22
relation to Type I and Type II errors,

149–150
Levene’s test, 226n, 247, 303, 10.23,

11.10, 11.13–11.14, 13.15
Liberal, 262
Likert-type attitude inventory, 438

Lilliefors test of normality, 303, 13.16
Linear

assumption in ANCOVA and
regression, 358, 378, 15.16,
16.28

assumption of Pearson’s r, 64,
199–200, 3.26, 9.24, 19.14

assumption in SEM, 516, 21.9
meaning of, 64, 199–200, 3.26

Linear combination of dependent
variables, 464, 474, 19.9

Line of best fit, 372, 373
Logistic regression, 391–399

adjusted odds ratio, 397, 16.24, 16.26
confidence intervals, 397–398, 16.26
hierarchical, 392
hit rate, 399
inferential tests in, 397–399,

16.25–16.27
and models, 399, 16.27
objectives, 394, 16.22
odds ratio, 392, 395–397, 8.15,

16.23, 16.25
practical versus statistical

significance, 400–401
similarities to multiple regression,

391–392
simultaneous, 392
stepwise, 392, 8.15
variables in, 392–394, 16.21
Wald test, 398, 16.25

Loss of information, 20, 437
LSD, 12.14

Mahalanobis distance measure, 515, 21.7
Main effect

F-test, 290, 13.8–13.9, 14.12–14.13
means, 284–285, 287
to mean a factor, 284, 13.2

Manifest variable, 483n, 496, 506–508
Mann-Whitney U test

alternative names for, 442n
example of, 443–444, 18.7,

18.11, 18.22
interpreting results of, 444
large-sample version of, 451, 18.17
null hypothesis of, 444
as post hoc test, 446–447, 18.14
reject/retain decision-rule, 444
as superior to median test, 443
with tied observations, 453, 18.20

MANCOVA. See multivariate analysis
of covariance

MANOVA. See multivariate analysis
of variance

Mardia’s test, 514, 21.7
Marginal significance, 154
Matched

samples, 211, 426, 10.6, 10.13
t-test, 231, 10.9

Matching, 210
Materials, 7–9, 1.6
Mauchly’s test, 321, 329, 338,

14.9, 14.21
Maximum likelihood, 488, 20.10
McNemar’s chi-square, 425–426

different names for, 426
example of, 17.20
null hypothesis of, 426
similarity to correlated-samples 

t-test, 426
Mean

arithmetic, 28, 2.12
geometric, 31, 2.13
harmonic, 31

Mean square, 217, 241, 10.11,
11.5, 13.8

Mean square contingency coefficient,
420n

Measurement
error, 513, 4.16
model (in SEM), 508, 516–518,

21.2, 21.10
scales, 54n, 405, 439–440. See also

Interval, Nominal, Ordinal, Ratio
Measures of central tendency. See

Central tendency, measures of
Median, 28, 2.12
Median test

examples of, 441–442, 18.9–18.10
null hypothesis of, 440
similarity to a t-test or a one-way

ANOVA, 440
and ties, 453

Mediated
model (in SEM), 512, 21.18
multiple regression, 389–391, 16.20

Mediator variable, 390, 511–513,
16.20, 21.5–21.6

Mesokurtic, 27
Method, 6–11
Missing data in CFA, 497, 20.21
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Mixed ANOVA, 330–339
assumptions, 338, 14.20–14.21
diagram of, 331–332
different labels for, 331, 14.14–14.16
null hypotheses, 333
post hoc comparisons, 337, 14.18
practical versus statistical

significance, 339, 14.18, 14.20
presentation of results, 333–337,

14.17–14.18
presentation order of within-subject

levels, 337–338, 14.19
purpose, 332–333

Mode, 28, 2.12
Model

in factor analysis, 496, 500–501, 20.8,
20.20, 20.22, 20.24–20.26

in regression, 374, 385, 400, 16.11,
16.13, 16.18, 16.27, 16.28

in SEM, 505–524, 21.2–21.5,
21.10–21.20

Model-fit, 496, 498–499, 519–521,
20.22, 21.11, 21.15

Model modification, 521–523,
20.24, 21.19

Model specification, 400, 521, 16.28
Moderated multiple regression,

388–389, 16.19
Moderator variable, 388–389, 16.19
Modification indices, 523, 21.19
MS. See Mean square
Multicollinearity, 400, 487, 516, 16.28,

19.14–19.15, 20.9, 21.9
Multimodal, 25
Multiple comparison test, 259, 12.2

See also Post hoc comparisons
Multiple correlation, 53n
Multiple R and R2, 384, 16.15
Multiple range test. See Duncan’s

multiple range test
Multiple regression, 378–391

adjusted R2, 385–386
assessing success of, 384
beta weights, 380–381, 386–387,

16.11, 16.18
dependent and independent

variables, 378, 16.10, 16.16
dummy variable, 381
equations

standardized, 380–381
unstandardized, 379, 16.9–16.10

hierarchical, 383, 16.14, 16.18–16.19
inferential tests, 386–388,

16.18–16.20
mediated, 389–391, 16.20
moderated, 388–389, 16.19
multiple R, 384
power analysis, 401, 16.29
practical versus statistical

significance, 400–401,
16.29–16.30

regression coefficient, 379–380,
16.9–16.10

shrinkage, 385
simultaneous, 382, 16.12
stepwise, 382, 16.13

Multivariate analysis of covariance
null hypothesis, 463, 19.8
one-way, 460–461, 19.5, 19.8
two-way, 460–461, 19.6

Multivariate analysis of variance
a priori power analysis, 471, 19.19
assumptions, 467, 19.14
mixed, 460, 19.4
nonparametric version, 468, 19.16
null hypothesis, 461–465, 19.7
one-way, 459, 19.1–19.2, 19.7,

19.12
options when assumptions not met,

467–468, 19.15
post hoc procedures, 471–476,

19.20, 19.22–19.23
two-way, 460, 19.3, 19.18

Multivariate space, 473, 19.21

N, 20
Nagelkerke R2, 399, 16.27
Near misses, in hypothesis testing,

153–154, 7.28–7.29
Negatively skewed, 25, 2.7
Nested model, 522, 21.18
Newman-Keuls test, 261, 12.19
NNFI, 499, 520n, 20.22
Nominal

alpha level, 321
level of measurement, 54, 405, 3.10

Nonnormality, as reason for converting
raw scores to ranks, 437, 18.4

Nonpairwise comparison, 260–261,
12.6, 12.16

Nonparametric tests, 435–456. See
also specific test procedures

distinguished from parametric 
tests, 434n

reasons for using, 228, 304, 437–440,
10.26, 11.14, 18.4–18.8

Nonprobability sample, 100–103
Nonresponse bias, 105–106, 5.17–5.19
Normal distribution, 24, 2.8
Normality

multivariate,
assumption of, 226, 514, 21.7
test of, 514–515, 21.7

univariate
assumption of, 200, 226–229,

246, 302–303, 9.24, 10.22,
10.26, 11.10, 16.28, 19.14–19.15

test of, 226, 247, 303, 413, 10.22,
10.25, 11.10–11.11, 13.15–13.16

Notes, 16
NPMANOVA, 468
Nuisance variability, 355
Null hypothesis

examples, 134, 185, 7.1–7.4, 9.1–9.2
importance of, 155–156, 308
meaning of, 132–133
rejection of, 135–136, 7.5–7.7, 7.14
retention of, 136, 229–230, 310,

7.8–7.10

Oblique rotation of factors, 489,
20.14–20.15

Observed variable, 483n, 496,
506–508, 20.20

Odd-even split, 72
Odds, 394–395
Odds ratio, 392, 395–397, 8.15,

16.23, 16.25
Omega squared

criteria for evaluating, 223,
240, 306

purpose and examples, 221–222,
249–250

Omnibus test, 260, 318, 465, 12.4,
12.17, 19.11

One-degree-of-freedom F-test,
270, 13.14

One-factor ANOVA. See One-way
ANOVA

One-sample test of a mean
via a t-test, 208–209, 10.4
via a z-test, 208, 10.3

One-sided test, 138n, 214
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One-tailed, 139, 187, 214, 7.13,
9.8, 9.16

One-way ANOVA
alternative names for, 237
assumptions of, 246–249, 254,

11.10–11.11
Bonferroni adjustment, 245–246,

254, 11.8–11.9
dependent variable in, 238, 11.2
independent variable (factor) of,

237–238, 11.2
meaning of significant result,

251–252
nonsignificant results,

misinterpretation of, 252–253
null hypothesis of, 239–240,

11.3–11.4
practical significance versus

statistical significance,
249–251, 11.15–11.16

presentation of results, 215–217,
240–245, 10.10–10.11,
11.5–11.7

purpose of, 235–236, 254
One-way repeated measures ANOVA.

See Repeated measures
ANOVA

OR. See Odds ratio
Ordinal-level data, 54, 434, 3.8, 3.12,

18.1–18.3, 18.7–18.8
Ordinate, 22n, 46, 373n
Orthogonal

contrasts, 270–271, 12.18
meaning independent, 464n
rotation of factors, 489, 20.13, 20.15

Outcome variable, 369n, 378n
Outliers, 41, 63, 2.27–2.29, 3.25,

16.28, 19.14–19.15
Overlapping distributions, 230–231,

309, 455–456, 18.22
Oversampling, 97, 5.5

Paired samples, 211, 10.6, 10.13
Paired t-test, 230, 231, 10.9,

10.13, 10.25
Pairwise comparison, 260, 12.3, 12.5,

12.7–12.8, 12.16
Parallel analysis, 492, 20.17
Parallel-forms reliability, 70n
Parameter, 94–96
Parametric, 434n, 438

Parceling, 508, 21.1
Partial

eta squared, 222, 277, 305, 8.5,
10.18, 13.18, 15.13

correlation, 53n
mediation, 512, 21.6

Participants, 6–7, 1.5
Path coefficients in SEM, 520–521,

21.16
Pearson’s chi square. See Chi square
PCA. See Principal components analysis
Pearson’s correlation

as descriptive index, 56–57, 3.2–3.5,
3.7, 3.15–3.16

for estimating interrater reliability,
75, 4.11

in inferential statistics
with Bonferroni adjustment,

191–192, 9.14
cautions concerning, 196–203,

9.20–9.26
comparing two, 193–195,

9.17–9.18
confidence intervals around,

195–196, 9.19
null hypothesis, 185–186
test on, 187–188, 189–191,

9.1–9.4, 9.12–9.13
in multiple regression, 384

p-equal-to statements, 143, 146, 7.17
Percentages, 405
PERMANOVA, 468
Phi correlation

as descriptive index, 60, 3.22
within inferential context

chi-square test of independence,
420, 17.14

as a measure of effect size, 431
test on, 188, 9.11

Pillai’s trace, 465, 19.11
Planned comparison, 257, 268–269,

301–302, 363, 12.16–12.17,
13.14, 15.22

Platykurtic, 27
p-less-than statements, 136, 7.7, 7.14
p-level

just over or under the alpha level,
153–154, 7.28–7.29

meaning of, 143
meant to mean the level of

significance, 148, 7.23

as misleading index of practical
significance, 158. See also
Practical significance versus
statistical significance

used as the calculated value,
143–144, 7.17, 7.20, 9.5

when equal to zero or less than zero,
157–158

Point biserial correlation
as descriptive index, 59, 3.21
within inferential context, 9.10

Point estimation, 125–129, 6.8–6.11
Population

abstract and tangible, 92–94, 283,
5.1–5.2

basic meaning of, 91
in a two-way ANOVA, 282–283

Positively skewed, 25, 2.7, 2.11
Post hoc comparison

general terminology, 259, 12.1–12.3
names of different test procedures,

261, 12.7–12.9, 12.10–12.11
null hypotheses in, 264
presentation of results, 264–267,

12.12–12.15, 12.20
rationale for, 251–252, 257, 292
reason for selecting a specific test

procedure, 272, 12.19
Power

of ANCOVA F-tests, 346, 354–355,
15.21

of ANOVA F-tests, 249, 252, 306,
340, 11.17, 14.22

a priori, 168–169, 198–199, 362,
471, 1.8, 8.9–8.13, 9.23, 10.21,
13.19, 16.29

of chi-square tests, 431–432, 17.25
definition of, 168, 171
of tests on correlation coefficients,

199, 9.23
of t-tests, 224–225, 10.21

Practical significance versus statistical
significance

in ANCOVA, 361–363, 15.12–15.13
basic idea of and methods for

addressing, 158–159, 162–165,
7.32, 8.1–8.2

in chi-square tests, 430–431,
17.24–17.25

in multivariate ANOVAs, 469–471,
19.17–19.18
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in one-way ANOVAs, 249–251,
11.17–11.18

in planned and post hoc
comparisons, 273–274, 12.20

in regression, 400–4301,
16.29–16.30

in repeated measures ANOVAs,
329–330, 339, 340–341, 14.7,
14.13, 14.18

in tests on correlation coefficients,
196–199, 9.20–9.21

in tests on proportions, 430–431,
17.24–17.25

in two-way ANOVAs, 305–307,
13.18–13.19

when comparing two means,
231–232, 10.17–10.20, 10.27

Practice effect, 319
Précis, 2
Prediction (in regression), 368, 378,

394, 16.1, 16.9, 16.22
Predictive validity, 83, 4.21
Predictor variable, 369n, 378n,

16.7, 16.13
Principal axis factoring, 488, 20.12
Principal components analysis,

488, 20.11
Probability sample, 96–100
Procedure, 9–10, 1.7
Product-moment correlation. See

Pearson’s correlation
Promax rotation, 489, 20.14
Proportions, 405
Purposive sample, 100–101, 5.8

Quade test, 456
Qualitative variable, 53
Quantitative variable, 53
Quartile

as points that divide a distribution
into parts, 33–34, 2.17

as sections of a distribution, 40, 2.26
Quartimax, 489
Quartimin, 489
Quota sample, 102–103, 5.10

Random assignment, 281
Random numbers

computer-generated list of, 110
table of, 110–111, 5.25

Random sample. See Sample, random

Range, 32, 2.14
Ranked data

nature of, 54, 435n, 3.8
obtaining, 435–437, 18.1–18.3
reasons for changing continuous

data into, 437–440, 18.4–18.8
Rank-ordered correlation, 57–58,

3.17–3.18. See also
Spearman’s rho

Ratings, 435n
Ratio-level data, 54n, 437, 439, 18.7
Raw score

arrived at by combining dichotomous/
ordinal data, 55, 3.12–3.13

basic idea of, 54
Rectangular, 26
References, 14–16, 1.11
Reflective measure, 507n
Refusals to participate, 106–107, 5.20
Regression

bivariate. See Bivariate regression
coefficient, 374, 379–380, 16.6,

16.8–16.10
as different from correlation, 367–371
equation, 373–374, 379–381, 16.6,

16.9–16.10
independent and dependent

variables, 369–370, 16.3–16.4,
16.10, 16.16

least squares principle, 373n
line, 372, 373
logistic. See Logistic regression
mediated, 389–391, 16.20
moderated, 388–389, 16.19
and multicollinearity, 400, 16.28
multiple. See Multiple regression
practical versus statistical signifi-

cance, 400–401, 16.29–16.30
purposes, 368–369, 16.1–16.2
slope, 376

Reject. See Null hypothesis, rejection of
Relationship, 45–46
Reliability

alternate-forms, 70–71, 4.3
among raters, 74–78, 4.10–4.15

coefficient of concordance, 75, 4.12
Cohen’s kappa, 76, 4.13
intraclass correlation, 77–78,

4.14–4.15
Pearson’s r, 75, 4.11
Percent agreement, 75, 4.10

basic meaning of, 68–69
coefficient, 69
confidence intervals and, 127, 6.12
equivalent-forms, 70n
internal consistency, 71–74

coefficient alpha, 74, 4.8–4.9
Kuder-Richardson 20, 21, 73, 4.6,

4.7
split-half, 72, 4.4–4.5

parallel-forms, 70n
point estimates of, 127, 6.10
relation to validity, 81–82
Split-half reliability, 72, 4.4–4.5
test-retest, 69–70, 4.1–4.2
tests on reliability coefficients,

192–193, 9.15
warnings about, 79–81

Reliable difference, 136
RMSEA, 499, 520n, 20.22, 21.15
Repeated measures ANOVA

one-way, 314–322
assumptions, 321–322, 14.9
diagram of, 315–316
different labels for, 314,

14.4–14.5
null hypothesis of, 315
post hoc investigation, 318, 14.7
presentation of results, 316–319,

14.6–14.7
presentation order of levels,

319–320, 14.8
purpose, 315–316

two-way, 322–330
assumptions, 329, 376
diagram of, 324–325
different labels for, 322–323,

14.10–14.11
null hypotheses of, 323, 326
post hoc investigation, 327–328,

14.12
practical significance, concern for,

329–330, 14.13
presentation of results, 326–328,

14.12
presentation order of levels,

328–329, 14.12
purpose, 323–326

Repeated measures factor, 313,
14.1–14.3

Replication, 502
Research hypothesis, 5, 156
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Residual,
as row in ANOVA summary table,

242, 291, 316
as type of error in SEM, 513

Respecification, 521
Response rate

checking on nonresponse bias,
105–106, 5.17–5.19

meaning of, 104, 5.12–5.13
trying to improve, 105, 5.14–5.16

Response variable, 369n, 378n
Results, 11–13, 1.9
Review of literature, 3–4, 1.2
Rho. See Spearman’s rho
Robust, 229, 304
Rotation of factors. See Factor analysis
Roy’s largest root, 465
Ryan’s post-hoc procedure, 328, 14.12

Sample
basic idea of, 91
concerns regarding size of, 158–159,

162, 487, 497, 8.14–8.15
correlated versus independent,

209–211, 10.5–10.6
detailed description of, 111, 5.26
determining size of, 165, 170–171,

224–225, 8.12–8.13, 10.21,
13.28

different kinds of
cluster, 99–100, 5.7
convenience, 101–102, 5.9
nonprobability, 100
probability, 96
purposive, 100–101, 5.8
quota, 102–103, 5.10
simple random, 96–97, 5.3
snowball, 103, 5.11
stratified random, 97–98, 5.4–5.5
systematic, 98–99, 5.6

in a two-way ANOVA, 282
problems caused if too small or too

large, 8.14–8.15, 14.22
problems getting, 103–108,

5.12–5.21
warnings about, 108–112, 502

Sampling
accuracy, index of, 487, 20.9
distribution, 116–118
error, 115–116
frame, 97, 5.3

Satorra-Bentley scaled chi-square 
test, 515

Scatterplot, 46–48, 372, 3.1
Scheffé’s test, 261, 12.9, 12.19
Scree plot, 492, 20.17
SEM

standard error of measurement,
78–79, 4.16

standard error of the mean, 118, 6.1
technique for modeling. See

Structural equation modeling
Semi-interquartile range, 34
Sensitivity, 399, 16.27
Shapiro-Wilk test of normality,

247, 11.11
Shrinkage, 385
Sigma, 35
Significance

level of, 146, 147–152, 7.21–7.25.
See also Alpha

practical, See Practical versus
statistical significance

Significant finding, 136, 158–159, 279,
7.6, 7.32

Sign test, 405–407
example of, 406–407, 17.1–17.2,

17.22
null hypothesis of, 405–406
plus and minus signs, 405–406

Simple ANOVA. See One-way ANOVA
Simple frequency distribution, 19, 2.1
Simple main effects, test of, 298–300,

13.12, 14.12
Simple random sample, 96–97, 5.3
Simultaneous

logistic regression, 392
multiple regression, 382, 16.12

Skewed distribution
coefficient of, 27, 2.11, 2.29, 21.7
typical meaning of, 25, 2.7
unusual use of term, 40, 2.25

Slope
of bivariate regression line, 376
of regression lines in ANCOVA,

357–358, 15.15
Snowball sample, 103, 5.11
Sobel’s test, 391, 16.20
Spearman-Brown formula, 72, 4.4
Spearman’s rho

used descriptively, 57–58, 3.17–3.18
used inferentially, 9.9, 9.25

Specificity, 399, 16.27
Sphericity assumption, 321–322, 329,

338, 487, 14.9, 14.21, 20.9
Split-half reliability, 72, 4.4–4.5
Split-plot ANOVA, 282n, 331. See also

Mixed ANOVAs
Square root transformation, 228,

10.25, 19.15
Squared semi-partial correlation,

386, 16.17
SRMR, 499, 520n, 20.22
SS. See Sum of squares
Stability, coefficient of, 69
Standard deviation, 35–37, 2.18–2.20
Standard error

basic notion of, 116–118
of the mean, 118–119, 6.1, 6.3
of measurement, 78–79, 4.16
of a proportion, 117–118

Standard score
basic idea of, 38–39
T-scores and z-scores, 39–40,

2.23–2.24
Standardized effect size, 164–165,

225, 10.21
Statement of purpose, 4–5, 1.3
Statistic, 95–96
Statistical focus, 95
Statistical inference, 91–94
Statistical plans, 10–11, 1.8
Statistically significant finding, 136.

See also Practical versus
statistical significance

Stem-and-leaf display, 20–22, 2.3
Stepdown F, 476, 19.23
Stepwise

logistic regression, 392
multiple regression, 382, 16.13, 16.16

Stratified random sample, 97–98,
5.4–5.5, 5.25

Structural equation modeling
assumptions, 514–516, 21.7–21.9
causal paths, 510, 21.4
diagrams, 505–506, 21.6, 21.10,

21.22
error,

measurement, 513
residual, 513

invariance, 524, 21.20
hypothesis testing in, 520–522,

21.16, 21.19–21.21
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model
fit, 520–521, 21.12–21.15
modification, 521–523, 21.19

models, kinds of
measurement, 508, 516–518,

21.2, 21.10
mediated, 5.11–5.12,

21.6, 21.18
nested, 522, 21.18
structural, 509, 519–523, 21.2,

21.12–21.14
path coefficients, 520–521, 21.16
trimming, 521–522, 21.17
variables

endogenous, 509–510, 21.3
exogenous, 509–510, 21.3
indicator, 506–508, 21.1
latent, 506–508, 21.1
mediator, 511–513, 21.5–21.6

Student’s t-test, 10.24, 10.26
Subject, 6
Subjects within groups, 242, 335n
Sum of ranks, 443, 448, 450
Sum of squares, 217, 241, 321, 10.11,

11.5, 13.8
Systematic sample, 98–99, 5.6

Table of random numbers, 110, 5.25
Tamhane’s test, 263, 12.11
Tau. See Kendall’s correlations
Test of independence, 417–420,

17.11–17.13
Test of simple main effects, 298–299,

13.12, 14.12, 15.13
Test-retest reliability, 69–70, 4.1–4.2,

4.17
Test statistic, 142
Tetrachoric correlation, 60
Ties, 58, 453–454
TLI, 520n
Trials, 313
Transformation. See Data transformation
Trend toward significance, 154
Trimmed mean, 31
Trimming, 521–522, 21.17
Trimodal, 25
T-score, 39, 2.24
t-test

one-sample, 208–209, 10.4, 10.22
two-sample, 209–218, 1.8, 10.8–10.9,

10.13, 10.15, 10.23

typical use of, 231
used with a correlation, 195

Tukey’s test, 261, 12.7
different version of, 265
presentation of results, 12.12,

12.19–12.20, 13.10, 13.12
why chosen, 272, 12.19

Two-sided, 138n, 8.11
Two-tailed, 139, 187, 1.8, 7.12, 8.9,

9.7, 10.24, 15.21, 18.20
Two-way ANOVA

alternative names for its factors,
278, 13.1–13.2

assumptions of, 302–304,
13.15–13.17

Bonferroni adjustment procedure,
307–308, 13.20

cells of, 277–278
diagram of, 277–278
dimensions of, 279, 13.3–13.4
effect size, 304–306, 13.18
factors, 277–282, 13.1–13.2,

13.5–13.6
active versus assigned, 280–281
between-subjects versus within-

subjects, 281–282, 13.6
familywise error rate, 307
graph of the interaction, 296–298,

13.11
interaction, 285–286, 294–301,

13.8–13.12
levels of, 277–280, 13.5
main effect, 284–285
main effect F, 295
main effect means, 284–285, 287,

293–294
null hypotheses of, 286–289, 13.7
planned comparisons, 301–302, 13.14
post hoc investigation

following a significant interaction,
294–301, 13.12–13.13

following a significant main
effect, 293–294, 13.10

power analysis, 306, 13.19
presentation of results, 289–292,

13.8–13.9
research questions of, 283–286
samples and populations, 282–283
similarity to one-way ANOVA,

276–277
summary table, 289–292, 13.8

Two-way repeated measures ANOVA.
See Repeated measures
ANOVA, two-way

Type I and Type II errors, 149–152,
174–179, 232, 254, 309–310,
341, 7.24–7.25, 8.15

Unadjusted odds ratio, 397
Uncorrelated samples, 211
Unimodal, 25n
Unit of analysis, 249
Univariate, 18, 276, 312
Unmatched samples, 211
Unpaired samples, 211
Unpaired t-test, 224, 10.21

V. See Cramer’s V
Validity, 81–87

basic meaning, 81
coefficient, 83
confidence intervals and, 127, 6.13
different kinds

concurrent, 83, 4.20
construct, 84–86, 4.22–4.24,

20.4, 20.6
content, 82, 4.19
convergent, 84, 499, 4.22, 21.11
criterion-related, 83–84,

4.20–4.21
discriminant, 84, 499, 4.22, 21.11
predictive, 83, 4.21

point estimate of, 127, 6.11
relation to reliability, 81–82
tests on coefficients of, 192–193, 9.16
warnings about, 86–87

Variability
basic notion of, 31–32
explained, 62–63, 196, 222, 377,

384, 3.24, 16.7, 16.15, 16.17
measures of, 31–38, 2.14, 2.16–2.22

Variable
between-subjects, 238, 281, 11.2,

13.6, 14.16
continuous, 437
control

in ANCOVA, 347–349, 15.8
in MANCOVA, 19.5
in regression, 392–394, 16.14,

16.16, 16.18
covariate, 391–392, 400, 15.4–15.8,

15.11–15.14, 16.21
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criterion, 369n, 374, 378n
dependent

in general, 9
in group comparison studies, 209
in regression analyses, 369, 371,

378, 392, 16.3–16.4, 16.7, 16.21
dummy, 381
endogenous, 509–510, 21.3
exogenous, 509–510, 21.3
explanatory, 369n, 378n
independent

in ANOVA and ANCOVA, 237,
277, 344, 11.2, 13.1, 15.4–15.5

in MANOVA and MANCOVA,
458, 19.5

in regression, 369, 378, 392,
16.3–16.4, 16.9–16.10, 16.21

indicator, 483n, 496, 506–508, 21.1
latent, 483n, 496, 506–508, 20.20,

21.1
mediator, 511–513, 21.6
moderator, 388–389
observed, 483n, 496, 506–508,

20.20
outcome, 369n, 378n, 392
predictor, 369n, 378n
qualitative, 53
quantitative, 53

response, 369n, 378n
within-subjects, 238, 281, 282n, 313

Variance
accounted for, 63, 181, 193, 377,

384, 386, 399, 3.24, 16.7,
16.15, 16.27

error, 346, 15.6
as a measure of variability, 36–37,

2.21
Varimax rotation, 489, 20.13
Vector, 463
VIF, 516, 21.9

w, as measure of effect size,
431, 17.25

Wald test, 398, 16.25
Welch test, 228, 271, 10.24, 11.13
Wilcoxon-Mann-Whitney test, 442n
Wilcoxon matched-pairs signed-ranks

test
examples of, 448, 18.4, 18.7, 18.15
interpreting results of, 449
large-sample version of, 451–452,

18.19
null hypothesis of, 448–449
as a post hoc test following Fried-

man two-way ANOVA, 451
reject/retain decision-rule, 448

Wilcoxon rank-sum test, 442n

Wilks’ lambda, 465, 19.10, 19.12,
19.17–19.18

Within groups, 217, 241, 290, 11.15
Within samples, 211
Within-subjects

as a factor, 238, 281–282, 313, 331,
14.1–14.3, 14.10–14.11

as a heading in ANOVA summary
table, 333–334, 14.17

Within-subjects ANOVA. See Repeated
measures ANOVA

Y', 373–374, 379
Yates’ correction for discontinuity,

424–425, 17.19

z', 375
Zero-order correlation, 53n
z-score, 39, 2.23
z-test

for comparing correlations, 195,
9.17–9.18

for comparing means, 215
as large sample approximation,

428–429, 451–453,
17.22–17.23, 18.17–18.19

for proportions, 428, 17.22–17.23
for testing a single mean, 208,

209n, 10.3

Variable (continued )
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